A Novel Parallel Deadlock Detection Algorithm and
Architecture

Pun H. Shiu, YuDong Tan, Vincent J. Mooney llI
Electrical and Computer Engineering, Georgia Institute of Technology

{ship, ydtan, mooney}@ece.gatech.edu

ABSTRACT

A novel deadlock detection algorithm and its hardware im-
plementation are presented in this paper. The hardware
deadlock detection algorithm has a run time complexity of
Ohw (min(m,n)), where m and n are the number of proces-
sors and resources, respectively. Previous algorithms based
on a Resource Allocation Graph have Oy, (m X n) run time
complexity for the worst case. We simulate a realistic exam-
ple in which the hardware deadlock detection unit is applied,
and demonstrate that the hardware implementation of the
novel deadlock detection algorithm reduces deadlock detec-
tion time by 99.5%. Furthermore, in a realistic example,
total execution time is reduced by 68.9%.

Keywords

Deadlock Detection, Parallel Algorithm, Hardware/Software
Codesign, Real-Time Operating System.

1. INTRODUCTION

Development of a real-time System-on-a-Chip (SoC) de-
mands a deterministic and fast Real-Time Operating System
(RTOS), which provides service(s) and manages resource(s)
between software and hardware. However, the algorithms
implementing RTOS services may be non-deterministic or
may have long execution times. Since the RTOS also com-
petes for the shared CPU, RTOS services may be even less
deterministic. For real-time systems, optimization beyond
assembly code is desired, such as a custom hardware unit
similar to FASTCHARTY[6]. Therefore, implementing dead-
lock detection in hardware may provide a better alternative,
which not only reduces the load of a shared CPU but also
improves determinism of the overall SoC system.

An RTOS includes a job scheduler, interprocess communi-
cation, and resource allocation, thereby providing a means
for applications to have several concurrent tasks. Moving
deadlock detection out of the RTOS and into custom hard-
ware gives more bandwidth to the rest of the RTOS services,
allowing the RTOS to handle more services with faster run

time, more concurrency, and better utilization of the under-
lying SoC.

Furthermore, future SoC designs are likely to include 4-10
heterogeneous processors together with 10-50 on-chip hard-
ware resources such as an ethernet interface, Bluetooth and
other wireless devices, Viterbi filtering, FFT, Direct Mem-
ory Access (DMA), and many more. Ideally, programmers
of these SoC devices would only write deadlock-free code.
However, if they do not, this paper presents a very fast and
very low area (206 nanoseconds and 14,142 gates for 50 re-
questors and 50 resources) hardware deadlock detection unit
which programmers can use to check for deadlock at run-
time. If deadlock is detected, the programmer can include
code for resolving the situation, for example by releasing
held resources.

The proposed hardware deadlock detection implementa-
tion allows deadlock detection to be run in a determinis-
tic manner (short latency), so that the system can meet its
deadlines. The contribution of this work is an enhanced and
deterministic capability of dynamic (run-time) detection of
deadlocks. The run time complexity of the proposed hard-
ware algorithm is Opy (min(m,n)), where m is the number
of processors and n is the number of resources. Previous
algorithms have run time complexities of Osw(m x m)[1],
Osw(m x n)[4], and Osyw(e)[3], where e is the number of
edges (the sum of the number of requests and grants) for a
time-shared operating system.

Section 2 reviews some previous work on deadlock detec-
tion. Section 3 presents the new deadlock detection algo-
rithm. Section 4 illustrates how parallelism is implemented
in the hardware architecture of the proposed algorithm. Sec-
tion 5 presents a practical application example. Section 6
concludes this paper.

2. BACKGROUND

Informally speaking, a deadlock is a system state where
requestors are waiting for resources held by other requestors
which, in turn, are also waiting for some resources held by
the previous requestors. In this paper, we only consider
the case where requestors are processors on a single piece of
silicon (SoC). A deadlock situation results in permanently
blocking a set of processors from doing any useful work.

There are four necessary conditions which allow a system
to deadlock[9]: (a) Non-Preemptive: resources can only be
released by the holding processor; (b) Mutual Exclusion:
resources can only be accessed by one processor at a time; (c)
Blocked Waiting: a processor is blocked until the resource
becomes available; and (d) Hold-and-Wait: a processor is

using resources and making new requests for other resources
at the same time, without releasing held resources until some
time after the new requests are granted.

multitask

tasks
resource allocation

U
devices

multiporcessor
resource allocation

ao gl | eee dn

resources processors,

Figure 1: Bipartite Graphic Representation.

Deadlock detection can be represented by a Resource Al-
location Graph (RAG), commonly used in operating sys-
tems. A RAG is defined as a graph (V, E) where V is
a set of nodes and E is a set of ordered pairs or edges
(vi, vj) such that v;,v; € V. V is further divided into
two disjoint subsets: P = {po,p1,p2, - ,Pm} where P is
a set of processor nodes shown as circles in Figure 1; and
Q = {q90,91,92, - ,qn} where @ is a set of resource nodes
shown as boxes in Figure 1. A RAG is a graph bipartite
in the P and Q sets. An edge e;; = (pi,q;) is a request
edge if and only if p; € P,q; € Q. An edge ej; = (gj,p:)
is a grant edge if and only if p; € P,¢; € Q. The max-
imum number of edges in a RAG is m x n. A node is a
sink when a resource (processor) has only incoming edge(s)
from processor(s) (resource(s)). A node is a source when a
resource (processor) has only outgoing edge(s) to proces-
sor(s) (resource(s)). A path is a sequence of edges ¢ =
{Pirs @51)s (@15 Piz) s ooy Pins Gin)5 (Gin s Pigg1)5 woos (Gias Pio)}
where ¢ C E. If a path starts from and ends at the same
node, then it is a cycle. A cycle does not contain any sink
or source nodes.

In Figure 1, each processor has more than one task run-
ning on the processor. Each resource can be accessed by
only one processor at a time. A downward arrow indicates a
processor making a request to a resource, while an upward
arrow indicates that the processor is holding and using the
granted resource. For example, g0 — po represents that
processor pg is granted (upward arrow) resource go.

The focus of this paper is deadlock detection. For our
hardware deadlock detection implementation, we make three
assumptions. First, each resource type has one unit. Thus,
a cycle is a sufficient condition for a deadlock[2]. Second, a
satisfiable request will be granted immediately, making the
overall system expedient[2]. Thus, a processor is blocked
only if it cannot obtain the requested resource. Third, each
processor can make multiple requests at the same time.

Software deadlock detection algorithms have been pro-
posed in the past. All proposed algorithms, including those
based on a RAG, have Osy(m Xx n) for the worst case. An
Osw(m x n?) run time complexity detection algorithm is
proposed by Shoshani[l]. Holt proposed an Ogy(m X n)

algorithm to detect knots[2]. Both Holt and Shoshani’s al-
gorithms are based on a RAG representation. Leibfried pro-
posed a system state using an adjacency matrix represen-
tation and a corresponding scheme which detects deadlock
with matrix multiplications, but the run time complexity is
Osw(m?). Kim[4] proposed an algorithm with Os., (1) for de-
tection and Ogy (m xn) for detection preparation. In this pa-
per, we propose a hardware algorithm with Op,, (min(m,n))
based on a new matrix representation. The order notation
used in software and hardware is distinguished by Osy (- - -)
and Opy(-+-). The proposed hardware deadlock detection
algorithm makes use of parallelism and can handle multiple
requests/grants, making the proposed algorithm faster than
the Osw (1) algorithm[4], which actually has Osw(m X n)
latency in multiprocessor systems. Therefore, the SoC par-
allel deadlock detection algorithm/hardware is faster than
any previously reported algorithms.

3. ANEWALGORITHM FOR DEADLOCK
DETECTION

In this section, we will first introduce the matrix represen-
tation of a deadlock detection problem. The new algorithm
is based on this matrix representation. Next, we present
some essential features of the proposed algorithm. This al-
gorithm is parallel, and thus can be mapped into a hardware
architecture which can handle multiple requests/grants si-
multaneously and can detect multiple deadlocks in linear
time, hence, significantly improving performance.

3.1 Matrix Representation of A Deadlock De-
tection Problem

In graph theory, any directed graph can be represented
with an adjacency matrix[8]. Thus, we can represent a RAG
with an adjacency matrix. However, there are two kinds of
edges in a RAG: grant edges, which point from resources to
processors; and request edges, which point from processors
to resources. To distinguish different edges, we designate
elements in the adjacency matrix with three different values
as shown in Figure 2. This Figure shows the matrix repre-
sentation of a given system with processors p1, po, ..., pi,
..., pm and resources qi, g2, - .., qj, ---, gn. The leftmost
column is the processors’ label column. The top row is the
resources’ label row. If there is a request edge (p;, ¢;) in the
RAG, the corresponding element in the matrix is r. If there
is a grant edge (gi, p;) in the RAG, the corresponding ele-
ment in the matrix is g. Otherwise, the value of the element
is 0.

[PQaalae] [|
P g | 7] -] 0
p2 | r 910
P3 0 r | -] 0
pm 107 g

Figure 2: Matrix Representation.

This variant of the adjacency matrix of a RAG (V, E) can
be defined formally as follows:

M = [my;]™*™, (1 <i<m,1<j<n), where m is the
number of processors and n is the number of resources.

mij € {r, g, 0}

mij =1, 4if Ipi, ¢;) €E

mi; =g, if (g, pi) €E

m;; = 0, otherwise

This matrix provides a template able to represent all re-
quest and grant combinations. Note that each resource has
at most one grant, that is, there is at most one g in a column
at any time. However, there is no constraint on the number
of requests from each processor.

If there are deadlocks in a system, there must be at least
one cycle in its RAG, that is, there must be a sequence of
edges, € = {(Pi1, 1), (€1, Pin)s -5 (Pir,» Tin) (qjk:pik+1)a 2N
(pis»45.), (g5, ,pi1)}, where ¢ C E (see[10] for a detailed
proof). In the matrix representation, this cycle is mapped
into a sequence of matrix elements w = {mj;, Miyjy, ..y
Mg jies Mgy 15r s Migq1dk415 0 Misjss miyj, } where mi,j,,
Migjo, vy Mipjp, s ey Miyj, are requests (r’s) and mi,j, My,
ey Mg 1di> - Miqj, are grants (g’s). By this fact, we
can detect deadlocks in a system with its adjacency matrix.
Next, we will present the new detection algorithm.

EXAMPLE 1. Matrix representation of a given system
Let us consider the system presented in Figure 1. Its adjacency
matrix is presented in Figure 2. There is a cycle in the RAG of

this system, that is, {(p1,¢2),(q2,p2), (P2,q1),(q1,p1)}. In the
adjacency matrix of this system, this cycle is indicated by a se-
quence of non-zero elements which is {m12,m22, m21,m11}, where
mi2 = ma21 = r, m11 = m22 = g. So there is a deadlock in this
case. O

3.2 A New Hardware Deadlock Detection Al-
gorithm

On the basis of the matrix representation, we propose
a novel hardware deadlock detection algorithm. The basic
idea in this algorithm is iteratively reducing the matrix by
removing those columns or rows corresponding to any of the
following cases:

(i) a row or column of all 0’s;

(ii) a source (a row with one or more r’s but no g¢’s, or a
column with one g and no r’s);

(iii) a sink (a row with one or more g’s but no r’s, or a
column with one or more r’s but no g’s).

This continues until the matrix cannot be reduced any
more. At this time, if the matrix still contains row(s) or
column(s) in which there are non-zero elements, then there is
at least one deadlock. Otherwise, there is no deadlock. (See
[10] for a detailed proof.) The description of this algorithm
is shown in Algorithm 3.1 .

ALGORITHM 3.1. Parallel Deadlock Detection
Step 0: Initialization
M = [mg ™",
where m;; € {r,9,0},(i=1,...,mand j=1,...,n)
mi; =T, Zfa(pMQJ) [SOR
mi; =9, 7/f a(q]apl) €E.
m;j = 0, otherwise.
A = {mi; | miy; € M,my; #0};

Note that A is a set consisting initially of
all the non-zero entries in the matriz M.

Step 1: Remowve all sinks and sources
DO {
reducible = 0;
For each column:
if Amy; € A | Vk,k # 1, My € {ms;,0}){
column =A- {mz] ‘ .7 = 1:2535-" am}a
reducible = 1;

} else { }

For each row:
if (3mij € A | VK, k # j,msp € {m;;,0}){
Arow = A —{my; |1=1,2,3,... ,n},
reducible = 1;

} else { }

A= Acolumn N Arow;
} UNTIL (reducible =0);

Step 2: Detect Deadlock
if (A # 0), then deadlock ezists.
if (A = 0), then no deadlock exits.

The following example illustrates how the algorithm works.
In each iteration of this parallel algorithm, at least one re-
duction can be performed if the matrix is reducible. Hence,
it takes at most min(m,n) iterations to complete the dead-
lock detection.

EXAMPLE 2. Two processors and three resources

igi Wireless
Digital =\
Signal @ N/ Interface
Processor
v\ PCI Bus
0N Interface
>
Video ®
Signal (C) -y Image
Processor || coprocessor

Figure 3: SoC Example

This example has two processors: DSP and Video Signal Proces-
sor, as p1 and p2 respectively. The devices are Image Co-processor,
PCI, and Wireless Interface, as q1, g2, and g3 respectively as shown
in Figure 3.

| P\Q | ¢1(IcP) | ¢2(PCI) [g3(WI)]
p1(DSP) g r 0
p2(VSP) r g g

Table 1: Small Example with 2 Processes and 3 Re-
sources.

The matrix representation of this example is shown in Table 1. In
this matrix, the first and second column contain both g and r, and
hence are not reducible. However, the third column contains only
g. Thus m12 = g can be reduced. At the same time, each row is
also examined, however there is no reduction possible. Since there is
one reduction, the next iteration will be carried out. In the second
iteration, the first and second columns still contain both g and 7,
and hence are not reducible. At the same time, each row is also
checked, but no reduction is possible for any row. Since there are
no more reductions, a conclusion is drawn. In this case, hardware
deadlock detection takes two iterations and finds a deadlock.

| P\Q | 91(IcP) | g2(PCI) [g3(WT)]
p1(DSP) g T 0
p2(VSP) r 0 g

Table 2: Small Example without Deadlock

Let us remove the edge (p2, g2) in this case and consider it again.
The matrix is shown in Table 2. In this matrix, the first column
cannot be reduced, because of the existence of both g and r, while
the second and third columns can be reduced, because the second
column has only one 7 and no ¢’s, and the third column has only one
g and no 7’s. At the same time, the first and second rows cannot be
reduced, because of the existence of both g and 7 in each row. Since

this iteration has a reduction, Step 1 will be re-executed with the
second and third columns having been removed. During the second
iteration, the first column is not reduced, because there are both r
and g in this column. However, the first row can be reduced because
only g is in this row, and the second row can be also reduced because
only 7 is in this row. Then Step 1 is executed again in what is now a
third iteration of the Hardware Deadlock Detection Algorithm. There
are no more reductions, because the matrix now is empty. Step 2
concludes that there is no deadlock. In this case, three iterations are
taken to complete detection. UJ

4. ARCHITECTURE

We will illustrate how the parallelism of the new algo-
rithm works cycle by cycle. Our architecture will be able
to perform in parallel all calculations from any particular
cycle.

EXAMPLE 3. Detail Calculation of Example 2
Consider Table 1 from Example 2. For this case, we have the
following after Step O (initialization) of the new algorithm:

m m g r O
_ 11 12 13 _
M= mmm|~ |r g g

21 22 23

A={m, m, m, m, m}
Now we will show all the calculations that occur in the first clock
cycle of the architecture for this algorithm. To explain this, first we
replace 7 with 10, g with 01, and 0 with 00. The result is as follows:

01 10 00
M= M=

c 10 01 01 r

Oor RO
RO OO

RO OF

M, is a different representation of M where we have represented

1 0 0 . .
ras0,gas1,and0as0. Now we perform in parallel, a bitwise
OR on each individual column in M, (note that now there are six
columns) and each individual row in M,. The result is as follows:

01 10 00
Mc: 10 o1 01 Mr:

M= [11 1 01]

CBO

or rOo
RO Op

The vector Mcpo is the result of the Column Bitwise OR. The
vector Mrpo is the result of Row Bitwise OR. Next we perform
exclusive-OR on every two bits in the Mopo and Mgrpo, with the
following result:

XORpsow =[1®1, 11, 061]=[0 0 1],
XORige =] 1®1, 1®1]T=[0 0]T.

The X ORpeow is the XOR on every two bits of Moo and the
XORiign is the XOR of every two bits of Mgrpo. Finally, all m;;
corresponding to any 1 in either XOR result are removed from A. In
this case, ma3 is removed, resulting in A = {m11,m12,m21,m22}.
O

Continuing in this way, A is reduced each clock cycle.
Whenever no more reductions are possible (which occurs in
at most min(m,n) steps), we are done. If A is empty, there
is no deadlock; otherwise, deadlock exists.

The architecture for a system with 3 processors and 3 re-
sources is shown in Figure 4. The architecture is able to
perform all of the calculations for each step of the algorithm

in minimal time. The architecture is explained in great de-
tail in [10].

4.1 Synthesized Result of Deadlock Detection
Unit (DDU)

matrix o ¢ Matrix o o Mmatrix
cell cell cell

. : .

- b— -

matrix o4 ¢ Mmatrix ¢4 ¢ matrix ¢
| cell cell

. 4 .

matrix o ¢ Mmatrix ¢ ¢ matrix
cell cell cell

. : .

Figure 4: Architecture of DDU

We used the Synopsys Design Compiler (DC) to synthe-
size DDU with the AMI[13] 0.3pm standard cell library. The
results are shown in Table 3. The “Area” column denotes
the area in units equivalent to a minimum-sized two-input
NAND gate in the AMI 0.3um standard cell library. Note
that the hardware area cost is O(m x n). For an example
of 50 processors and 50 resources, the worst delay for dead-
lock detection is 206ns, assuming each step is calculated in
4.12ns (which requires a 242MHz clock).

Processor Lines Area Delay Worst Worst
X of Per One Case Case
Resources | Verilog Step(ns) # Steps | Delay(ns)
2x3 49 186 0.91 2 1.82
5xb 73 364 2.21 5 11.056
<7 102 455 2.51 7 17.57
10x10 162 622 3.66 10 36.6
50x50 2682 | 14142 4.12 50 206

Table 3: Synthesis Results of DDU

5. EXPERIMENTAL RESULTS

We simulated a large number of deadlock detection cases
with hardware and software respectively. Figure 5 shows our
measurements for the four processor and four resource case
simulated in Seamless CVE with up to nineteen edges in the
RAG. In the legend of Figure 5, “Dead SW” represents dead-
locked scenarios detected by the software algorithm. “Live
SW” denotes non-deadlocked scenarios detected by the soft-
ware algorithm. “Dead HW” and “Live HW” mean, respec-
tively, deadlocked and non-deadlocked scenarios detected by
the hardware algorithm. Notice that in all cases, three or-
ders of magnitude separate software and hardware execution
times.

The software deadlock detection algorithm spends a lot
of time searching linked lists, manipulating matrices, and
updating data structures. In real time systems, this three
orders of magnitude difference in detection time can allow
the system to fix itself, where, without the DDU, the sys-
tem could miss its real-time deadline by the time it has
discovered deadlock using the software algorithm. Figure 5
empirically verifies that the hardware deadlock detection al-
gorithm is O(min(m,n)) as was explained earlier.

Run Time of 5x5 Cases
T T

T T
QO
@ @0
000808°O°gggﬁaté PN
4
10 |
A Dead SW
O Live SW
* Special SW
O Dead HW
+ Live HW
3
ﬁlo— 3
S
3
k]
3
£
210°F E
10"} e
R *
++ ++
+o+
10° | L L L L i i i L
2 4 6 8 10 12 14 16 18 20

number of edges

Figure 5: Comparison of Run Time Performance of
Deadlock Detection Using PowerPC and Hardware
DDU

Client Applications

Jini Lookup Service

\ 4
‘ Discovery and Join

Figure 6: Jini Lookup Service System

However, the above simulation only measure the detec-
tion time. To verify the functionality of the Deadlock De-
tection Unit (DDU for short) and analyze its performance
in applications, we also applied the DDU in a real-life ex-
ample which is shown in Figure 6. This is a Jini lookup
service system [14], in which client applications can request

services through intermediate layers (i.e., lookup, discovery
and join).

We simulate this system with four processors and four
hardware units. Application tasks which run on processors
request the service of hardware units (PCI, MPEG, FFT
and Wireless Interface(WI)). Functions of intermediate lay-
ers are partially implemented by an RTOS (we choose the §
RTOS developed at Georgia Tech in this simulation). Fig-
ure 7 shows the architecture of the system simulation.

Figure 7: An SoC Architecture with Four Processors
and Four Resources

The first processor processes video streams. The sec-
ond processor completes some signal processing algorithms.
The third processor handles services such as fax, voice and
email. The fourth processor handles communication func-
tions. Some functionalities in these tasks are implemented
with hardware, so they will request the services of the hard-
ware units. Because this is a system with multiple processors
and multiple resources, it is possible that a deadlock may
occur. Now, we give an example sequence of requests and
grants which leads to a deadlock. Table 4 is the description
of events in this sequence.

| Time | Events No. | Events

t1 e1 MPCT750-1 requests FFT, MPEG;
FFT and MPEG are granted to
MPC750-1 immediately

ta e2 MPC750-3 requests FFT, PCI;
PCI is granted to MPC750-3 imme-
diately

ts es MPC750-2 requests FFT, MPEG

ta eq FFT is released by MPC750-1

ts es FFT is granted to MPC750-2

Table 4: An Example Sequence

We can represent the state of the system at every time
instant in Table 4 with adjacency matrices, which are shown
in Table 5.

At time instant ts, there is a deadlock in the system. Fig-
ure 8 shows the events sequence in this example. Here, we
measure execution time in CPU clock cycles, which in our
case is a Motorola PowerPC 750 (MPC750) with an 83.3
MHz clock, with the DDU on the same clock (83.3MHz).
This example was simulated in Seamless CVE.

The times shown are not from an actual industrial product
but instead are estimates intended to exemplify an applica-
tion with short execution times. Suppose we start deadlock

Q\P MPC750
(tl) MPC750-1 MPC750-2 MPC750-3 MPC750-4
(p1) (p2) (p3) (p4)
FFT, (q1) g 0 0 0
MPEG, (¢2) g 0 0 0
PCI, (g3) 0 0 0 0
WI, (g4) 0 0 0 0
Q\P MPCT750 Q\P MPC750
(t2) [p1 [p2 [p3 | pa (t3) [p1 [p2 [p3 [pa
q1 g 0 r 0 qQ1 g r r 0
q2 g | 0100 q2 g | 00710
q3 0 0] g |0 q3 0 r | g |0
qa 0 00| O qa 0|0 |07]0O0
Q\P MPC750 Q\P MPC750
(t4) [p1 [p2 [p3 | pa (ts) | p1 [p2 | p3| pa
q1 0 r r 0 q1 0 g r 0
q2 g 0 0 0 q2 g 0 0 0
q3 0 r g 0 q3 0 r g 0
qa 0 0010 qa 01010 0

Table 5: Adjancey Matrices of the Example

2
i)
MPC7E0_1 | Computatiomal Tims | ;

Iy =142 fy=7210 ¢

time(sycles)
25 &5
Computational Tine | i

MPC750-2 | i
- 6918 5 =T

time(cycles)

2.
2
Computational Tines |

HPC7E0-3 | i
£y= 5375 5+ A

time(eyeles)

Figure 8: Events Sequence in the Example

detection after event es occurs and the deadlock detection
time is A, what we are interested in is the values of A with
different deadlock detection methods. We compare the im-
pact on deadlock detection time and total execution time of
both methods: software deadlock detection versus hardware
deadlock detection.

Table 6 shows the results.

Method of Detection Time | ts+A
Deadlock Detection | A (Cycles)
Software Algorithm | 16038 23261
DDU 2 7225

Table 6: Deadlock Detection Time and Total Exe-
cution Time

The total execution time is reduced by 16,036 clock cycles,
an improvement of 68.9%. This reduction in deadlock de-
tection time may allow a real-time deadline to be met which
would be missed with the software deadlock detection algo-
rithm.

6. CONCLUSION

A deadlock detection algorithm is implemented in hard-
ware using a newly reported parallel algorithm. The dead-
lock detection hardware algorithm has Op, (min(m,n)) run

time complexity, an improvement of approximately three or-
ders of magnitude in practical cases. For multiprocessor
programmers who do not write code formally proven to be
deadlock free, the hardware deadlock detection unit provides
a very fast and very low area way of checking for deadlock
at run-time. In this way, programmers can quickly detect
deadlock and then resolve the situation, e.g., by releasing
held resources.

7. ACKNOWLEDGMENTS

This research is funded by the Design Automation Con-
ference Scholarship and by NSF under INT-9973120, CCR-
9984808, and CCR-0082164. We also acknowledge software
donations from Mentor Graphics and Synopsys as well as
hardware donations from Sun and Intel.

8. REFERENCES

[1] A. Shoshani, E. G. Coffman, Jr., “Detection,
Prevention and Recovery from deadlocks in
multiprocess, multiple resource systems,” Princeton
University, Technical Report Number 80, October,
1969.

[2] R. C. Holt, “Some Deadlock Properties of Computer
Systems,” ACM Computing Surveys, Vol. 4, No.3,
September 1972.

[3] L. Cahit, “Deadlock detection using (0, 1)-labeling of
resource allocation graphs,” IEE Proceedings:
Computers and Digital Techniques, Vol. 145, No. 1,
pp. 68-72, January 1998.

[4] Ju Gyun Kim, “Algorithmic approach on deadlock
detection for enhanced parallelism in multiprocessing
systems,” Aizu International Symposium on Parallel
Algorithms Architecture Synthesis, IEEE, Piscataway,
NJ (USA), 1997, pp. 233-238.

[5] Lennard Lindh, “FASTCHART - A Fast Time
Deterministic CPU and Hardware Based
Real-Time-Kernel,” Euromicro workshop on
Real-Time Systems, June 1991.

[6] Lennard Lindh, “FASTCHART - Idea and
Implementation,” International Conference on
Computer Design (ICCD), Boston, USA, October
1991.

[7] Zvi Kohavi, Switching and Finite Automata Theory,
2nd Ed, McGraw-Hill, 1978.

[8] Giovanni De Micheli, Synthesis and Optimization of
Digital Circuits, McGraw-Hill, 1994.

[9] M. Maekawa, A. E. Oldehoeft and R. R. Oldehoeft,
Operating Systems, Benjamin-Cummings Pub.; 1987.

[10] P. H. Shiu and V. J. Mooney III, “The Principle of
Parallel Deadlock Detection,” Technical Report
GIT-CC-00-30,
http://www.cc.gatech.edu/tech_reports, December
2000.

[11] “Getting Started With Seamless Co-Verification
Environment (Software Version 3.0-1.0),” Seamless
Documentation, Mentor Graphics.

[12] “Virsim for Synopsys Reference Manual,” Version 3.03
VCS 5.1 Beta 3, October 1999.

[13] American Microsystems Inc., http://www.amis.com.

[14] Steve Morgan, “Jini to the rescue,” IEEE Spectrum,
April 2000.

