1 Spatial Frequency of EM Waves

Propagating electromagnetic (EM) waves of interest in radar vary sinusoidally in both time and frequency. If the radar frequency is F Hz (cycles/sec), then the temporal period observed at a fixed point in space is $1/F = T$ seconds. Assume the propagation is in the y direction in Cartesian spatial coordinates. The wavelength is $\lambda = c/F$ meters (or meters/cycle), where c is the speed of light. The spatial frequency of the same EM wave is then $1/\lambda = F/c$ cycles/m, which we will denote as F_y (there seems to be no commonly-agreed symbol for spatial frequency in cyclical units). It is more common to consider the spatial frequency in units of radians/m, $2\pi/\lambda = 2\pi F/c$; this is usually denoted with the symbol k_y and called the wavenumber. I prefer to use the cyclical units. I also prefer to use upper case K_y for wavenumber and reserve the lower case k_y for normalized frequencies.

2 Temporal Fourier Transform

Using “cyclical units” (i.e., Hz instead of rads/s), the Fourier transform $X(F)$ of a time function $x(t)$ is given by

$$X(F) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi Ft} dt$$

and the inverse transform is

$$x(t) = \int_{-\infty}^{\infty} X(F) e^{+j2\pi Ft} dF$$

3 Time-Range Equivalence and the Spatial Fourier Transform

Range R and time delay t are related in monostatic radar according to [1]

$$t = \frac{2R}{c}$$

Suppose $x(t)$ is the output of a radar receiver as a function of time; we can use (3) to relabel the time axis in units of range, giving a range profile of the scene viewed by the
radar. We would like to have a relationship between the range profile and a spectrum expressed in spatial frequency units. Using the relationship (3), we can re-write (1) as

$$X(F) = \int_{-\infty}^{\infty} x \left(\frac{2R}{c} \right) e^{-j4\pi RF/c} \cdot \frac{2}{c} dR$$

(4)

Note that the quantity $4\pi RF/c$ often appears as $4\pi \lambda$, but we will leave it in terms of frequency here.

Now define

$$\tilde{x}(R) = \frac{2}{c} x \left(\frac{2R}{c} \right)$$

(5)

The integral in (4) is now

$$\int_{-\infty}^{\infty} \tilde{x}(R) e^{-j2\pi (2F/c)R} dR$$

(6)

Note that this is exactly of the form of a Fourier transform (compare to Eq. (1)) of a function of range R provided we identify the quantity $2F/c$ as the range frequency variable F_r. That is,

$$\tilde{X}(F_r) = \int_{-\infty}^{\infty} \tilde{x}(R) e^{-j2\pi F_r R} dR$$

(7)

To emphasize, the range frequency variable F_r in m$^{-1}$ or cycles/m is related to temporal frequency F in s$^{-1}$ or cycles/s (Hz) according to

$$F_r \, \text{m}^{-1} = \frac{2}{c} F \, \text{s}^{-1}$$

(8)

Note that range frequency F_r is not the same as spatial frequency F_y. In particular, $F_r = 2F_y$.

4 Consequences

Equation (7) shows that a range profile forms a Fourier transform pair with a spectrum expressed in range frequency units. This means that we can reason about signal properties such as relationships between bandwidth and resolution, sampling and aliasing, and so forth using the same rules that apply to temporal signals and their Fourier transforms. In particular,
• Analogous to the fact that a resolution of Δt seconds requires a signal bandwidth of $\Delta F = 1/\Delta t$ Hz, a range resolution of ΔR m requires a range frequency bandwidth of $1/\Delta R$ cycles/m. Note that the range frequency bandwidth of $1/\Delta R$ is equivalent to $c/2\Delta R$ Hz in temporal units, which is the usual formula relating range resolution to temporal frequency bandwidth [1].

• Sampling a range profile at intervals of δR m will cause its range frequency spectrum to replicate at intervals of $1/\delta R$ cycles/m in range frequency.

• If a signal has a range frequency bandwidth of B_r cycles/m, the Nyquist theorem requires a sampling rate of at least B_r samples/m, corresponding to a sampling interval of $1/B_r$ m, to avoid aliasing.

• If a range frequency spectrum is sampled at an interval δF_r in range frequency (for instance, through computation of a discrete Fourier transform), the range profile will be replicated at intervals of $1/\delta F_r$ m in range.

• Thus, the spectrum of a range profile of length R_{max} m should be sampled in range frequency at intervals of $1/R_{max}$ or less to avoid aliasing.

5 Cross-Range Spatial Frequency

In [1], Eq. 8.34, it is shown that the cross-range spatial frequency K_{cr} (denoted K_u in [1]) is given by $(4\pi/\lambda)(x/R)$ rads/m, where R is range from the radar to the scatterer and x is the cross-range displacement of the scatterer relative to the normal to the radar flight path, as shown in Fig. 1. In cyclical units, then, the spatial frequency is $(2/\lambda)(x/R)$ cycles/m. Note that $x/R = \sin\theta$, where θ is the angle of the scatterer relative to the normal to the boresight. For small angles, $\sin\theta \cong \theta$. Thus, we get the conversion from angle to cross-range spatial frequency in cycles/m or m$^{-1}$

$$F_{cr} = \frac{2}{\lambda}\theta \tag{9}$$

Spatial resolution, replication interval, and sampling can be reasoned about in terms of cross-range spatial frequency F_{cr} in the same manner as described above for range spatial frequency F_r.

6 References