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ABSTRACT
Approximate arithmetic is a promising, new approach to low-
energy designs while tackling reliability issues. We present a
method to optimally distribute a given energy budget among
adders in a dataflow graph so as to minimize expected errors.
The method is based on new formal mathematical models
and algorithms, which quantitatively characterize the relative
importance of the adders in a circuit. We demonstrate this
method on a finite impulse response filter and a Fast Fourier
Transform. The optimized energy distribution yields 2.05X
lower error in a 16-point FFT and images with SNR 1.42X
higher than those achieved by the best previous approach.

Categories and Subject Descriptors
B.2 [Arithmetic and Logic Structures]: Miscellaneous;
B.8.1 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance

General Terms
Design, Reliability

Keywords
Approximate Computation, Voltage Scaling, Energy Con-
sumption Minimization, DSP Circuits

1. INTRODUCTION
The world of computing now faces two important chal-

lenges: reliability and energy consumption. First, the minia-
turization of computing devices through technology scaling
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referred to as Moore’s Law is a hindrance to reliable com-
puting. Second, portability is hobbled by the energy con-
sumption of mobile electronics. In [7, 4] it is shown that in
the context of multimedia audio and video signal processing,
both of the challenges can be met: error can be tolerated
while energy is saved. This is possible because the quality of
the output is evaluated primarily by human perception which
can interpret useful information from (slightly) erroneous
data. This leads to a new design methodology in which the
computations are not deterministic but probabilistic and
approximate.

Approximately correct arithmetic, which we address in
this paper, was introduced in [4]. In conventional design
methodology the supply voltage of a circuit is determined
by the frequency of operation. In approximate arithmetic
circuits, the supply voltages are lowered below the threshold
determined by the frequency of operation, thereby lowering
the energy consumption. As a result, the circuit is clocked
at a cycle time shorter than its worst-case critical path de-
lay. Therefore, some computations might only be partially
completed which results in an “approximate” value at the
outputs of the circuit.

To improve the accuracy of the output of the circuit for
the same energy consumption, as opposed to uniform voltage
scaling, a novel biased voltage scaling approach or bivos was
proposed in [4], where more important data is computed more
accurately and accuracy is less for less important data. For
a single adder, this is done by having a higher supply voltage
for the most significant bits and a lower supply voltage for
the less significant bits.

First, though energy savings were obtained in [7, 4, 12]
by biased investment at the level of an adder, there was
no definitive methodology to optimally supply the voltage
across the circuit. Second, there was no previous attempt
to optimize a circuit that consisted of multiple components
where each of these components could be an n-bit adder. In
such circuits, analogous to the case of the computed bits in
an adder [7, 4], the relative importance of these components
has to be taken into account in order to optimize energy con-
sumption. For example, it is the case that in some circuits,



modelled in this paper, the data produced by a particular
adder is more important than other adders.

In this paper, we address the latter problem of optimizing
a circuit with multiple adders by showing a very efficient
method to relatively invest energy across different adders in
a circuit based on their importance. For supplying voltages
for components inside an adder, we use the previous bivos
approach. Our method is general enough to model any adder
design or combination of different adder designs, though we
present our specific results for the special case of the ripple
carry adder. Our primary contributions in this paper are as
follows:

• We provide a strong mathematical foundation capable
of modelling the propagation of errors in a circuit with
multiple shifters and approximate adders.

• We present a very fast algorithm to quantitatively com-
pute the relative importance of each adder in any graph
as defined in the model.

• We present a theorem that optimally distributes en-
ergy based on the relative importance of each adder,
applicable to any directed acyclic graph structure.

• We demonstrate this approach on two example circuits,
a finite impulse response filter (fir) and a Fast Fourier
Transform (fft), and through hspice simulations we
show that dramatic savings in energy consumption
can be achieved when using our approach even when
compared to the best existing prior art, bivos.

Keeping in mind the domain of dsp, we developed our ap-
proach to encompass popularly used circuits such as an fir
or an fft which can be implemented using only adders and
constant-number multipliers. Also, the standard implemen-
tation of a constant-number multiplier uses a set of adders
and implicit shifting. Hence, in this paper we will consider
circuits which consist only of adders and shifters. We only
consider optimization of energy and errors in dataflow graphs
and do not model memory and feedback elements.

In this section we have motivated our approach and have
discussed related techniques. In Section 2, we present our
target circuit model and state the associated optimization
problem. In Section 3, we develop our solution to minimizing
error for a given energy budget. We summarize the method
and describe the extension to other adders in Section 4. In
Sections 5 and 6, we show the impact of the solution on
two applications of interest, an fir and an fft. Section 7
discusses the impact our method has on a conventional cir-
cuit design framework. We outline future work and present
conclusions in Section 8.

1.1 Related work
The fundamentally novel design methodology where the

computations are not deterministic but approximate and
probabilistic in nature was introduced by Chakrapani et al. [4]
and George et al. [7] . In this paper we model approximate
arithmetic circuits where accuracy is compromised because
of overclocking, which is operating the circuit at a frequency
higher than that strictly permitted by the critical path. In
contrast, probabilistic arithmetic circuits take into account
the inherent thermal noise that is present in all devices as
well as any parameter variations. Though thermal noise and
parameter variations in current transistor technologies are

not very prominent, it is predicted by the International Tech-
nology Roadmap for Semiconductors (itrs) [8] that in future
technologies their effect will be drastic. The roadmap also
forecasts that relaxing the accuracy constraint on circuits
will be necessary to improve the efficiency of manufacturing,
verification and testing of circuits.

In contrast to probabilistic or approximate circuits, there
are other techniques which use multiple voltages and ag-
gressive voltage scaling. Martin et al. [11] use aggressive
voltage scaling, multiple voltage levels, and an adaptive cir-
cuit which adjusts its throughput but guarantees that errors
do not occur even in the computation. Manzak and Chak-
trabarti [10] and Yeh et al. [15] present techniques that are
non-adaptive which operate the critical paths of the circuit
at higher voltages than the non-critical paths and also use
transistor sizing. This is similar to a biased voltage scaling
but the bias is because of the time criticality of the output
rather than the importance of the data that we use. Ernst
et al. [6] present a method in which they use circuit-level
timing speculation thus allowing incorrect operation of cir-
cuit elements, which are detected and then corrected. A
recent announcement in Technology Review (Published by
MIT) [3] describes recent advances in error resilient circuit
including a prototype chip designed by Tschanz et al. [14] at
Intel that lets errors happen and then corrects them using
less power overall. Shim et al. [13] show a design in which
circuit level timing errors are not corrected at the circuit
level, rather techniques borrowed from signal processing are
used to correct such errors. But the distinguishing feature
of these techniques from our approach is that these circuits
might compute incorrectly but then they employ a variety
of error correction mechanisms which assure that the output
is always correct.

An exception to these techniques is by Banerjee et al. [1]
where in the specific case of a 2-dimensional discrete cosine
transform they modify the circuit topology such that com-
putations that are more important to output quality take
shorter time than the ones that do not affect the output
quality as much. So when they overclock, the computations
that take shorter time would be computed correctly but the
other ones might have errors in them.

A straightforward technique to reduce the energy con-
sumption is power gating [9], which is simply cutting off
power to less important circuitry. But in power gating we
are neglecting the switched part of information completely,
whereas in our approach we can relatively invest based on
the significance of the data.

2. THE MODEL
In this section we define the model we use and specify the

problem we address. The concept of trading error for energy
savings in circuits is entirely at an early stage and thus, we
felt a need for a foundational model and formal mathematical
results, leaving detailed simulation of large systems for later.

As discussed, we will consider circuits of adders only. Some
of these circuits have been obtained by reducing constant-
number multipliers to a set of adders and shifters. This is
advantageous because in many circuits used in DSP, values
are multiplied by constants and hence general multipliers
are not needed. They can be replaced with a set of adders
and shifters using a variety of methods such as those used
in [2], thereby reducing total area, energy consumed, and
delay. In the design of such a circuit, shifting of a number is
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Figure 1: Example of a graph-theoretical represen-
tation of a circuit
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Figure 2: An example of an implicit shifter

done implicitly by routing the interconnects to shift the bits
appropriately to another position.

But in modeling we will explicitly consider and show
shifters as they influence the size of the errors. The im-
plicit implementation of the shifter S1 shown in Fig. 1 which
shifts a number to the left by 2 positions is shown in Fig. 2,
where a rectangle represents a full adder and the number
inside the rectangle denotes its position in the adder.

2.1 The graph based model
In the context of modeling, it is useful to consider shifters

explicitly though they are not actually implemented. A cir-
cuit we target consists of the following components: inputs,
shifters and adders. Some adders or shifters are also labeled
as outputs. It is convenient to model such a circuit using a
directed acyclic graph (dag).

The dag will have some NI +NA +NS vertices: inputs I1,
I2, . . . , and INI ; adders A1, A2, . . . , and ANA ; and shifters
S1, S2, . . . , and SNS . Some of the adders or shifters are also
labeled as outputs O1, O2, . . ., ONO . Thus each Ai or Sj is
either not an output or a unique Ok, so Ok is just an alias
for Ai or Sj . Each Ok may have any number of bits but this
will typically be a power of two. We will write n for NI . For
a simple example, see Fig. 1.

A vertex Ii has in-degree 0, and an input xi to the circuit is
supplied at Ii. An input xi may have any number of bits but
will typically be a power of two. A vertex Aj has in-degree
2 and is an adder, adding the two numbers on its incoming
arcs. A vertex Sj has in-degree 1 and shifts the number on
its incoming arc either left or right by the specified amount.
We will use the term s-shifter for a shifter vertex that shifts
the input left with magnitude s (where s is a positive or
negative integer).

At each adder or shifter, a linear function of x1, x2, . . . , xn
is computed. Thus the value of the output at Ok (corre-

sponding to some adder or shifter) is a function Fk(x) =∑n
i=1 wk,ixi for some wk,1, wk,2, . . . , wk,n, which can also

be written as wk · xT where wk = (wk,1, wk,2, . . . , wk,n),
x = (x1, x2, . . . , xn) and “·” is the scalar product. x is drawn
from a set X of allowable inputs. For example, each xi could
be an integer in the range [0, 210).

For Fig. 1, we see that F1(x) = (5, 5, 1, 1) · xT.

2.2 The energy optimization problem for our
target dataflow graph of adders

Let E be the total energy budget to be invested in the cir-
cuit, and let EAdd be the energy required to run an adder cor-
rectly for all possible inputs. We assume that E < NAEAdd,
and therefore we cannot assure that all adders run correctly
for all inputs, and for different inputs x, different error values
may appear. Let Ej be the energy actually supplied to adder
Aj . Given some choice of E1, E2, . . . , and ENA , such that∑NA
j=1Ej = E, and some input x, the resulting expected

error for Fk(x) is denoted by Er(Ok,x). We use the term
expected error here to consider the effect of temperature and
process variations in the parameters of the circuit, but we
will refer to it just as error in the later sections. We rely
on [4] for calculation of expected error of a single adder. Our
task in this paper is to distribute E among the adders so as
to

minimize avg
x∈X

NO∑
k=1

Er(Ok,x). (1)

We refer to this problem as the single resource dataflow
energy-error optimization problem, and our methodology to
solve this problem is presented in Section 3.

3. THE SINGLE RESOURCE DATAFLOW
ENERGY-ERROR OPTIMIZATION
METHOD

To model the interactions and effect of multiple adders
producing errors in the outputs of a circuit, we first consider
just a single adder producing error in the circuit to define
some metrics that we use later in the optimization.

3.1 A single approximate adder
We consider the implications of a single adder that pro-

duces an error (for at least some inputs). We will refer to such
an adder as an approximate adder. We will see that the same
errors in different adders may have different implications for
errors at an output. Consider some input x and assume that
only one adder, AEr, produces an “approximate” result since
the inputs were supplied. This error propagates, and can
cause an error of at an output Ok for k ∈ {1, 2, . . . , NO}. We
look at the value of the outputs after time tO units since the
inputs were supplied. Let t(AEr, k) be the time it takes for
the output of AEr to propagate to Ok. Let Er(AEr,x, t) and
Er(Ok,x, t) be the errors at the output of AEr and output
Ok after t units of time since the inputs were supplied with
Er(AEr,x, t) 6= 0. Then we define the significance of AEr,
σ(AEr,x, tO, t(AEr, k)) as follows:

σ(AEr,x, tO, t(AEr, k)) =

∑NO
k=1 Er(Ok,x, tO)

Er(AEr,x, tO − t(AEr, k))
. (2)

Let us refer to Fig. 1 again. Let the adders
A1, A2, A3 and A4 be 8-bit ripple carry adders (RCAs) and



the inputs be x1 = 15, x2 = 1, x3 = 0, and x4 = 0. Let the
worst case delay of a full adder be 10 units of time, and
therefore an 8-bit RCA has a critical path delay of 80 units.
With this specific input, A1 would take 50 units to compute
the correct output in the worst case because the carry has to
propagate across 5 full adders. For this output to propagate
till O1, it would take about 70 units to propagate through
the other adders as Fig. 1 describes a combinational circuit.
But if we overclock the circuit such that we sample O1 after
50 units, the answer would only be approximate.

To compute the error at the output after 50 units of
time, consider A1. After 30 units, the output of adding
00001111 = 15 and 00000001 = 1, assuming exact worst-case
delays, is 00000100 = 8. The output value of A1 propa-
gates to the output of A2 by 40 units and it has a value
of 8 × 22 = 32 when it reaches the left input to A4. Also
the output value of A1 propagates to the output of A3 by
40 units and has a value of 8 when it reaches on the other
input of A4. Thus, the value at the output of O1 would be
32 + 8 = 40 after 50 units of time whereas the correct output
is 16× 22 + 16 = 80. As a result, there is an error of 40 and
the significance of A1 to O1 is equal to 40/8 = 5 (where 8
is the error of the approximate adder after 30 units). This
example shows that though the first adder had enough time
to compute the correct value (by the end of 50 units of time
A1 would have computed correctly), this value did not have
enough time to propagate through the rest of the circuit and
thus to impact the final output.

Note that the exact magnitude of error is dependent on the
time at which the outputs are sampled and the propagation
time from the approximate adder to the particular output.
But the quantity that we are interested is the significance
of the approximate adder which is the amount by which
the error at the approximate adder is amplified (or reduced)
when it has propagated to the output. As is evident from the
above example, this significance value is dependent only on
the circuit topology and not the exact magnitude of errors.
We strengthen this concept in Section 3.2 where we evaluate
the significance of an adder based solely on the circuit topol-
ogy independent of the individual errors. So we will omit
the time parameter in the following discussions.

3.2 Computing the significance of an adder
Consider some circuit C, some energy budget E, and some

input x, such that there is exactly one approximate adder (all
other adders compute correctly), and denote that adder by
AEr. This adder may cause errors in various vertices, and for
vertex v and input x, the error will be denoted by Er(v,x).
Then, the significance of AEr to v under x is defined by

σ(AEr, v,x) =
Er(v,x)

Er(AEr,x)
. (3)

Of course, if there is no path from AEr to v, then
σ(AEr, v,x) = 0. We will now prove some useful relations.
First we note, that,

σ(AEr, AEr,x) = 1. (4)

Let v 6= AEr. No errors can propagate to a circuit’s inputs,
so we will consider only shifters and adders. Assume that v
is an s-shifter with an immediate predecessor u. Then as a
shifter does not introduce errors but may amplify (or reduce)

them, Er(v,x) = 2sEr(u,x), and therefore

σ(AEr, v,x) =
Er(v,x)

Er(AEr,x)
= 2s

Er(u,x)

Er(AEr,x)

= 2sσ(AEr, u,x). (5)

and if σ(AEr, u,x) does not depend on x, neither does
σ(AEr, v,x).

Assume that v is an adder with immediate predecessors u
and w. Adder v is not AEr and therefore does not introduce
errors. Then,

σ(AEr, v,x) =
Er(v,x)

Er(AEr,x)
=

Er(u,x) + Er(w,x)

Er(AEr,x)

=
Er(u,x)

Er(AEr,x)
+

Er(w,x)

Er(AEr,x)

= σ(AEr, u,x) + σ(AEr, w,x). (6)

and if σ(AEr, u,x) and σ(AEr, w,x) do not depend on x,
neither does σ(AEr, v,x).

From Eqs. 4–6, by simple inductive argument, it follows
also that the significance of a vertex is always greater or
equal to 0 and it does not depend on the value of the input
x that caused the error at AEr! It is purely a property of
the circuit’s stucture. Therefore we can write just σ(AEr, v)
for the significance of AEr to v no matter what x is (though
sometimes it may be convenient to write it explicitly).

Similarly, it is easy to see, that the σ(AEr,x) does not
depend on x, so we can just write σ(AEr).

By referring to Fig. 1, we can provide intuition for sig-
nificance and its properties. Assume that for some energy
budget E1 and input x1, A1 produced an error of δ1, and
adders A2, A3, and A4 processed their summands correctly.
Then A2 produced an error of 4δ1, A3 of δ1, and A4 of 5δ1.
So, e.g., σ(A1, A4,x1) = 5δ1/δ1 = 5. But similarly, if for
E2 and input x2, A1 produced an error of δ2, and adders
A2, A3, and A4 processed their summands correctly, still
σ(A1, A4,x2) = 5δ2/δ2 = 5.

We can also discuss the relative importance of the cor-
rectness of adders. If for some energy budget A3 produced
an error of δ, and adders A1, A2, and A4 processed their
summands correctly, σ(A3, A4,x) = δ/δ = 1, so for A4 cor-
rectness of A1 is more important than that of A3.

For each v we define an amplification factor, AF(v), to
help produce a simple algorithm for computing significances,
as

AF(v) =

{
1, if v is an input or an adder

2s, if it is an s-shifter.
(7)

We extend the definition to paths of vertices, by

AF(vj1 , vj2 , . . . , vjk ) =

k∏
i=1

AF(vji). (8)

For vertices u and v, we will denote by P (u, v) the set of all
the paths from u to v.

We next give a very easily computable, explicit formula
for computing σ(AEr, v).

Lemma 3.1. Assume that under some energy budget E
and input x a circuit has exactly one approximate adder,
AEr. Let v be any vertex. Then

σ(AEr, v) =
∑

p∈P (AEr,v)

AF(p).



+ A1

<<2 S1

+ A2

+ A4

+ A1

+ A3

+ A4

O1

O1

Figure 3: The two paths from A1 to A4 (= O1). Er-
ror of δ at A1, while propagating through the left
path contributes an error of 4δ to error at O1 and an
error of 1δ while propagating through the right path.
Thus the total error at O1 is 5δ and the significance
of A1 = 5δ/δ.

Example. Before starting the formal proof, we look at an
example. Let us consider the graph in Fig. 1 with AEr = A1

and v = O1. There are two paths from A1 to O1, the “left”
path pL = (A1, S1, A2, O1) and the “right” path pR =(A1,
A3, O1) as shown in Fig. 3.

Assume that an error of δ is generated by A1. Consider
pR first. On this path δ is passed through A3 and the in-
coming error at O1 is δ. Consider pL now. On this path δ is
converted to 22δ by S1, the error of 22δ is passed through
A2 and the incoming error at O1 is 22δ. The total error at
O1 is (22 + 1)δ = 5δ.

By the definition in Eq. 8, we have AF(pL) = 1·22 ·1·1 = 22

and AF(pR) = 1·1·1 = 1 and therefore
∑
p∈P (A1,O1)

AF(p) =
4 + 1 = 5.

But by Eq. 3 (recall that x can be omitted), σ(A1, O1) =
5δ
δ

= 5. Therefore the Lemma holds for this example.

Proof. To shorten the proof, we skip over simple “patho-
logical” cases, such as the case of one vertex connected by
two outgoing arcs to a single adder.

As already noted, if there is no path from AEr to v, i.e.,
P (AEr, v) = ∅ then σ(AEr, v) = 0. Therefore the claim holds
in such cases.

We prove the lemma by induction on N , the number of
vertices in the circuit.

The smallest circuit of interest has N = 3 vertices, two
inputs feeding one adder. So this will be our base case. Here
v = AEr and P (AEr, AEr) consist of only one path of length
1, namely (AEr). From Eq. 4, σ(AEr, AEr) = 1 and as by
Eq. 7, AF(AEr) = 1, the claim holds.

Let now N > 3 and assume that the lemma holds for all
circuits with at most N − 1 vertices. Consider any circuit C
of N vertices and remove from it any vertex v of out-degree
0 together the arcs incoming to it, resulting in a new circuit
D. We will also use C and D as subscripts to indicate to
which of the two circuits we are referring.

Note that, in general, if AEr has out-degree 0, then again
any v of interest is just AEr itself, and similarly to the
base case, σ(AEr, AEr) = AF(AEr) = 1 and the claim holds.
Therefore, if the removed vertex was AEr, we already know
that the claim holds for C, so consider the case where AEr

was not the removed vertex, and therefore it is also in D.

Table 1: Significance values of the adders in the
graph shown in Fig. 1

AEr σ(AEr, O1) σ(AEr, O2) σ(AEr)
A1 5 1 6
A2 1 0 1
A3 1 1 2
A4 1 0 1

There are two cases for v. If v is an s-shifter, it has one
predecessor, say u. There is a one-to-one correspondence
between paths in PD(AEr, u) and those in Pc(AEr, v). Every
path p in the latter set is obtained by extending exactly one
path q in the former set by v. By Eqs. 7–8, AF(p) = 2sAF(q)
and therefore

∑
p∈PC(AEr,v)

AF(p) = 2s
∑
q∈PD(AEr,u)

AF(q).

From Eq. 5, σC(AEr, v) = 2sσD(AEr, u), and the claim fol-
lows.

If v is an adder, it has two predecessors, say u and w. Note
that as a path cannot end both with u and w, PD(AEr, u) ∩
PD(AEr, w) = ∅. There is a one-to one correspondence
between paths in PD(AEr, u) ∪ PD(AEr, w) and those in
PC(AEr, v). Every path p in the latter set is obtained by ex-
tending exactly one path q in the former set by v. By Eqs. 7–
8, AF(p) = AF(q), and therefore

∑
p∈PC(AEr,v)

AF(p) =∑
q∈PD(AEr,u)

AF(q) +
∑
q∈PD(AEr,w) AF(q). From Eq. 6,

σC(AEr, v) = σD(AEr, u) + σD(AEr, w), and the claim fol-
lows.

By induction, for any vertex z in D the claim holds.
Since v was of out-degree 0, no path from AEr to z in C
can pass through v, v cannot “impact” any other vertex
in C, and therefore, ErC(z,x) = ErD(z,x) As, of course
ErC(AEr,x) = ErD(AEr,x), it follows that σC(z) = σD(z).
By induction σD(AEr, z) =

∑
p∈PD(AEr,z)

AF(p), and as

PC(AEr, z) = PD(AEr, z) the claim holds for all such vertices
z.

Theorem 1. Assume that under some energy budget E
and input x a circuit has exactly one approximate adder,
AEr. Then,

σ(AEr) =

NO∑
k=1

∑
p∈P (AEr,Ok)

AF(p). (9)

Proof. Immediate from Eq. 2 and Lemma 3.1.

To explicitly demonstrate the application of Theorem 1 to
compute the significance (relative importance) of each adder
we use the graph in Fig. 1. The relative significance values
from Eq. 9 for each output from each vertex is shown in
Table 1.

The above method to compute the significance of an adder,
σ(AEr), by Eq. 9, is very fast. A simple method of computing
AF(p) is to do a breadth-first search [5] from each vertex
and count all paths from the vertex to the outputs. This
would be a O

(
(V + E)V

)
operation where V is the number

of vertices and E is the number of arcs in the graph.

Corollary 1. Assume that under some energy budget
E and input x a circuit that contains no shifters (explicit
or implicit) has exactly one approximate adder, AEr. Then,



using | | to denote cardinality,

σ(AEr) =

NO∑
k=1

|P (AEr, Ok)|.

Proof. If there are no shifters, AF(p) = 1 for any path
p.

3.3 Multiple approximate adders
Until now, we have considered only the case when one

adder produces an error while adding its summands. In
general, a set of adders can produce errors. The cumulative
effect of this set of adders produces an error in an output
whose absolute value is between 0 and the sum of the abso-
lute values of the individual errors, as they may partially (or
fully) cancel each other out.

Modeling this phenomenon of errors canceling out is com-
plex and also partially depends on the particular input.
Hence to simplify the analysis we will target to minimize
the the worst possible case, in which the errors do not cancel
each other to any extent. Thus, we want to minimize the
sum of the absolute values of the errors.

3.4 Case study: Ripple carry adder
The discussion in Sections 2 and 3 holds for any type of

adder. To proceed, however we will need to choose specific
designs of adders, whose error production under various en-
ergy investment has been studied. This leads to considering
the Ripple Carry Adder (RCA) for which such results exist.

It has been shown in [4], through simulations over a large
number of input cases, that the average expected error Er(Ai)
for a RCA Ai with bivos, is roughly proportional to its delay
D, i.e. Er(Ai) ∝ D. In a conventional CMOS transistor,
the delay of a transistor DT is inversely proportional to its
supply voltage vdd, i.e. DT ∝ vdd−1.

The dynamic energy consumed during a transition of
a transistor switch ET is proportional to the square of
its supply voltage, i.e., ET ∝ vdd2. Also, the delay of
adder Ai, D, is proportional to the delay of a transistor
DT, and the dynamic energy Ei consumed by adder Ai
is proportional to the energy of a transistor ET. Thus
Ei ∝ ET ∝ vdd2 ∝ DT

−2 ∝ D−2 ∝ Er(Ai)
−2 and for

some constant r, we can write

EA ∼= r
1

Er2(Ai)
. (10)

3.5 Optimizing energy distribution
We will make use of a solution to an optimization problem

which we present next.

Lemma 3.2. Let integer n > 0 and c, a1, a2, . . . , an > 0.
Then, the function

∑n
j=1 ajxj subject to constraints xj > 0

for j = 1, . . . , n and
∑n
j=1 x

−2
j = c is minimized at

xi =

(∑n
j=1 a

2/3
j

)1/2
c1/2 a

1/3
i

for i = 1, . . . , n

Proof. By using Lagrange multipliers.

It will actually be more useful to write the solution as

x2i =

∑n
j=1 a

2/3
j

ca
2/3
i

for i = 1, . . . , n (11)

We now have

Theorem 2. Given a circuit with significance σi com-
puted for each adder Ai, the optimal distribution of a given
energy budget E to minimize the average sum of worst case
errors is given by

Ei = E
σ
2/3
i∑NA

j=1 σ
2/3
j

(12)

where Ei is the energy devoted to Ai.

Proof. Let Er(Ai,x) be the error produced at approxi-
mate adder Ai in the given circuit for input x. From Eq. 2
and Theorem 1 the sum of errors at the outputs due to Ai is
σ(Ai)Er(Ai,x). Thus, the worst case error that we want to

minimize is the average over all x’s of
∑NA
i=1 |σ(Ai)Er(Ai,x)|.

Since we have a fixed energy budget E,
∑NA
i=1 Er−2(Ai,x) is

constant, see Eq. 10. Applying Eq. 11, we obtain Eq. 12.

It is to be noted that we only determine through Theo-
rem 2 the energy of each adder in the graph. The method
through which the supply voltages for the components inside
a single adder are allocated is similar to the method in [4].
We pick a set of voltages and then using simulations of the
single adder for different binning schemes (binning [4] is a
technique in which each component is assigned a particular
voltage bin) we pick the best.

4. SUMMARY OF THE METHOD AND EX-
TENSION TO OTHER ADDERS

Our method of minimizing energy usage across multiple
adders in a circuit depends on the following two key elements.

1. Quantitative characterization of the relative significance
of each adder in the circuit

We model the circuit as a DAG consisting of adders
and shifters, and compute the significance of each adder
based on the topology of the circuit as formalized in
Eq. 9

2. The computation of the best distribution of the given
energy budget, based on the relative importance of all
the adders, which have been computed above. To do
this, we rely on the relationship between the voltage
supplied to an adder (and thus the energy devoted to
it) and the average error produced by the adder

This computation is done for the case of ripple carry
adder, for which the relationship between the energy
and the error is known, and we obtain the energy to
be devoted to each adder in Eq. 12

Our method to implement the first element is adder-
independent. It does not matter which adder circuit is used,
as the relative importance of an adder depends only on the
graph topology. The second element, though, depends on the
way error produced at the output of an adder is affected with
respect to the energy invested on that adder, which we did
for ripple carry adders.

For adders with different designs (such as a carry lookahead
adder or a carry skip adder) the error-energy relationship
might be different. In this case, the result that will be differ-
ent is of Lemma 3.2 (which will influence Theorem 2) where
the constraint varies based on the error-energy relationship.
For example, if for some adder design the energy of the
adder was proportional to the cube of the inverse of the error
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Figure 4: A finite impulse response filter

(instead of the inverse of a square in the case of dynamic
energy usage of a ripple carry adder), then the constraint
would be

∑n
i=1

1
x3i
− c. In a general case, let us consider that

the error-energy relationship is EA ∼= f(Er(Ai)), then the
constraint would be

∑n
i=1 f(xi)− c.

5. OPTIMIZING DESIGNS OF DSP PRIM-
ITIVES

We apply the single resource dataflow energy-error opti-
mization method of Theorem 2 to two specific cases, a finite
impulse response filter and the Fast Fourier Transform which
are ubiquitous in embedded signal processing. These signal
processing elements are used in a variety of applications such
as hearing aids or media players where the output of the
devices is evaluated by human perception (which can tolerate
errors).

5.1 Converting constant-number multipliers
to adders and shifters

As discussed, every constant-number multiplier can be
converted to a set of adders and shifters. For example,
x × 5 = (x << 2) + x and x × 15 = (x << 4) − x. Also,
if we want both x × 21 and x × 13, then we can compute
x× 5 = (x << 2) + x just once and use it to compute both
x× 21 = (x << 4) + x× 5 and x× 13 = (x << 3) + x× 5.

To summarize, we try to use canonical signed digit (CSD)
coding and sub-expression sharing techniques [2] to transform
constant-number multiplications to additions and shifting
most efficiently.

5.2 Approximate finite impulse response filter
We will consider digital filters with a finite-duration im-

pulse response (fir). The output is

y[n] =

N−1∑
m=0

h[m] x[n−m].

where n and m are integers representing samples in time, x
is the input sequence, y the output sequence and h is the
impulse response of length N .

Any fir can be represented in the graph-theoretic frame-
work of Section 2. Consider the fir shown in Fig. 4 which
computes y[n] = x[n]− 5x[n− 1] + 20x[n− 2]. Fig. 5 shows it
in the form of a dag where we use a 16-bit 2’s complement
RCA for each adder.

According to Theorem 2, the optimal distribution of energy
across adders depends on the significance of each adder. As
there are no shifters and there is exactly one path from each
adder to the output, σ(Ai) = 1 for 1 ≤ i ≤ NA. Thus, every

x[n-1] x[n-2]

<<1 <<2 <<4 <<2

+ +

+

+

x[n]

y[n]

Figure 5: Graph theoretical representation of a fi-
nite impulse response filter
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Figure 6: Flow graph of a complete decimation-in-
time decomposition of a 8-point FFT

adder in this circuit is “equally important” and distribution
of energy investment equally across all adders produces the
minimum error magnitude in the output. This holds for all
firs.

5.3 Approximate fast Fourier transform
For a finite duration sequence of complex numbers, the

Discrete Fourier Transform (dft) is used to transform a
sequence from its original representation (often in the time
domain) to the frequency domain representation. It is

X[k] =

{∑N−1
n=0 x[n]W kn

N if 0 ≤ k ≤ N − 1

0 otherwise.

where x is the input sequence, X is the dft and WN = e
−2πi
N .

We use the Fast Fourier Transform (fft) to compute the
dft. A flow graph of a complete decimation-in-time decom-



x[0] x[4] x[2] x[6] x[1] x[5] x[3] x[7]

+ + + + + + + +

+ + + + + +

+ + + +
>>1 >>2 >>1 >>2

+ +

+ + + +

1 2 3 4 5 6 7 8

9 10 11 12 13 14
15 16

17 18
19 20

21 22 23 24

-1 -1 -1 -1

-1 -1 -1-1

-1 -1
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position of an 8-point fft computation is shown in Fig. 6,
with its graph-theoretic description shown in Fig. 7.

To distribute the energy budget, we use Eq. 12, after com-
puting σi’s for all adders Ai’s. For this, we use Eq. 9, where
each Ai in turn plays the role of AEr. From Fig. 7, NA = 24.
We do not show all the significance values for all the adders,
but for example, σ1 = 2 and σ6 = 3. Given all σi’s, we apply
Eq. 12.

This method is easily applicable to higher order ffts and
we applied it to a 16-point fft, whose diagram we do not
show, as it is quite large. We use the 16-point fft design
presented in [16], which is a hardware-efficient architecture
based on the phase-amplitude splitting technique which con-
verts a DFT to cyclic convolutions and additions. In the
design, all the multipliers are converted into a set of shifters
and adders.

We convert the original systolic implementation into a
parallel implementation by replicating the circuit after re-
moving memory elements and feedback loops. This results in
a circuit consisting of 207 adders, which processes all 16 data
words simultaneously. We used 16-bit 2’s complement adders
to design both the 8-point and 16-point ffts. We show the
results of applying the energy optimization technique on
these circuits in the next section.

6. EXPERIMENTAL FRAMEWORK AND
RESULTS

In this section we present the framework for validation of
this global optimization scheme. We will also present the sim-
ulation results which show the savings in energy consumption
that can be obtained by applying this methodology.

6.1 Simulation framework
To validate our claims we use Synopsys hspice Version

B-2008.09 and explore across different supply voltage config-
urations. The number of configurations is too large for all of
them to be explored in hspice. So we developed a very fast,
C++ based simulator framework for approximate circuits,
which we use as first step in narrowing down the number of
candidate configurations of interest. We feed this simulator
the energy consumption and transition delay values of basic
gates simulated in hspice. The simulator uses this data to
simulate the behavior of approximate circuits. From this
simulation we obtain the average error at the output and the

average dynamic energy consumption for the circuit over a
large set of input data.

Once candidate configurations are obtained by this simula-
tor, we simulate the entire circuit with these configurations
in hspice. All the simulations are performed in Synopsys
90 nm technology. The technology chosen has approximately
0.1% static leakage, so we have not yet needed to model
static energy consumption. The range of voltages in which
the circuit components are operated is 0.7 V to 1.2 V. To
limit the overhead of supplying and transmitting these volt-
ages, we picked only four specific ones for all our circuits,
namely 0.7 V, 0.9 V, 1.0 V, and 1.2 V. We looked at all possi-
ble combinations of supply voltages considering 0.7 V, 0.8 V,
0.9 V, 1.0 V, 1.1 V and 1.2 V, but we picked these four specific
voltages to present the results as they seemed to perform
the best given that we wanted at most four distinct voltages
(and hence four voltage domains/islands).

Although our custom simulator is only used to propose
candidates to hspice for the 8-point fft, we validated the
simulator with respect to the energy consumption and aver-
age error to be within a margin of 12% by complete hspice
simulations of an 8-point fft for the four supply voltage
levels.

These circuits are built using 16-bit 2’s complement ripple
carry adders. We picked the 16-bit ripple carry adder for the
sake of simplicity of implementation and ease of understand-
ing. The circuit that has been simulated is a combinational
circuit with no pipelining and sampling only at the final
outputs. Similar to the technique used in [4], we overclock
the circuits so that the frequency of operation is higher than
that permitted by the critical path of the circuit.

6.2 Results and comparisons
We start by briefly summarizing previous results, which

are directly relevant to our work. Let Econ denote the the
energy consumption of a conventional implementation of a
circuit, in which the circuit is being operated at a frequency
that is equal to what is permitted by the critical path delay,
and hence has no approximate answers.

Now we consider circuits which are overclocked, that is,
they are operated at frequencies higher than that permitted
by conventional implementation (limited by critical path
delay). Therefore, these circuits are approximate in their
computation, as not enough energy (energy less than Econ)
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Figure 9: Energy consumption vs. Average error for
a 16-point FFT with local and global optimization

is supplied to them, so that they cannot run correctly at the
higher frequencies.

Considering a circuit of an adder, the question studied
in [4] was how to choose voltages so as to minimize the en-
ergy for some acceptable level of the average error. In the
first method, all the full adders within the adder were given
the same voltage level (uniformly voltage scaled), with the
resulting required energy denoted by Euvos. In the second
method, various full adders were given one of four voltage
levels (biased voltage scaled), with resulting required energy
denoted by Ebivos. It was shown that for the same level of
overclocking and average error, Ebivos < Euvos. This shows
that in an adder, some bit positions are more important
than others. But this previous work only addresses local
optimization. Using this approach, design of circuits with
more than one n-bit adder implies using bivos in each adder
without considering the relative significance of the various
adders. We will refer to this as locally optimized.

We propose, in this paper, to optimize the energy consump-
tion of an approximate circuit with the optimization done
using the single resource dataflow energy-error optimization
method presented in this paper, with the resulting energy
denoted by Eglobal. Thus the relative significance of an entire

(a) (b) (c)

Figure 10: Reconstructed images obtained after pro-
cessing through a (a) conventional correct 8-point
FFT (b) locally optimized approximate 8-point FFT
(c) globally optimized approximate 8-point FFT

adder with other adders in the circuit are taken into account
to invest energy in an efficient way by finding the solution to
Eqn. 1. But for supply voltages internal to a single adder we
use the bivos scheme presented in [4]. Thus, supply voltages
are assigned to minimize energy considering both entire n-bit
adders and components inside a single adder. We will refer
to this as globally optimized. The results we present show
that globally optimized yields better energy savings for the
same expected error than locally optimized.

We do not present results for the fir because by using the
global optimization scheme we conclude that all the adders
are equally important and thus energy has to be distributed
uniformly across all the adders. Hence the conventional
locally optimized bivos scheme is the best we can do.

For the case of an 8-point FFT (shown in Fig. 7), we
assume a given energy budget for the entire circuit and also
find the critical path delay. For each energy budget that we
pick, we obtain a point that has been used to interpolate the
curve in Fig. 7. The 8-point fft has a critical path delay
of ≈ 10 ns when operated at 1.2 V but it is overclocked to
a frequency of 0.2 GHz (essentially the inputs and outputs
are provided with an interval of 5 ns) which is faster than
permitted by a conventional design methodology.

Applying Theorem 2 (Eq. 12), we find an energy budget
per adder from the total energy budget of the circuit. Based
on this individual energy budget, we apply the previously
published bivos scheme for each of the 24 adders using the
four supply voltages (0.7 V, 0.9 V, 1.0 V, and 1.2 V) assumed.
The result for the overall 8-point FFT in hspice with uni-
formly distributed random data as input is shown in Fig. 8.
For the same energy investment of 77 pJ, the globally opti-
mized 8-point fft has 1.95X lower error than the “locally”
optimized fft operating at the same speed. Also, global
optimization gives the designer at the least 1.44X lower en-
ergy investment for the same amount of quality trade off in
the fft. Overall, the globally optimized fft has 2.8X lower
energy-delay product (edp), when compared to a conventional
fft for the same error.

A similar comparison using results from our custom simu-
lator, which has been validated with hspice, is presented for
a 16-point fft in Fig. 9 to show that the analysis is scalable.
In this case, we achieved 2.05X lower error for the same
investment of 2700 pJ in both the globally optimized and
only locally optimized fft when they are overclocked to a
frequency of 0.1 Ghz (the critical path delay of the 16-point
fft at 1.2 V is ≈ 20 ns).

This phenomenon is also demonstrated in Fig. 10 which
consists of reconstructed images after processing them
through an approximate 8-point fft and an inverse fft.



The three images in Fig. 10 are the original image, the image
processed through fft with only local optimization, and
the image processed through fft with global optimization,
respectively from left to right. Fig. 10(c) has an snr which
is 1.42X times higher than the Fig. 10(b) for a similar
energy of 62 pJ and operating frequency of 0.125 GHz.
Also Fig. 10(c) has 1.7X lower energy consumption when
compared to Fig. 10(a).

7. IMPACT ON CIRCUIT DESIGN
The generality of our approach allows a circuit designer

who is attempting to optimize the design of any circuit that
can be represented as a graph of adders to automatically
compute the optimal investment of energy. The design au-
tomation tool will invest energy such that the quality is
computed as the “best”.

Moreover, the algorithm to compute the relative impor-
tance of the adders is extremely fast. So the approach scales
very easily with the size and complexity of the circuit.

8. CONCLUSIONS AND FUTURE WORK
In this paper we show that considering the relative impor-

tance of different components of a circuit is vital to realizing
energy savings while improving the quality of the output.
We present a general method to apply this approach to any
circuit built using adders and shifters. Two instances of the
savings in energy that can be expected are shown for the fft.
The present paper models only adders and considers the im-
plicit shifting operations while computing the amplification
factor. We are working to extend the current optimization
scheme to include general multipliers.

We are also planning to extend this methodology to control-
flow graphs with memory elements and feedback loops.

We plan to validate this analysis on a wide variety of pop-
ularly used circuits in embedded systems, where low-energy
consumption is a primary criterion and accuracy can be
traded off.
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