ECE 6416 Assignment 3

- 1. For Problem 1 of Assignment 2, show that F = 19.78 and NF = 12.96 dB with R_1 and C_1 in the circuit. Show that F = 6 and NF = 7.782 dB if R_1 is replaced by an open circuit and C_1 is replaced by a short circuit.
- 2. The noise figure of an op amp is $NF = 5 \,\mathrm{dB}$ with a source resistance of $R_s = 10 \,\mathrm{k}\Omega$.
 - (a) Show that $v_{ni}/\sqrt{\Delta f} = 22.49 \,\text{nV}/\sqrt{\text{Hz}}$.
 - (b) Show that the noise temperature is $T_n = 627 \,\mathrm{K}$.
 - (c) Show that a resistor of value $21.6\,\mathrm{k}\Omega$ at the op amp input would generate the same noise as the op amp.
- 3. For Problem 2 of Assignment 2, show that F = 67.24 and NF = 18.28 dB.
- 4. Given G_n , F_{min} , and $Z_{opt} = R_{opt} + jX_{opt}$ for an amplifier, show that

$$i_n^2 = 4kTG_n\Delta f$$
 $\gamma_i = \frac{-\operatorname{sgn}(X_{opt})}{\sqrt{1 + (R_{opt}/X_{opt})^2}}$

$$v_n^2 = \left(\frac{X_{opt}}{\gamma_i}\right)^2 i_n^2 \qquad \gamma_r = \frac{2kT_0\Delta f}{\sqrt{\overline{v_n^2}}\sqrt{\overline{i_n^2}}} \left(F_{min} - 1\right) - \sqrt{1 - \gamma_i^2}$$

where $\operatorname{sgn}(X_{opt}) = X_{opt}/|X_{opt}|$.

- 5. An amplifier has an input resistance of 150 Ω . Its noise parameters are $v_n/\sqrt{\Delta f} = 2 \,\mathrm{nV}/\sqrt{\mathrm{Hz}}$, $i_n/\sqrt{\Delta f} = 10 \,\mathrm{pA}/\sqrt{\mathrm{Hz}}$, and $\gamma = 0$. It is driven from a source having an output resistance of 75 Ω .
 - (a) Show that $v_{ni}/\sqrt{\Delta f} = 2.401 \,\text{nV}/\sqrt{\text{Hz}}$.
 - (b) Show that F = 4.802 and NF = 6.814 dB.
 - (c) A resistor R_1 is added in series with the source to make the source impedance seen by the amplifier equal to Z_{opt} . Show that $R_1 = 125 \Omega$. If the resistor is considered to be part of the source, not the amplifier, show that F = 3.5 and $NF = 5.441 \,\mathrm{dB}$.
 - (d) The result for F above illustrates the noise factor fallacy. For a proper noise analysis, R_1 must be considered to be part of the amplifier, not the source. Show that the correct values are F = 9.333 and NF = 9.7 dB.
 - (e) Show that R_1 reduces the SNR by 2.886 dB.
- 6. The amplifier in problem 5 is driven from a source having an output resistance $R_s = 1 \,\mathrm{k}\Omega$.

1

- (a) Show that $v_{ni}/\sqrt{\Delta f} = 10.95 \,\text{nV}$.
- (b) Show that F = 7.5 and NF = 8.751 dB.

- (c) A resistor R_2 is added in parallel with the source to make the source impedance seen by the amplifier equal to Z_{opt} . Show that $R_2 = 250 \,\Omega$. If the resistor is considered to be part of the source, not the amplifier, show that F = 3.5 and $NF = 5.441 \,\mathrm{dB}$.
- (d) The result for F above illustrates the noise factor fallacy. For a proper noise analysis, the parallel resistor must be considered to be part of the amplifier, not the source. Show that the correct values are F = 17.5 and NF = 12.43 dB.
- (e) Show that R_2 reduces the SNR by 3.68 dB.
- 7. An amplifier has a voltage gain of 200 and an input resistance of $5 \,\mathrm{k}\Omega$. With a resistor of value $5 \,\mathrm{k}\Omega$ connected in parallel with its input, the output noise measures $447 \,\mu\mathrm{V}$ over a noise bandwidth of $100 \,\mathrm{kHz}$. The $5 \,\mathrm{k}\Omega$ resistor is removed and a white noise source is connected through an attenuator to the input of the amplifier. The attenuator consists of a series $30 \,\mathrm{k}\Omega$ resistor and a shunt $6 \,\mathrm{k}\Omega$ resistor. The output resistance of the attenuator is $5 \,\mathrm{k}\Omega$. The source voltage over a noise bandwidth of $100 \,\mathrm{kHz}$ has the value $v_n = 53.7 \,\mu\mathrm{V}$. With the source activated, show that the noise output voltage from the amplifier increases to $1 \,\mathrm{m}\mathrm{V}$. Use this information to show that F = 2.5 and $NF = 3.98 \,\mathrm{dB}$.
- 8. An amplifier is connected to a source with an output resistance R_s through a lossy transmission line having a characteristic impedance $Z_c = R_s$. If the loss in the cable is $k \, dB$, show that the noise figure is increased by $k \, dB$.