A Configurable Hardware Scheduler
(CHS) for Real-Time Systems

Pramote Kucharoen, Mohamed A. Shalan and Vincent J. Mooney Il

Center for Research on Embedded Systems and Technology
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia, USA

23 June 2003

* Introduction

* Related work

 CHS architecture

* CHS commands

* CHS interface

« Software support

« Automatic customization of CHS
« Experiments and results

« Conclusion

fﬂ‘g’

“lpstatdite
= e R T

Introduction

Real-time system layers

Application 1 Application 2

resia] rese s QRN e | s e

Application

3 I&Geprgiaunmg.mm@

LUC/OS |l Background Processing

ptcb = OSTCBLIist; iz Paint at tirst TCB in TCB lisp*

while (ptcb->OSTCBId '= OS _TASK_IDLE_ID) { /* Go through g '
OS _ENTER_CRITICAL();
If (ptcb->OSTCBDIy !=0) { [* Delayed ory ' o

if (--ptcb->OSTCBDIly == 0) {
o USPEN léseépende 4

if (!{(ptcb->OSTCBStat & OS_STA
OSSched(ptcb,RDY);
/* Yes, ?@1 tick @ventlo :
uspe M is removed. */

else
ptcb->OSTCR

}
}
ptclf= ptcb->0O : ' c ' ' 4
OS EXIT

4 Georgia s uie
I& o Technalogny

Overhead in uC/OS Il Scheduler

\ 64 tasks

Overhead %

Related Work

Why do we need the CHS?

 To reduce the scheduling overhead from the real-

time operating system; hence, improve the system
response time

« To support awide range of applications by
supporting multiple scheduling disciplines that can
be changed during system execution time.

— Priority
— Earliest Dead Line First (EDF)
— Rate Monotonic (RM)

7 Georgial= e
©F meloew

CHS Architecture (1)

SQ

IntO

Control Signals Intl

i

Control Unit

Bus Interface Signals

T

Int 7

8 Georgial= =
“ o Technalogny

CHS Architecture (2)

Priority Queue (Ready Queue)

A 4

a

Comparator LOGIC

A 4
y N

Comparator LOGIC
A
Comparison Resu“g New Data Comparison results from the right block
ID Register Counter

° I& orgial s iz

CHS Architecture (3)

Sleep Queue

Used to store the Sleeping Tasks (YIELD/SLEEP).

The Tasks are sorted according to their remaining sleep time.
Once The Sleep Time expires it is moved to the PQ.

1D Counter

10 Georg D'“f"[l”@ﬂtg_
I& o Techi

CHS Architecture (4)

Task Table
- Store Information about the existing tasks
* Indexed by the Task ID

PRI Period WCET TYPE | PRE STATUS

J) w—|'_'

11 I&Georglauu“: e

CHS Commands

Command

of Cycles

Scheduler Related

STOP

1

RUN

CONFIGURE

Task Related

CREATE Task

MODIFY Task

SLEEP

55| EEP

YIELD

SUSPEND

RESUME

DELETE

RPlRrlRrlRr|IR[INMIN|IR|R|R

12

i

Georglaun“- Situtitie
rlechnalogny

CHS Interface

The CHS Hardware is designed to be able to
Interface easily to any microprocessor core:

— As a memory mapped I/O Port,
— AS a co-processor, or
— As Instruction-set accelerator

§

13 orgial s iz
o Technalogyy

Software Support

APlIs
« Task
— createTask
— suspendTask, resumeTask
— changePriority, changeWCET, changePeriod
— Yield
— ssleep, sleep
» Scheduler
— configureScheduler
— enableScheduler, disableScheduler

g

14 orgial s iz
@17 nelogy

Automatic Customization of CHS

¥% chs.htm * - "scheduler Configurator™ =100 x|

IR TN -0
Scheduler Configurator (SCon)

Processor: IARMQTDMI vl
Tasks: IB 'I

External Interrupis: E
Timer Resolution: |1l] usec

Generate I

15 Georgiasiiii=
“ I[h o Technalogny

Experiments and Results (1)

Simulation Environment

XRAY

Interrupt

MPC750 [

< >
Address/Data Bus
16 Georgialns =

Experiments and Results (2)

Assembly instruction execution comparison

Micro C/OS |l Hardware Scheduler
Scheduler* 69 0
Time-tick processing | 47+47*(number of tasks) 0

* Priority Scheduler

Number of PowerPC instruction of the APIs

API # of PPC Assembly WCET (# of cycles)
Instructions

configureScheduler 3 230

SuspendTask 21 125

CHS Requires One PPC Instruction to be Configured and One Instruction
to Suspend a Task which means over 100x Speedup.

17 Georgial s iuie
W o Technalogyy

=

Experiments and Results (3)

CHS Synthesis Results

Number of standard cells

Area (mm?)

1145

0.24

Using HP 0.35u process

Number of Logic Elements

Number of Registers

421

564

Using Altera Quartus Il for EP20K

The Synthesized CHS Supports

— 16 Tasks and
— up to 8 interrupt sources

19

i

Georglaum itute

J) w—|'_'

Conclusion

« We implemented a configurable hardware scheduler
that supports 3 scheduling algorithms

 We developed software interface for the configurable
hardware scheduler and a tool to generate a
customized synthesizable CHS

« The configurable hardware scheduler eliminated the
time spent by the processor for background time
tick processing and scheduling

W 20 JE

fﬂ‘g’

“lpstatdite
= e R T

Questions?

?

21 Georgial s iuie
o Technalogyy

