
Georgia Institute of Technology
School of Electrical and Computer Engineering

Wireless Intrusion Detection and Response

Final Report

December 2nd , 2002

Group 2

Yu-Xi Lim
Varun Kanotra
Nitin Namjoshi
Seng Oon Toh

ECE 4006

Professor Henry Owen

ECE 4006 Wireless Intrusion Detection and Response Group 2

 i

Contents

Contents ... i
1.0 Executive Summary .. 1
2.0 Introduction... 3
3.0 Background... 5

3.1 802.11b.. 5
3.2 WarDriving ... 19

4.0 Timeline and Tasking ... 26
4.1 Timeline .. 26
4.2 Tasking.. 27

5.0 Competitor Products ... 29
5.1 Fake AP... 29
5.2 AirDefense .. 29

6.0 Tools ... 30
6.1 Host AP... 30
6.2 OpenAP... 41
6.3 Wireless Tools .. 44

7.0 Implementation details.. 49
7.1 NetStumbler detection .. 49
7.2 Counter Measures ... 59
7.3 User Interface.. 82
7.4 Inter-Process Communications ... 104

8.0 Product Testing ... 113
9.0 Demonstration... 120
10.0 Product Economics ... 126
11.0 Conclusion .. 131
12.0 Credits ... 135
13.0 Bibliography and References.. 136
Appendix A: Source Code .. 139

ipc.h... 140
config.h ... 142
ids.h... 144
hostap_wlan.h ... 146
wireless.h .. 168
ipc.c... 181
config.c.. 185
ids.c ... 189
client2.c... 215
Makefile .. 234
Makefile .. 240
index.html ... 243
menu.html ... 245
addfake.shtml .. 247
datetime.shtml... 249
fake.shtml.. 251

ECE 4006 Wireless Intrusion Detection and Response Group 2

 ii

httpd.shtml .. 253
mac.shtml .. 255
options.shtml... 257
result.shtml.. 260
status.shtml.. 262
wiredcfg.shtml .. 264
wiredresult.shtml... 266
wireless.shtml.. 268
commitfake.sh... 270
commithttpd.sh.. 272
commitids.sh ... 274
commitip.sh... 276
commitwl.sh.. 278
toggleids.sh ... 280
httpd .. 282
ids.. 284
telnetd.. 286
wired ... 288
wireless ... 290
eth0.. 293
httpd.conf .. 295
ids.. 297
wlan0... 299

Appendix B: Installation Tutorials.. 301
Linux Networking... 302
Setting up OpenAP ... 307

Appendix C: Wireless Cards Supported by Host AP and OpenAP.. 310
Appendix D: Network Performance with IDS.. 312
Appendix E: Presentation Slides... 316

ECE 4006 Wireless Intrusion Detection and Response Group 2

 1

1.0 Executive Summary

The proliferation of wireless networks has brought a paradigm shift into the field of

mobile computing. Corporate enterprises, small businesses, and even homes have been

endeavoring to jump on this bandwagon to get their premises wirelessly networked. One wireless

network protocol that has stood out over the rest is the IEEE 802.11b protocol. Unfortunately, in

all the buzz of migrating to wireless networks, consumers have overlooked one major difference

between wireless networks and wired networks. Being a shared medium network, all traffic

transmitted on the network passes through public airwaves. Because of this, the built-in security

of wired networks, which is afforded by the inaccessibility of the transmission medium (physical

wires), is not present in wireless networks. Furthermore in traditional wired networks, eaves

dropping by unauthorized parties can always be detected by looking for wire-taps. However, in

wireless networks this is virtually impossible because microwaves propagate omni-directionally.

All the intruder has to do is to be within the transmission radius of the wireless network to listen

in.

Growth in wireless network development has mainly focused on the infrastructure

without equal emphasis on security. As such, network administrators are frequently left in the

dark as to whether there is a security threat to their wireless network. Our intrusion detection

system (IDS) with countermeasures is intended to bridge this gap. Our product is designed to be

a complete standalone software and hardware implementation of a security system that can be

easily deployed throughout the network to actively look for abnormal network activity that

would indicate the presence of wireless clients with malicious intent. The countermeasures

module of our product then serves to confuse the attacker by hiding the actual wireless network

among a flood of many other wireless networks. This should be sufficient to confuse the casual

ECE 4006 Wireless Intrusion Detection and Response Group 2

 2

attacker who is not experienced enough to identify the actual network. Furthermore, our product

will thwart further advances by the attacker to obtain the network’s encryption key by polluting

the data pool that is used to decrypt the key. Finally we have included a denial of service attack

that can be selectively enabled by the network administrator. This attack is designed to disable

malicious wireless clients as soon as they are detected so as to limit the damage that can be done.

We predict that our product will achieve commercial success because our product is

unique in its ability to detect intrusions and also respond to these events with countermeasures.

The product’s packaging in an easily deployable access point style box not only decreases cost of

deployment but also facilitates installations because network administrators do not need to

struggle with setting up the software on a PC. We are confident that with our product, and

sufficient education of the public on wireless network security risks, we can temporarily alleviate

the security problems of 802.11b until more secure protocols are deployed.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 3

2.0 Introduction

Our product consists of three main modules, which are:

1. Intrusion Detection

2. Countermeasures

3. User Interface

Intrusion Detection

This module actively monitors the network for IEEE 802.11b probe request packets that

are used by wireless intrusion programs like NetStumbler to detect the presence of wireless

networks. It differentiates between actual clients and malicious clients by monitoring how

frequently these packets are being transmitted. All network activity monitored by this module is

also logged so that network administrators can audit the logs in the future to determine if the

wireless network is at risk.

Countermeasures

This module consists of three subcomponents which are:

• Fake Probe Response

• AirSnort Spoofing

• Denial of Service Attack

Details of each countermeasure are discussed in the implementation section of this document.

User Interface

The user interface provides a means for the network administrator to reconfigure

behavior of the intrusion detection system and countermeasures while the system is operational.

All configurations are accomplished through a simple web-based system. Any changes to the

ECE 4006 Wireless Intrusion Detection and Response Group 2

 4

configuration will be saved immediately into flash memory so that the configuration can be kept

across power cycles.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 5

3.0 Background

3.1 802.11b

Overview of 802.11b Wireless Networking Technology

802.11 is an industry standard developed by the Institute of Electrical and Electronics

Engineers (IEEE) for Wireless Local Area Networks (WLANs). The original 802.11 standard

was defined in 1997, followed by 802.11a and 802.11b in 1999. These standards operate in the

Industrial, Scientific, and Medical (ISM) frequency bands (see Table 3.1.1 below).

802.11 Architectures

The IEEE 802.11 standard allows for two different ways to configure a network: ad hoc

and infrastructure. The basic topology of an ad hoc 802.11 network is shown in Figure 3.1.1

below.

Table 3.1.1: IEEE 802.11 Frequency Bands.
IEEE Standard Data Rate (Speed) Radio Frequency Band
802.11 1-2 Mbps 2.4 GHz
802.11a Up to 54 Mbps 5.8 GHz
802.11b 5.5 – 11 Mbps 2.4 GHz

Figure 3.1.1: Peer-to-Peer Communications in Ad Hoc Network

ECE 4006 Wireless Intrusion Detection and Response Group 2

 6

A Basic Service Set (BSS) consists of two or more wireless nodes, or stations (STAs),

which have recognized each other and established communications. In ad hoc mode, stations

communicate directly with each on a peer-to-peer level, sharing a given cell coverage area. This

type of network is often formed on a temporary basis, and is commonly referred to as an ad hoc

network or Independent Basic Service Set (IBSS).

In most instances, the BSS contains an access point (AP). These network access points

are sometimes connected to landlines to widen the LAN's capability by bridging wireless nodes

to other wired nodes. When an AP is present, stations do not communicate on a peer-to-peer

basis. All communications between stations or between a station and a wired network client go

through the AP. A BSS in this configuration is said to be operating in the infrastructure mode

(see Figure 3.1.2 below). An Extended Service Set (ESS) is a set of two or more BSSs forming a

single sub-network.

Figure 3.1.2: Infrastructure Mode Network

ECE 4006 Wireless Intrusion Detection and Response Group 2

 7

IEEE 802.11 Layers: Physical Layer

The three physical layers originally defined in 802.11 included two spread-spectrum

radio techniques and a diffuse infrared specification. The radio-based standards operate within

the 2.4 GHz ISM band. The original 802.11 wireless standard defines data rates of 1 Mbps and 2

Mbps via radio waves using frequency hopping spread spectrum (FHSS) or direct sequence

spread spectrum (DSSS).

Using the frequency hopping technique, the 2.4 GHz band is divided into 75 one-MHz

subchannels. The sender and receiver agree on a hopping pattern, and data is sent over a

sequence of the subchannels. Each conversation within the 802.11 network occurs over a

different hopping pattern, and the patterns are designed to minimize the chance of two senders

using the same subchannel simultaneously.

FHSS techniques allow for a relatively simple radio design, but are limited to speeds of

no higher than 2 Mbps. This limitation is driven primarily by FCC regulations that restrict

subchannel bandwidth to 1 MHz. These regulations force FHSS systems to spread their usage

across the entire 2.4 GHz band, meaning they must hop often, which leads to a high amount of

hopping overhead.

In contrast, the direct sequence signaling technique divides the 2.4 GHz band into 14

twenty-two MHz channels. Adjacent channels overlap one another partially, with 3 of the 14

being completely nonoverlapping. Data is sent across one of these 22 MHz channels without

hopping to other channels. To compensate for noise on a given channel, a technique called

“chipping” is used. Each bit of user data is converted into a series of redundant bit patterns called

“chips.” The inherent redundancy of each chip combined with spreading the signal across the 22

MHz channel provides for a form of error checking and correction; even if part of the signal is

ECE 4006 Wireless Intrusion Detection and Response Group 2

 8

damaged, it can still be recovered in many cases, minimizing the need for retransmissions. The

802.11b standard uses just DSSS as the sole physical layer technique.

IEEE 802.11 Layers: Data-Link Layer

The data link layer within 802.11 consists of two sublayers: Logical Link Control (LLC)

and Media Access Control (MAC). 802.11 uses the same 802.2 LLC and 48-bit addressing as

other 802 LANs, allowing for very simple bridging from wireless to IEEE wired networks, but

the MAC is unique to WLANs.

The 802.11 standard specifies a common medium access control (MAC) Layer, which

provides a variety of functions that support the operation of 802.11-based wireless LANs. In

general, the MAC Layer manages and maintains communications between 802.11 stations (radio

network cards and access points) by coordinating access to a shared radio channel and utilizing

protocols that enhance communications over a wireless medium.

Before transmitting frames, a station must first gain access to the medium, which is a

radio channel that stations share. The 802.11 standard defines two forms of medium access,

distributed coordination function (DCF) and point coordination function (PCF). DCF is

mandatory and based on the CSMA/CA (carrier sense multiple access with collision avoidance)

protocol. With DCF, 802.11 stations contend for access and attempt to send frames when there is

no other station transmitting. If another station is sending a frame, stations are polite and wait

until the channel is free.

As a condition to accessing the medium, the MAC Layer checks the value of its network

allocation vector (NAV), which is a counter resident at each station that represents the amount of

time that the previous frame needs to send its frame. The NAV must be zero before a station can

attempt to send a frame. Prior to transmitting a frame, a station calculates the amount of time

ECE 4006 Wireless Intrusion Detection and Response Group 2

 9

necessary to send the frame based on the frame's length and data rate. The station places a value

representing this time in the duration field in the header of the frame. When stations receive the

frame, they examine this duration field value and use it as the basis for setting their

corresponding NAVs. This process reserves the medium for the sending station.

An important aspect of the DCF is a random back off timer that a station uses if it detects

a busy medium. If the channel is in use, the station must wait a random period of time before

attempting to access the medium again. This ensures that multiple stations wanting to send data

don't transmit at the same time. The random delay causes stations to wait different periods of

time and avoids all of them sensing the medium at exactly the same time, finding the channel

idle, transmitting, and colliding with each other. The back off timer significantly reduces the

number of collisions and corresponding retransmissions, especially when the number of active

users increases.

With radio-based LANs, a transmitting station can't listen for collisions while sending

data, mainly because the station can't have it's receiver on while transmitting the frame. As a

result, the receiving station needs to send an acknowledgement (ACK) if it detects no errors in

the received frame. If the sending station doesn't receive an ACK after a specified period of time,

the sending station will assume that there was a collision (or RF interference) and retransmit the

frame.

For supporting time-bounded delivery of data frames, the 802.11 standard defines the

optional point coordination function (PCF) where the access point grants access to an individual

station to the medium by polling the station during the contention free period. Stations can't

transmit frames unless the access point polls them first. The period of time for PCF-based data

traffic (if enabled) occurs alternately between contention (DCF) periods.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 10

The access point polls stations according to a polling list, then switches to a contention

period when stations use DCF. This process enables support for both synchronous (i.e., video

applications) and asynchronous (i.e., e-mail and Web browsing applications) modes of operation.

802.11 MAC Layer Functions

• Scanning: The 802.11 standard defines both passive and active scanning; whereby, a

radio NIC searches for access points. Passive scanning is mandatory where each NIC

scans individual channels to find the best access point signal. Periodically, access points

broadcast a beacon, and the radio NIC receives these beacons while scanning and takes

note of the corresponding signal strengths. The beacons contain information about the

access point, including service set identifier (SSID), supported data rates, etc. The radio

NIC can use this information along with the signal strength to compare access points and

decide upon which one to use.

Optional active scanning is similar, except the radio NIC initiates the process by

broadcasting a probe frame, and all access points within range respond with a probe

response. Active scanning enables a radio NIC to receive immediate response from

access points, without waiting for a beacon transmission. The issue, however, is that

active scanning imposes additional overhead on the network because of the transmission

of probe and corresponding response frames.

• Authentication: Authentication is the process of proving identity, and the 802.11

standard specifies two forms: Open system authentication and shared key authentication.

Open system authentication is mandatory, and it's a two step process. A radio NIC first

initiates the process by sending an authentication request frame to the access point. The

ECE 4006 Wireless Intrusion Detection and Response Group 2

 11

access point replies with an authentication response frame containing approval or

disapproval of authentication indicated in the Status Code field in the frame body.

Shared key authentication is an optional four step process that bases

authentication on whether the authenticating device has the correct WEP (wired

equivalent privacy) key. The radio NIC starts by sending an authentication request frame

to the access point. The access point then places challenge text into the frame body of a

response frame and sends it to the radio NIC. The radio NIC uses its WEP key to encrypt

the challenge text and then sends it back to the access point in another authentication

frame. The access point decrypts the challenge text and compares it to the initial text. If

the text is equivalent, then the access point assumes that the radio NIC has the correct

key. The access point finishes the sequence by sending an authentication frame to the

radio NIC with the approval or disapproval.

• Association: Once authenticated, the radio NIC must associate with the access point

before sending data frames. Association is necessary to synchronize the radio NIC and

access point with important information, such as supported data rates. The radio NIC

initiates the association by sending an association request frame containing elements such

as SSID and supported data rates. The access point responds by sending an association

response frame containing an association ID along with other information regarding the

access point. Once the radio NIC and access point complete the association process, they

can send data frames to each other.

• WEP: With the optional WEP enabled, the wireless NIC will encrypt the body (not

header) of each frame before transmission using a common key, and the receiving station

will decrypt the frame upon receipt using the common key. The 802.11 standard specifies

ECE 4006 Wireless Intrusion Detection and Response Group 2

 12

a 40-bit key and no key distribution method, which makes 802.11 wireless LANs

vulnerable to eavesdroppers.

• RTS/CTS: The optional request-to send and clear-to-send (RTS/CTS) function allows

the access point to control use of the medium for stations activating RTS/CTS. With most

radio NICs, users can set a maximum frame length threshold whereby the radio NIC will

activate RTS/CTS. For example, a frame length of 1,000 bytes will trigger RTS/CTS for

all frames larger than 1,000 bytes. The use of RTS/CTS alleviates hidden node problems,

that is, where two or more radio NICs can't hear each other and they are associated with

the same access point.

If the radio NIC activates RTS/CTS, it will first send a RTS frame to access point

before sending a data frame. The access point will then respond with a CTS frame,

indicating that the radio NIC can send the data frame. With the CTS frame, the access

point will provide a value in the duration field of the frame header that holds off other

stations from transmitting until after the radio NIC initiating the RTS can send its data

frame. This avoids collisions between hidden nodes. The RTS/CTS handshake continues

for each frame, as long as the frame size exceeds the threshold set in the corresponding

radio NIC.

• Power Save Mode: The optional power save mode that a user can turn on or off enables

the radio NIC to conserve battery power when there is no need to send data. With power

save mode on, the radio NIC indicates its desire to enter "sleep" state to the access point

via a status bit located in the header of each frame. The access point takes note of each

radio NIC wishing to enter power save mode, and buffers packets corresponding to the

sleeping station.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 13

In order to still receive data frames, the sleeping NIC must wake up periodically

(at the right time) to receive regular beacon transmissions coming from the access point.

These beacons identify whether sleeping stations have frames buffered at the access point

and waiting for delivery to their respective destinations. The radio NICs having awaiting

frames will request them from the access point. After receiving the frames, the radio NIC

can go back to sleep.

• Fragmentation: The optional fragmentation function enables an 802.11 station to divide

data packets into smaller frames. This is done to avoid needing to retransmit large frames

in the presence of RF interference. The bits errors resulting from RF interference are

likely to affect a single frame, and it requires less overhead to retransmit a smaller frame

rather than a larger one. As with RTS/CTS, users can generally set a maximum frame

length threshold whereby the radio NIC will activate fragmentation. If the frame size is

larger than the threshold, the radio NIC will break the packet into multiple frames, with

each frame no larger than the threshold value.

802.11 Frame Types

The 802.11 standard defines various frame types that stations (NICs and access points)

use for communications, as well as managing and controlling the wireless link. Every frame has

a control field that depicts the 802.11 protocol version, frame type, and various indicators, such

as whether WEP is on, power management is active, and so on. In addition all frames contain

MAC addresses of the source and destination station (and access point), a frame sequence

number, frame body and frame check sequence (for error detection).

802.11 data frames carry protocols and data from higher layers within the frame body.

Other frames that stations use for management and control carry specific information regarding

ECE 4006 Wireless Intrusion Detection and Response Group 2

 14

the wireless link in the frame body. For example, a beacon's frame body contains the service set

identifier (SSID), timestamp, and other pertinent information regarding the access point.

Management Frames

802.11 management frames enable stations to establish and maintain communications.

The following are common 802.11 management frame subtypes:

• Authentication frame: 802.11 authentication is a process whereby the access point

either accepts or rejects the identity of a radio NIC. The NIC begins the process by

sending an authentication frame containing its identity to the access point. With open

system authentication (the default), the radio NIC sends only one authentication frame,

and the access point responds with an authentication frame as a response indicating

acceptance (or rejection). With the optional shared key authentication, the radio NIC

sends an initial authentication frame, and the access point responds with an authentication

frame containing challenge text. The radio NIC must send an encrypted version of the

challenge text (using its WEP key) in an authentication frame back to the access point.

The access point ensures that the radio NIC has the correct WEP key (which is the basis

for authentication) by seeing whether the challenge text recovered after decryption is the

same that was sent previously. Based on the results of this comparison, the access point

replies to the radio NIC with an authentication frame signifying the result of

authentication.

• Deauthentication frame: A station sends a deauthentication frame to another station if it

wishes to terminate secure communications.

• Association request frame: 802.11 association enables the access point to allocate

resources for and synchronize with a radio NIC. A NIC begins the association process by

ECE 4006 Wireless Intrusion Detection and Response Group 2

 15

sending an association request to an access point. This frame carries information about

the NIC and the SSID of the network it wishes to associate with. After receiving the

association request, the access point considers associating with the NIC, and (if accepted)

reserves memory space and establishes an association ID for the NIC.

• Association response frame: An access point sends an association response frame

containing an acceptance or rejection notice to the radio NIC requesting association. If

the access point accepts the radio NIC, the frame includes information regarding the

association, such as association ID and supported data rates. If the outcome of the

association is positive, the radio NIC can utilize the access point to communicate with

other NICs on the network and systems on the distribution (i.e., Ethernet) side of the

access point.

• Reassociation request frame: If a radio NIC roams away from the currently associated

access point and finds another access point having a stronger beacon signal, the radio

NIC will send a reassociation frame to the new access point. The new access point then

coordinates the forwarding of data frames that may still be in the buffer of the previous

access point waiting for transmission to the radio NIC.

• Reassociation response frame: An access point sends a reassociation response frame

containing an acceptance or rejection notice to the radio NIC requesting reassociation.

Similar to the association process, the frame includes information regarding the

association, such as association ID and supported data rates.

• Disassociation frame: A station sends a disassociation frame to another station if it

wishes to terminate the association. For example, a radio NIC that is shut down

gracefully can send a disassociation frame to alert the access point that the NIC is

ECE 4006 Wireless Intrusion Detection and Response Group 2

 16

powering off. The access point can then relinquish memory allocations and remove the

radio NIC from the association table.

• Beacon frame: The access point periodically sends a beacon frame to announce its

presence and relay information, such as timestamp, SSID, and other parameters regarding

the access point to radio NICs that are within range. Radio NICs continually scan all

802.11 radio channels and listen to beacons as the basis for choosing which access point

is best to associate with.

• Probe request frame: A station sends a probe request frame when it needs to obtain

information from another station. For example, a radio NIC would send a probe request

to determine which access points are within range.

• Probe response frame: A station will respond with a probe response frame, containing

capability information, supported data rates, etc., when it receives a probe request frame.

Control Frames

802.11 control frames assist in the delivery of data frames between stations. The

following are common 802.11 control frame subtypes:

• Request to Send (RTS) frame: The RTS/CTS function is optional and reduces frame

collisions present when hidden stations have associations with the same access point. A

station sends a RTS frame to another station as the first phase of a two-way handshake

necessary before sending a data frame.

• Clear to Send (CTS) frame: A station responds to a RTS with a CTS frame, providing

clearance for the requesting station to send a data frame. The CTS includes a time value

that causes all other stations (including hidden stations) to hold off transmission of

frames for a time period necessary for the requesting station to send its frame. This

ECE 4006 Wireless Intrusion Detection and Response Group 2

 17

minimizes collisions among hidden stations, which can result in higher throughput if

implemented properly.

• Acknowledgement (ACK) frame: After receiving a data frame, the receiving station

will utilize an error checking processes to detect the presence of errors. The receiving

station will send an ACK frame to the sending station if no errors are found. If the

sending station doesn't receive an ACK after a period of time, the sending station will

retransmit the frame.

Data Frames

Of course the main purpose of having a wireless LAN is to transport data. 802.11 defines

a data frame type that carries packets from higher layers, such as web pages, printer control data,

etc., within the body of the frame.

802.11 Wireless Ethernet Security

IEEE 802.11 provides for security via two methods: authentication and encryption.

802.11 provides for both MAC layer (OSI Layer 2) access control and encryption mechanisms,

which are known as Wired Equivalent Privacy (WEP), with the objective of providing wireless

LANs with security equivalent to their wired counterparts. For the access control, the ESSID

(also known as a WLAN Service Area ID) is programmed into each access point and is required

knowledge in order for a wireless client to associate with an access point. In addition, there is

provision for a table of MAC addresses called an Access Control List to be included in the access

point, restricting access to clients whose MAC addresses are on the list.

For data encryption, the standard provides for optional encryption using a 40-bit shared-

key RC4 PRNG algorithm from RSA Data Security. All data sent and received while the end

ECE 4006 Wireless Intrusion Detection and Response Group 2

 18

station and access point are associated can be encrypted using this key. In addition, when

encryption is in use, the access point will issue an encrypted challenge packet to any client

attempting to associate with it. The client must use its key to encrypt the correct response in

order to authenticate itself and gain network access.

WEP Weaknesses

WEP is vulnerable because of relatively short initialization vectors (IVs) and keys that

remain static. The issues with WEP don't really have much to do with the RC4 encryption

algorithm. With only 24 bits, WEP eventually uses the same IV for different data packets. For a

large busy network, this reoccurrence of IVs can happen within an hour or so. This results in the

transmission of frames having keystreams that are too similar. If a hacker collects enough frames

based on the same IV, the individual can determine the shared values among them, i.e., the

keystream or the shared secret key. This of course leads to the hacker decrypting any of the

802.11 frames.

The static nature of the shared secret keys emphasizes this problem. 802.11 doesn't

provide any functions that support the exchange of keys among stations. As a result, system

administrators and users generally use the same keys for weeks, months, and even years. This

gives mischievous culprits plenty of time to monitor and hack into WEP-enabled networks.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 19

3.2 WarDriving

Definition of WarDriving

WarDriving is defined as the benign act of locating and logging onto wireless access

points while in motion. This means that anyone with the help of some WarDriving equipment

(specifications given below) can drive around a neighborhood looking for wireless access points.

This can be made more sophisticated by using high grade antennas and Global Positioning

Satellite (GPS) systems.

Purpose of WarDriving

There are many reasons why people tend to go WarDriving, one of them being that

people are curious to know about the presence of ubiquitous 802.11 networks. Others are using

WarDriving data as the basis for academic research, security analysis, or financial analysis, and

all too much of it is (mis)interpreted by the mainstream and technical press. There seem to be a

few problems with the way people are WarDriving. Some of these are: Use of improper tools for

gathering data, and drawing conclusions about the security of a particular network without

conducting a thorough audit.

WarDriving Requirements

To go WarDriving, one simply needs the following hardware/software:

• A personal computer or laptop.

• WarDriving software like Kismet, NetStumbler, AirSnort etc.

• Wireless 802.11 compliant network card.

• A bicycle or car.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 20

In addition to the software that's available, a WarDriver needs to understand how

antenna choices affect network discovery. For purposes of discovering community nodes, it

might be more useful to use the smallest antenna possible so that only usable nodes are

discovered. However, for purposes of finding as many networks as possible, it may be better to

use a higher-gain omni or to sweep an area with a directional antenna.

Legality of WarDriving and Threat Evaluation

There is a lot of debate in the networking community regarding WarDriving. The main

emphasis is on whether roaming around a neighborhood with a wireless computer running

WarDriving software is legal, or should it be banned. It seems that WarDriving can be used for

both good and bad purposes. On one hand, WarDriving can be used to do statistical analysis on

wireless networks, research etc. On the other hand, it can be used by malicious hackers to obtain

security information about a wireless network, and gain unofficial access to the network. This

can result in hackers stealing important information like credit card numbers, bank account

numbers etc. There are many loopholes in present day wireless networks, making them

vulnerable to attack. Some of these loopholes are:

1. Wireless networks are not very secure since the medium of transmission is air.

2. WEP can be cracked or hacked into, thereby, giving open access to a wireless network.

The picture shown below shows the results of a WarDrive conducted in Silicon Valley,

California. Looking at the picture, one can see how real the threat of WarDriving is.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 21

The table below shows the statistics of the access points that were found in Silicon

Valley. It can be seen that from the total number of access points found, only 30 percent had

WEP enabled. This is a clear indication of the vulnerability that exists in the wireless networks

today – they are not at all secure!

Figure 3.2.1: Wardriving activity in Silicon Valley, California

Table 3.2.1: AP Statistics in Silicon Valley, California
CATEGORY TOTAL PERCENT

Total APs Found 9374 100
WEP Enabled 2825 30.13
No WEP Enabled 6549 69.86
Default SSID 2768 29.53
Default SSID and No WEP
Enabled

2497 26.64

Unique SSIDs 3672 39.17
Most Common SSID 1778 18.97
2nd Most Common SSID 623 6.65

ECE 4006 Wireless Intrusion Detection and Response Group 2

 22

NetStumbler Introduction

 NetStumbler is the most popular tool available today for Wardriving. It is a tool that

listens for available networks and records data about the access points present in that network. A

screen capture shown below shows NetStumbler in action.

The screen capture above shows NetStumbler running in the lab where the IDS is being

developed by our group. The frame on the left shows information about the different channels on

which APs can be found. Fake AP, Fake AP 2 etc are some of the SSID’s generated by our IDS

to fool NetStumbler in thinking that it is an active access point on the wireless network. These

Fake APs can be seen in the right frame with other information displayed by the NetStumbler

software. For example, Fake AP 3 was generated by our IDS software by giving it a MAC

Figure 3.2.2: Screen capture showing the working of NetStumbler under the presence of a
Wireless Network.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 23

address, SSID name etc. The channel column shows the fake channels generated by the Fake AP,

telling NetStumbler that it is transmitting on those channels, whereas, in reality its not.

 NetStumbler-like programs are great for locating nodes that are available for public

use, but it's important to realize that it can't find an Apple AirPort that is in "closed" mode, which

might account for a large number of home AP's. This is because, when an access point is in

closed mode, it does not send out any beacon packets or respond to broadcast probe requests. As

long as it does both of the above, it should be invisible to most conventional scanning methods.

However, one method a hacker could use would be to sniff for probe responses and

authentication handshakes between the access point and valid nodes authenticating with the

network. On the positive side, this kind of network discovery is possible with any wireless card--

it takes advantage of the way normal 802.11 clients locate and join networks. Sniffing programs

will find the rest of the networks. Their main limitation, however, is that they only work with a

subset of cards/drivers. However, they provide much more definitive idea of where networks are

located.

Some of the ways NetStumbler can be used are:

• Check corporate LAN for security vulnerabilities.

• Check coverage of wireless LAN.

• Collect statistical information of wireless LANs for research purposes.

• Classroom teaching.

Hardware and Software Requirements of NetStumbler

 NetStumbler is a windows utility used for detecting 802.11b based networks. It runs on

Windows 9x/2000/XP. An interface has recently been developed for the Pocket PC platform

(Windows CE). Version 0.3 of NetStumbler works on Lucent Technologies WaveLAN/IEEE

ECE 4006 Wireless Intrusion Detection and Response Group 2

 24

(Orinoco) wireless card, Dell TrueMobile 1150 series, Avaya wireless PC card, Toshiba

Wireless LAN card etc [TODO put source number here]. Kismet and dStumbler are equivalent

utilities in the Linux environment.

NetStumbler Operational Analysis

NetStumbler is “closed source” software and there is no information available on how

it exactly works. However, there is some information available which is similar to its working

and is provided below. NetStumbler uses the proprietary feature of the “hcf” library provided by

Agere/Lucent to scan for access points. Here is how one can use the scanning mode with a

wireless network card. First, send a scan request to the card. This is done by something similar

to sending an inquire command (0x11) to the card with 0xF101 as the parameter. This tells the

card to send out probe requests and store information about APs it finds. The above mentioned

method is handled asynchronously, so when the card has results, it sends an event to the interrupt

handler in the driver. This event is labeled as the information event (0x0080). The interrupt

handler is the same handler that takes care of other buffer reads such as Rx, Tx etc. The info

events are sent in a standard “ltv” structure consisting of length, code, and a data buffer. These

“ltv’s” contain an array of structures that contain AP information that looks something like this:

struct wi_scan_res {
 u_int16_t wi_chan; /* dss channel */
 u_int16_t wi_noise; /* average noise in the air */
 u_int16_t wi_signal; /* signal strength */
 u_int16_t wi_bssid[6]; /* mac address of the ap */
 u_int16_t wi_interval; /* beacon transmit interval */
 u_int16_t wi_capinfo; /* capability information (bits: 0-ess, 1-ibss,
4-privacy [wep]) */
 u_int16_t wi_ssid_len; /* ssid length */
 u_int16_t wi_ssid[32]; /* ssid (ap name) */
};
 Figure 3.2.3: Data structure used for exchange of access point information.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 25

The above structure stores important information such as channel, signal strength, MAC

address of AP, SSID etc. These are the basics of how NetStumbler scans for APs and provides

relevant information on its user interface.

Wired Equivalent Privacy (WEP)

Security of wireless LANs is a hot issue in today’s market, especially for applications

hosting valuable information. Especially networks transmitting credit card numbers for

verification or storing need to be made secure. WEP (wired equivalent privacy) is 802.11’s

standard encryption implementation in the Media Access Control layer that is supported by most

wireless NICs and access point vendors. It is an optional field in the 802.11 packet, and if

activated encrypts the payload of each 802.11 frame before transmitting it. The receiving station

on the other end decrypts the frame upon its arrival. It is important to note that WEP only works

between wireless stations. Once the packet enters the wired network, it is no longer active. WEP

however, has a lot of flaws and can be easily broken into if sufficient data can be collected from

a network with WEP enabled.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 26

4.0 Timeline and Tasking

4.1 Timeline

The timeline indicating our intended and actual progress is shown below. Our initial

broad classification of tasks may not be sufficiently detailed to reflect the progress accurately.

For example, though it may appear that we had completed “Setup” ahead of schedule, we

actually stalled it because of the unavailability of a working access point.

Figure 4.1.1. Predicted and Actual timeline.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 27

Tasking

From the figure above, it can be seen that we were quite close to our predicted schedule,

and in some cases finished our tasks ahead of time. We did anticipate serious problems if we

were unable to obtain a working access point as that would impede our progress. Several tasks

were commenced earlier than anticipated to get around bottlenecks encountered in other areas.

For example, it proved difficult to have different groups working on detection and

countermeasures, so that was eventually tasked to the same group. The other group then started

on the web-based user interface and modules to integrate the parts. A detailed description of how

each individual member of the group worked is provided below.

4.2 Tasking

 The project started with a meeting between all the group members. In this meeting, we

brainstormed on how we would go about designing the intrusion detection and response system.

After careful analysis of the proposed problem, we decided to divide the group into two teams.

Seng Oon Toh and Varun Kanotra worked on the NetStumbler detection algorithm, and Yu-Xi

Lim and Nitin Namjoshi worked on developing a countermeasure scheme. As it can be seen in

the timeline, the initial setup occupied us for the first two to three weeks. This involved installing

Red Hat Linux 7.3 on the drives, installing PCI-PCMCIA bridge cards, installing drivers etc. We

faced several problems in the beginning, such as obtaining a faulty access point; wireless cards

not being detected etc. Eventually, Varun and Seng managed to get host AP working as an access

point with WPC11 cards. Newer firmware from a third-party site was needed to make this work.

The writing of the algorithms involved programming in C (source code provided in the

appendix). Varun and Seng developed the NetStumbler detection algorithm and state machine.

The algorithm was tested from time to time, and potential bugs were fixed. Yu-Xi and Nitin were

ECE 4006 Wireless Intrusion Detection and Response Group 2

 28

faced with problems when they tried to transmit probe response packets. Although the packets

appeared on Ethereal, the remote computer listening didn’t “see” the packets. It was found that

since a bogus destination address was being given in the packet header, the packets were not

going out the interface. Finally by end of week 10, we had a working detection algorithm.

During the same time, Nitin and Yu-Xi were developing the countermeasures. They also

successfully installed mini-httpd and got Common Gateway Interface (CGI) scripts to work. This

was necessary for developing the user interface. Once we had the countermeasures part working

and tested, we worked on developing a user interface. Several features (such as creating a fake

AP, turning channel hopping on/off etc.) were added to the UI, to enable a system administrator

to take proper countermeasures, once the access point detected a potential NetStumbler. This

user interface was then flashed (along with the detection algorithm) and successfully deployed

on the access point. Final testing was done during week 13 and 14, and final documentation for

the product was prepared.

Table 3.2.1. Tasking shown in tabular form.
Nitin Seng Varun Yu-Xi
Write-Up Setup Write-Up Website
Detection Detection Countermeasures Countermeasures
Interface Port to AP Interface Port to AP

ECE 4006 Wireless Intrusion Detection and Response Group 2

 29

5.0 Competitor Products

5.1 Fake AP

Fake AP is a product developed by Black Alchemy and is used for flooding the wireless

network with false access point beacon packets. Intruders running NetStumbler or other

derivatives will be overwhelmed with a large list of access points. The intention of this is to

make it almost impossible for the hacker to detect the genuine access point. This tool is

distributed open source by Black Alchemy. It is supported by Linux machines with Host AP

drivers and Prism 2/2.5/3 based wireless network cards.

5.2 AirDefense

AirDefense is an enterprise/military commercial wireless intrusion detection system. The

product is usually sold as a complete system, which includes AirDefense sensors that are

distributed throughout the facility and also a server appliance which centrally manages all the

sensors. AirDefense monitors all network activity, looking for suspicious activity and only

reports anything found to the network administrator. It does not take any active action to block

access to the intruder. AirDefense claims to be able to detect WarDriving activity.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 30

6.0 Tools

6.1 Host AP

 Host AP is an open source implementation of Linux drivers for Intersil Prism 2/2.5

chipset based 802.11b network cards. It supports operation in a variety of modes such as:

a) Managed – client connected to an access point

b) Master – serves as an access point

c) Monitor – passive RF monitoring

The most interesting aspect of Host AP drivers is operation in Master mode where a

standard 802.11b network adapter can be used as an access point. Although this had already been

accomplished before by reflashing the network adapter’s firmware with an access point’s

firmware, this was a very complicated process and was illegal because the access point firmware

was copyrighted software. Host AP accomplishes this by configuring the card to operate in an

undocumented and mostly unknown mode which is specific to Prism chipsets – the Host AP

mode.

In Host AP mode, the firmware performs all time critical tasks of access points like the

periodic transmission of beacon frames and the transmission of probe response frames in

response to probe requests. Other access point related tasks are left to the host driver to

accomplish. It essentially provides hooks in the firmware that call host level handlers while

passing the packet that was received up to the kernel. In standard Master mode, Host AP drivers

completely implement all access point functionality like association/disassociation,

authentication/deauthentication, and bridging.

The drivers can also be compiled with the HOSTAPD option, which will transfer all

access point handling tasks from the driver level to a user level daemon. Host AP provides high

ECE 4006 Wireless Intrusion Detection and Response Group 2

 31

versatility through this feature because the behavior of the access point can be modified on the

fly by recompiling the user level daemon, thus eliminating the need for time consuming kernel

recompilations and module re-initializations. In fact, this practice of implementing the access

point in the user level has created a rich development platform for the open source community to

develop enhancements to wireless networks such as 802.1X and Wireless Distribution Systems

(WDS) which allow access points to be configured as standalone wireless repeaters.

Engineering Tradeoffs

Preference of Host AP over other drivers

Currently there are two active Linux drivers for Prism chipsets:

a) Host AP

b) Wlan-ng

We chose to use Host AP drivers instead of Wlan-ng drivers because:

a) Host AP is multipurpose

The Wlan-ng driver was primarily designed for managed and ad hoc (IBSS)

modes of usage. Even though Wlan-ng also supports monitor mode operation just like

Host AP, Host AP excels over Wlan-ng in its ability to support the Host AP mode. Host

AP’s ability to support more modes was more attractive to us since we started our

development without a clear knowledge of which mode we would be using.

b) Host AP mode

On our initial evaluation of the Host AP mode, we concluded that this would be

our best bet to implement an intrusion detection system that was integrated with an access

point because the driver already implemented the access point capability. We predicted

ECE 4006 Wireless Intrusion Detection and Response Group 2

 32

that all we needed to do was to modify the user level handlers to implement IDS

functionality.

c) Availability of sample code

Because of Host AP’s developmental nature, the drivers are distributed with a rich

set of sample code that implements a variety of features like an 802.1X authenticator and

an 802.11b protocol sniffer. This protocol sniffer was particularly attractive to us because

it had data structure declarations of all 802.11b frames like management frames, control

frames, and data frames. It also had complete macro definitions of all the fields in the

frames. This was invaluable to us because we could conveniently stuff 802.11b frames

without hard coding the bitmasks. The 802.1X authenticator also demonstrated how to

generate common management frames like association responses and deauthentication

frames.

d) Nature of driver development

Host AP was initially developed by Jouni Malinen and targeted more towards the

wireless development community. Because of this, the code is constantly being revised

by an active community of developers who are friendly and open towards new ideas.

Compared to Wlan-ng which was developed solely by a company, we felt that we would

receive better support for the nature of our development work if we used Host AP drivers.

The only downsides of using code that is of a developmental nature are the

inconsistencies between release versions and the problem of bugs that might surface as

the result of development. However, this did not cause us any setbacks as any bugs that

were discovered were quickly resolved by the community.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 33

e) Wireless Tools

Host AP also supports Linux Wireless Tools. Wireless Tools is an invaluable tool

in Linux wireless network configuration. It provides a unified configuration interface

(iwconfig) for all wireless cards on the system. It also implements a set of wireless

ioctls that can be used to reconfigure the wireless adapter directly in a program. Wlan-ng

on the other hand provided their own configuration program. We preferred to work with a

driver that supported Wireless Tools instead of one that did not because we were already

familiar with the Wireless Tools system. Our use of a common interface also meant that

our code could easily be ported to other drivers in the future.

f) OpenAP Support

Finally, we chose Host AP over Wlan-ng because Host AP drivers are already

present in the OpenAP package. This gave us the confidence that the drivers compiled

correctly on the AMD Élan platform and worked properly. It also meant that we did not

need to spend much time porting the drivers over to the embedded platform.

Host AP Hardware and Software Requirements

 Host AP supports IEEE 802.11b wireless PC Cards and PCI Cards that are based on

Intersil’s Prism 2 or Prism 2.5 chipsets. Please refer to the Appendix C for a list of cards

supported by Host AP. For our development platform, we used Linksys WPC11 Ver 3 11Mbps

WLAN Cards.

 Software Requirements:

a) Linux

b) Wireless Tools 25

c) PCMCIA-CS (if using PC Card)

ECE 4006 Wireless Intrusion Detection and Response Group 2

 34

In our development platform, we used the stock kernel that came distributed with Redhat

7.3 which is version 2.4.17. Our PCMCIA-CS version was 3.2.1.

Host AP Development Issues

Access Point Conflicts with Intrusion Detection

 One of our initial goals was to provide an IDS that was integrated together with access

point functionality. The purpose of this was so that our product could be deployed easily in the

field. We also wanted our IDS to see all traffic that the access point was receiving to ensure that

the IDS was seeing every single packet and checking for hostile activity. As soon as we started

development of the IDS, we soon realized implementing these two modules on one device

involved many engineering tradeoffs.

 As mentioned earlier, Host AP supports operation in different modes. We initially started

development using the managed mode which made the card function as a complete access point.

This was the most attractive mode to us because access point functionality was already

implemented. We thought that all we had to do was to compile the driver in “hostapd” mode

which forwarded the 802.11b management frames up to the user level and then implement our

IDS as a user level daemon. Access point bridging between the wireless and wired network

would then be implemented transparently for us by the kernel. A brief observation of

hostapd.c which is the user level daemon distributed with Host AP confirmed that

management packets were being passed all the way up including interesting packets like 802.11b

probe requests. Figure 6.1.1 shows how the packet handler is organized.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 35

We then tried to do some basic protocol decoding in hostapd.c by inserting printf

debug statements that reported the type of packet that was received and also the MAC address of

the sender. After some initial testing, we realized that not all packets were being received by the

user level daemon. Packets like probe requests and control frames were being absorbed by the

firmware. We also did not receive any packets that were not destined for the MAC address of our

network adapter. After liaising with Host AP developers, we discovered that the firmware still

filters out packets that were not destined for it even in Host AP mode. In addition to this, even

though hostapd.c had a hook which collected probe requests (line 20 of Figure 6.1.1), the

probe requests did not arrive at the user level daemon because probe requests were being handled

by the firmware. We had overlooked the fact that time critical tasks like probe request handling

and beacon broadcasts were handled by the firmware. This forced us to find different methods

that would provide us with all packets received by the interface.

 1. static void handle_mgmt(hostapd *hapd, char *buf, size_t len, u16
 2. stype)
 3. {
 4. struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) buf;
 5.
 6. if (stype == WLAN_FC_STYPE_BEACON) {
 7. if (hapd->debug >= HOSTAPD_DEBUG_MINIMAL)
 8. printf("mgmt::beacon\n");
 9. /* FIX: implement handle_beacon() */
10. return;
11. }
12.
13. if (memcmp(mgmt->bssid, hapd->own_addr, ETH_ALEN) != 0) {
14. printf("MGMT: BSSID=" MACSTR " not our address\n",
15. MAC2STR(mgmt->bssid));
16. return;
17. }
18.
19.
20. if (stype == WLAN_FC_STYPE_PROBE_REQ) {
21. printf("mgmt::probe_req\n");
22. return;
23. }

Figure 6.1.1: Packet analysis in hostapd.c.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 36

Our next hope was the monitor mode. This mode, also known as the Radio Frequency

(RF) Monitor mode, is used by network utilities like Ethereal, Airsnort, and Kismet to analyze all

packets on the network. We started developing in this mode by modifying the wlansniff.c

file which was also provided in the Host AP distribution. Since this program already

implemented extensive printf debugs of the protocol, we were able to use it to quickly verify

that all packets were being received by the program. We even discovered that packets

transmitted in neighboring channels were also being decoded. This is just the consequence of a

quirk with 802.11b which overlaps the channels.

Although we were able to listen to all packets, access point functionality was no longer

enabled in monitor mode. In this mode, the firmware just left the receiver on and sent all packets

through the protocol stack without processing. This meant that kernel level Ethernet bridging

was being bypassed. We then considered implementing bridging in the user level but this was not

possible because even acknowledge packets were not being processed by the firmware (as

documented later in this section). As a consequence of this, we could not reliably transmit any

packet out on the network let alone implement bridging. After considering the tradeoffs, we

concluded that as the first product in the line of future IDS products, it should be acceptable that

access point functionality is not integrated. After our intrusion detection algorithms and

countermeasures have been established and the concept has been proven, integrating the two

modules would not be too difficult. With access to the firmware sources, we could easily modify

it to forward up all packets, including probe requests.

Retry Limits in Monitor Mode

 As mentioned in the previous section, the firmware disables all packet handling in

monitor mode and merely forwards the packet up the stack. One consequence of this was that

ECE 4006 Wireless Intrusion Detection and Response Group 2

 37

transmission of data was not as straightforward as usual. The 802.11b standard states that all

transmissions should be acknowledged to ensure reliability of transmission. Even though monitor

mode allows transmission of packets, the drivers are not aware that the firmware has stopped

detection of acknowledge packets. As a consequence, the transmission times out and the driver

continually tries to retransmit until the retransmit limit is exceeded. Figure 6.1.2 shows a screen

capture of Ethereal demonstrating the wireless cards awkward transmission behavior in Monitor

mode.

As illustrated in the screen capture, multiple probe responses are transmitted from the

same MAC address even though only one probe request was received. As a result of this

Figure 6.1.2: Ethereal screen capture showing retransmissions.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 38

behavior, the wireless interface will be busy for an extended period of time which is determined

by the retry limit. This is undesirable since during this retransmission period, the wireless card

would not be able to listen to traffic for the purpose of intrusion detection. In addition to this, the

retransmissions occupy the precious commodity of the wireless channel and reduce availability

of the channel for actual network transmissions. This will reduce throughput of the network.

 The solution to this problem was to set the retry limit on the wireless interface to zero

before transmitting. This can either be accomplished through the “iwconfig wlan0 retry

0” shell command or by means of wireless ioctls. We have chosen to use the latter solution to

eliminate the need for the IDS to execute shell commands before starting up the main program.

In ids.c, the main function calls set_retry_limit passing an argument of ‘0’ for the

retry limit. set_retry_limit is a wrapper for the SIOCSIWRETRY wireless ioctl which

sets up a data structure that contains the parameters before passing the structure to the ioctl

system call. An observation of Ethereal captures after this fix was implemented confirmed that

only one probe response was transmitted after a probe request was seen. Although this fixed the

problem of excessive retransmissions, this still did not provide us the data transmission reliability

provided by acknowledge packets. A solution to this is to look for the acknowledge packets in

the user level daemon. This would require a complete implementation of the 802.11b

transmission state machine which would keep track of every single packet transmitted while

waiting for acknowledgement packets. We chose not to do this since we did not need to perform

any reliable data transmissions in our intrusion detection system.

Listening to All Channels Simultaneously

 A powerful wireless intrusion detection system should be able to monitor traffic on all

channels simultaneously so that any suspicious activity can be quickly detected and responded

ECE 4006 Wireless Intrusion Detection and Response Group 2

 39

to. This however is not possible with standard 802.11b wireless adapters available in the market

today. The physical layer on these cards is only capable of listening and transmitting on one

channel at a time. In reality, this limitation is not that significant because the predefined channels

in 802.11b overlap with one another, however the inability of the IDS to listen to all channels

does reduce its effectiveness.

 Although this might be a significant engineering tradeoff, our application of wireless

intrusion detection does not really require ability to monitor all channels simultaneously.

NetStumbler’s standard behavior is to iteratively transmit probe requests on all 11 channels

while waiting for probe responses on each channel. Because of this our IDS would eventually

detect the probe request from NetStumbler even though the wireless card was only listening to

one channel. In fact we have managed to create a pseudo multi-channel receiver by

implementing channel hopping. This means that the IDS would eventually detect any hostile

activity on a wireless channel when the wireless card on the IDS hops to the same channel. We

believe that this is a decent tradeoff considering that it is almost impossible to acquire a multi-

channel receiver today. In addition to this, the input/output processor bandwidth required to

process all 11 channels simultaneously would rule out a cost effective implementation of an IDS

on an embedded system.

Transmission after Channel Hopping

 Another minor quirk with Host AP and possibility any other wireless card is that

transmissions right after the channel is changed is lost. We noticed this problem when we were

developing our fake probe response countermeasures. Initially we designed our IDS to

temporarily change to a random channel and transmit a probe response at that channel to provide

an illusion that the access point was active on all 11 channels. However, we noticed that probe

ECE 4006 Wireless Intrusion Detection and Response Group 2

 40

response that we transmitted in this manner never appeared on NetStumbler. Further

investigation revealed that the probe responses were not even appearing on a computer running

Ethereal. We suspect that the wireless card requires a delay before it is ready to transmit after

channel changes. This might be related to the inability of the transceiver to switch channels

spontaneously.

 We looked into several methods to overcome this issue. Our first approach was to wait

before transmitting after a channel change. After further analysis of the approach, we realized

that this would not work for transmission of fake probe responses due to tight timing limitations

of probe responses. Wireless adapters only wait for a very short period of time for responses

from probe requests. Our second approach was to transmit a probe response on the same channel

that our card channel hops to. This guarantees that the card is ready to transmit since a probe

requests was already received on the channel. The card’s capability to receive packets should be

a strong indication that it is also ready to transmit. The tradeoff to this is that our state machine

that monitors successful authentication and association requests by clients and removes them

from the NetStumbler list would not work because the IDS will not be able to constantly monitor

the main access point channel for such activity. Since this is a tradeoff that should be decided by

the network administrator deploying our IDS, we decided to leave the channel hopping as a

feature that can be selectively enabled.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 41

6.2 OpenAP

Introduction

OpenAP is a complete Linux-based set of development tools for access points. It is

designed for providing community wireless networks by converting a commercial access point

into a wireless bridge, providing roaming functionality as well as support for mesh networking.

Currently, the tools only support access points based on the Eumitcom WL1100SA-N boards.

Though the distribution requires a Linux 2.4.17 kernel, it was not included and would

have to be downloaded separately.

Alternatives

Our research showed no alternatives to the OpenAP distribution. The other open source

projects usually use a standard PC to function as an access point or node and thus use only

standard Linux and the Host AP drivers.

Since our goal was to produce a Plug-and-Play network appliance, we required either an

embedded system or a very small form-factor PC. Costs for small form-factor PCs exceed the

cost of an access point, so we decided to use the access point. However, the code for this project

can be easily adapted and recompiled for a standard PC in order to gain additional performance.

OpenAP is the quickest way to develop on an access point. It uses a standard Linux

kernel and Host AP drivers, allowing us to develop code that could be ported to other Linux

systems. In fact, our code was initially developed and tested on a desktop PC.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 42

Requirements

OpenAP requirements are minimal. The only hardware it is intended for is the Eumitcom

WL1100SA-N board. Several products use this board – USRobotics USR 2450, SMC 2652W

EZconnect Wireless AP, and Addtron AWS-100. Unfortunately, these products are no longer in

production and there is only limited stock left. Based on availability and pricing, we opted for the

USR 2450.

To flash the unit, a 2MB or larger linear-mapped SRAM card must be used. The card

must support 3.3V operation. We used a Pretec 4MB Linear SRAM card. To access the card, we

used an ISA Orinoco card adapter on Linux, which was also used to hold the 802.11b network

PC Cards used for testing our code.

The access point has a serial port which serves as a terminal interface when OpenAP has

been configured. To access the terminal, a null-modem cable and terminal software are needed.

We used Minicom for the terminal software.

Since the development tools require Linux, a Linux PC is required. We used a PC

running Redhat 7.3. As mentioned before, we need a PC Card adapter to write to the SRAM card

and to use the wireless cards in testing. While we used a variety of cards during our testing and

development, the Host AP drivers that OpenAP uses requires an Intersil PRISM 2-based card.

We used a Linksys WPC11 wireless card for this.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 43

Directory Structure and Tools

The basic directory structure of the OpenAP distribution is

shown in Figure 6.2.1.

The following software comprises the OpenAP toolkit:

• Alios – a bootloader for systems based on the AMD Élan SC400

processor but with no BIOS.

• uClibc – glibc is the standard C library for Linux. uClibc is a

scaled-down variant intended for use on embedded systems

running either standard Linux or uClinux.

• BusyBox – a modularized executable that provides the

functionality of many common UNIX utilities. It sacrifices some

rarely-used functionality for size-optimization. Again, it is

designed for embedded systems.

• Wireless tools for Linux – a set of console-mode tools for

manipulating kernel wireless extensions.

• Host AP PRISM drivers – these are the same as the drivers

described in “Host AP”.

• PCMCIA card services – provide utilities to control PCMCIA

cards under Linux.

• Bridge utilities – allows the user to set up and control Ethernet

bridging under Linux.

• uDHCP – provides both DHCP client and server functionality for

embedded systems.

Figure 6.2.1:
OpenAP directory
structure.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 44

• Erase – userspace utility to access flash memory.

• Miscellaneous – contains the default configuration file for the Linux 2.4.17 kernel and

patches for the kernel to support the Élan processor and additional functionality like the

LEDs and watchdog.

More information on these programs and drivers can be found in the related works

[23][24][25].

Image_static is used to store miscellaneous files for the flash image. The use of

Image_static, and its companion directory, Image_final, is discussed later.

6.3 Wireless Tools

The Linux Wireless Extension and Wireless Tools is an open source project sponsored by

HP. The Wireless Extension is a generic API which allows a driver to expose space

configuration and statistics specific to Wireless LANs. A single set of tools supports all Wireless

LANs, regardless of their type. Another advantage in using these tools is that the parameters may

be changed on the fly without restarting the driver or the OS. The Wireless Tools is a set of tools

which allows the manipulation of the Wireless Extensions.

• iwconfig - manipulates the basic wireless parameters

• iwlist - lists addresses, frequencies, bit-rates etc.

• iwspy - gets per node link quality

• iwpriv - manipulates the Wireless Extensions specific to a driver

In our project, we used only iwconfig.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 45

iwconfig

The main command-line tool for managing a WaveLan wireless interface is iwconfig.

When run without parameters other than interface name, iwconfig displays extended information

about the radio interface.

Setting the ESSID

The basic task required to join a network is to select the appropriate network name, or

SSID. Iwconfig uses essid parameter to set the desired network name.

 % iwconfig wvlan0 essid NetworkName

Setting the Network Channel

The network operating frequency can be selected in two ways. The freq parameter can

take an operating frequency directly, or the channel parameter can be used with the appropriate

channel number, and the driver will derive the frequency from the channel number.

% iwconfig wvlan0 freq 2.432G

% iwconfig wvlan0 channel 4

Setting the Network Mode and Associating with an Access Point:

Most 802.11 stations are in either ad hoc networks or infrastructure networks. The

iwconfig nomenclature for these two modes is Ad-hoc and Managed.

% iwconfig wvlan0 mode Ad-hoc

% iwconfig wvlan0 mode Managed

In an infrastructure network, the ap parameter may be used to request an association with

the specified MAC address.

% iwconfig wvlan0 ap 01:01:03:04:05:06

ECE 4006 Wireless Intrusion Detection and Response Group 2

 46

Setting the Data Rate

Most cards support multiple bit rates. iwconfig allows the administrator to choose between them

by using the rate parameter.

% iwconfig wvlan0 rate 11M

Configuring WEP

The key parameter controls the WEP function of the driver.

% iwconfig wvlan0 key 01:23:45:67:89

Multiple keys may be entered using a bracketed index number. WEP processing can be

activated and deactivated using key on and key off.

% iwconfig wvlan0 key [2] on

% iwconfig wvlan0 key off

Wireless ioctl

 ioctl refers to a system call in the UNIX operating system that is used to perform a

variety of control functions on devices and streams. The function call in user-space corresponds

to this prototype:

 int ioctl(int fd, int cmd, . . .);

 The dots are usually filled in with the data structure that stores the parameters for the

ioctl which is specific for each device. The fd parameter either refers to an open file

descriptor or a stream while the cmd parameter is a system-wide unique ioctl identifier. It has

to be unique to avoid the case of ioctls sent to wrong devices or streams.

 Wireless tools for Linux implements a comprehensive set of ioctls that allow the

programmer to modify wireless parameters like the channel, SSID, and retry limits within a

ECE 4006 Wireless Intrusion Detection and Response Group 2

 47

program. Unfortunately, this feature is not well documented. The most complete source of

wireless ioctls and the various parameters that need to be passed can be found in

/usr/include/linux/wireless.h in any current Linux kernel. One major problem that

we faced in getting wireless ioctls to work initially is figuring out what parameters need to be

passed through the system call. The include file previously mentioned merely listed the data

structure without much description of the various fields within the structure. We had to resort to

looking at iwconfig.c to find out how the ioctls were used. This file came together with

the wireless tools package. Since it is a command line utility used to set all wireless parameters,

it had to contain code that executed all the wireless ioctls.

 Figure 6.3.1 is a code listing for a function that zeroes the retry limit of the wireless card

using ioctls.

 As listed on line 2, the data structure that is used to pass parameters to the wireless driver

is struct iwreq. This data structure is actually used for all wireless ioctls. It is basically

a huge data structure that contains sub data structures for each wireless request. Refer to the

iwreq_data data structure in wireless.h for a list of all sub data structures in struct

iwreq. The entire structure is first zero-filled in line 3. The name of the interface is then filled

in iwr.ifr_name. This is done so that the wireless driver can verify that the programmer sent

 1: void zero_retry_limit(hostapd * hapd) {
 2: struct iwreq iwr;
 3: memset(&iwr, 0, sizeof(iwr));
 4: strncpy(iwr.ifr_name, hapd->iface, IFNAMSIZ);
 5: iwr.u.retry.flags = IW_RETRY_LIMIT;
 6: iwr.u.retry.value = 0;
 7: iwr.u.retry.disabled = 0;
 8: if (ioctl(hapd->ioctl_sock , SIOCSIWRETRY, &iwr) < 0) {
 9: perror("ioctl[SIOCSIWRETRY]");
10: printf("Failed to set retry limit to 0\n");
11: }
12: }

Figure 6.3.1: Code listing of function that zeroes wireless retry limits.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 48

the ioctl to the right interface. This cannot be omitted. Forgetting this step would cause the

syscall to respond with an “invalid device” error.

 The retry sub data structure is then filled in with the parameters for setting the wireless

retry limit. The iwr.u.retry.value is set to ‘0’ in this case to zero out the wireless retry

limit. Finally the ioctl syscall is made, passing in a reference to the wireless socket, the

SIOCSIWRETRY command, and a reference to the iwreq data structure.

 Wireless ioctls are an invaluable tool because it gives the programmer the flexibility

to reconfigure every aspect of the wireless driver “on-the-fly” instead of passing driver module

arguments. Unfortunately, the lack of documentation really impedes development. Based on our

experience, iwconfig.c was the best source for guidance on using wireless ioctls.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 49

7.0 Implementation details

7.1 NetStumbler detection

Engineering Tradeoffs of Potential Algorithms

 Several schemes were considered for NetStumbler detection. These algorithms are:

1. Detection of Probe Request Frequency

This scheme involves monitoring all channels for probe request activity on a per MAC

address basis. For each request that is received, the IDS would update the statistics of the

number of requests received so far from the sender of the packet. NetStumblers would

then be isolated out by detecting clients that are transmitting an unusually high amount of

requests in a predefined period. The benefit of this algorithm is that it is independent of

the WarDriving software used. This scheme will even pick out clients that are running

dStumbler or MiniStumbler because these clients also rely on active scanning to detect

wireless networks. However, the downside is that there is a possibility of valid clients

being wrongfully categorized as NetStumblers. This could occur if a user tried to connect

to the wireless network too frequently since every connection attempt involves exchange

of probe request and response packets between the client and the access point. This

scheme could also be defeated by intruders who use scanning software that periodically

change the MAC address of the card. Although this is a possibility, we have not

discovered a utility that actually does this.

2. Detection of NetStumbler Signature

This scheme relies on the discovery of specific behaviors of NetStumbler to differentiate

intruders from valid clients. As documented in a paper by Josh Wright, “NetStumbler

will probe a discovered AP for its nickname information” [22]. This results in a

ECE 4006 Wireless Intrusion Detection and Response Group 2

 50

LLC/SNAP frame transmitted immediately after the client transmit a probe request frame

and receives a probe response. Josh Wright further explains that this second packet

contains unique signatures that have been deliberately included in by the creators of

NetStumbler. For example, NetStumbler version 3.2.3 will have “All your 802.11b are

belong to us” in the packet. The downside of this algorithm is that this signature changes

in every release version of NetStumbler. In addition to this, users who are aware of this

hidden feature have tried to defeat this signature by modifying the binary file so that

NetStumbler transmits a different signature. This scheme is also not general purpose. Its

success depends on the ability to document signatures of every wireless network

detection program that exists.

3. Predefining List of Valid MAC Addresses

The final scheme that was considered is the specification of a list of MAC addresses that

are valid when the IDS is initially deployed. The IDS would then check this list every

time a probe request is received. If the request originated from a client that is not on the

list, the system would flag this client as a NetStumbler. This scheme is effective because

differentiation of valid clients and WarDrivers is handled entirely by the network

administrator. The chance of misidentifying a valid client as a NetStumbler is virtually

zero as long as the network administrator updates this list every time a new client is

present. However, the downside of this scheme is that the network administrator needs to

take a very active role in maintaining the IDS system. This scheme is also not practical in

large installations where users frequently bring in their own wireless cards without

informing the administrator. Finally, this scheme can also be defeated by changing the

MAC address of the WarDriving computer to one of the valid MAC addresses.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 51

 After a thorough evaluation of all suggested NetStumbler detection algorithms, we chose

to implement detection of NetStumbler based on the frequency of scanning. We chose this

algorithm over other options because it is very general purpose and even works on other

WarDriving clients. Furthermore, this scheme requires minimal maintenance from the network

administrator, compared to the third scheme. During the process of implementing this detection

algorithm, we also thought of a method to avoid misidentifying valid clients. This method

overcomes this pitfall by monitoring whether clients that transmit probe requests actually go all

the way to authenticate and associate with the access point. Clients that successfully associate

with the access point are deemed valid clients because they successfully authenticated with the

access point. This process can only be accomplished if the client knew parameters that are

specific to the network such as the SSID and the WEP key of the network.

Algorithm Details

Figure 7.1.1 is a flowchart of the general flow of our algorithm used for tracking probe

requests coming from multiple clients, isolating clients running NetStumbler, and updating of

internal data structures.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 52

 The algorithm shown above can handle probe requests from several clients. If a client

sends multiple probe requests in a certain period of time, it is identified as an active

NetStumbler. The threshold for receiving probe requests can be set by the user via the UI. Once a

probe request is received, it is checked to see if it has exceeded the threshold limit. If the

threshold has been exceeded, the MAC address of the device is sent to the Active scan list, and

active countermeasures are scheduled. This means that the device has been identified as an active

NetStumbler. If the threshold has not been met, the statistics for the MAC address are updated

and stored in the table. Active NetStumblers and legitimate users authenticating are both stored

in the same hash table. Figure 7.1.6 describes the state machine that was designed to track the

authentication process of wireless clients with access points. A client that passes all the way to

the last state will not be considered as a NetStumbler. Note that the default transition for the state

machine is to reset back to the “Unauthenticated Client” state.

Figure 7.1.1. Flowchart of NetStumbler detection algorithm.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 53

Data Structure

 A hash table is maintained to store data about each client that transmits probe requests.

The hash table is keyed by the last 6 bits of the last byte in the client’s MAC address. Figure

7.1.2 lists the data structure that is used to store client information.

NetStumbler Detection Walkthrough

 Figure 7.1.3 is a general flow chart of the algorithm used for NetStumbler detection.

/* data structure for storing details of each client that sent probe requests*/
typedef struct ClientData_t{
 u8 addr[6]; /* mac addr of client */
 u32 first_sampled; /* first time spotted client */
 u32 last_sampled; /* last time probe request seen from client */
 u32 active_eval_start; /* time where we are starting to evaluate frequency

of probes */
 int total_count; /* total number of probe requests */
 int current_count; /* number of probe requests that are being used for

active scanning detection */
 u8 status; /* status of client */
 u8 auth_state; /* used to store state of client authentication

with access point */
 struct ClientData_t * next;
 struct ClientData_t * previous;
} ClientData;

Figure 7.1.2. Client information data structure in ids.c.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 54

In our IDS, all packets pass through handle_wlansniffrm() where the packet

headers are parsed to determine the type of the packet. The frame control field of the received

packet is first extracted by casting the received packet from the Media Access Controller into a

hfa384x_rx_frame. The various headers in the MAC frame such as signal strength and

signal to noise ratio are discarded. Only the payload of the MAC frame, which is an 802.11b

frame is considered. Figure 7.1.4 lists an excerpt from handle_wlansniffrm() that

processes each packet based on its type.

Figure 7.1.3. Flow chart of the NetStumbler detection
process.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 55

As indicated at line 3, all packets that are not management frames are automatically

discarded because our IDS only monitors management frames for suspicious activity. At line 7,

the program enters a big switch statement with case statements for every possible type of

management frame. Within each management frame, handlers associated with the frame type are

called. For example, handle_detection() is called if a probe request is seen because this

function relies on counting the number of probe requests from each client as a means of

 1. /* if not management type, just return */
 2. /* we are only interested in management frames */
 3. if (WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_MGMT) {
 4. return;
 5. }
 6. /* check whether I received a probe request */
 7. switch(WLAN_FC_GET_STYPE(fc)) {
 8. case WLAN_FC_STYPE_PROBE_REQ:
 9. {
10. ClientData * current;
11. /* call handle_detection who will look up the database and
identify
12. * whether this client is a netstumbler */
13. if ((current = handle_detection(frm)) != NULL) {
.
.
.
 break;

 /* the code from here onwards handles the state machine that detects
 * clients authenticating with the access point and automatically
 * removes the client from the Netstumbler list */

 case WLAN_FC_STYPE_ASSOC_RESP:
.
.
.
 break;
 case WLAN_FC_STYPE_ASSOC_REQ:
.
.
.
 break;
 case WLAN_FC_STYPE_AUTH:
.
.
.
 break;
 }

Figure 7.1.4. Code listing indicating 802.11b header parsing. Dots indicate that actual code
has been removed.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 56

identifying NetStumblers. The other management frames are monitored so that the IDS can

follow the authentication/association state machine that a client undergoes and remove the client

from the NetStumbler list if the client successfully associates with the access point. Figure 7.1.5

handles the detection of NetStumblers.

The IDS first calls getHashTable() with the MAC address of the client that sent the

probe request to check whether the client already has an entry in the hash tables. If an entry is not

 1. current = getHashTable(frm->addr2);
 2. if (current != NULL) {
 3. current->total_count++;
 4. current->last_sampled = now.tv_sec;
 5. if (current->status & CLIENT_STATUS_ACTIVE) {
 6. /* was active, should be doing some countermeasures here */
 7. } else {
 8. /* not active */
 9. current->current_count++;
10. if ((now.tv_sec - current->active_eval_start) < 10) {
11. if (current->current_count > detect_thresh) {
12. current->status |= CLIENT_STATUS_ACTIVE;
13. }
14. } else {
15. current->active_eval_start = now.tv_sec;
16. current->current_count = 0;
17. }
18. }
19. } else {
20. if (numClients == MAX_CLIENTS) {
21. /* tables full */
22. } else {
23. if ((current = malloc(sizeof(ClientData))) == NULL) {
24. printf("Malloc failed\n");
25. return NULL;
26. }
27. memcpy(current->addr, frm->addr2, ETH_ALEN);
28. current->status = 0;
29. current->auth_state = 0;
30. current->last_sampled = now.tv_sec;
31. current->first_sampled = now.tv_sec;
32. current->active_eval_start = now.tv_sec;
33. current->total_count = 1;
34. current->current_count = 1;
35. if (addHashTable(current) == 0) {
36. }
37. }
38. }

Figure 7.1.5. Code listing extracted from handle_detection().

ECE 4006 Wireless Intrusion Detection and Response Group 2

 57

found, the program proceeds to allocate a new data structure at line 23 and initializes the data

structure to an initial state from lines 27 to 34.

 If an existing entry was found, the program immediately updates the probe request count

for this client and updates the timestamp of when the last probe request was detected from this

client. If this client was not a NetStumbler, the IDS also increments current_count. This

variable is a count of probe requests received in a period of ten seconds. It gets reinitialized to

zero at line 16 if after ten seconds, the client still had not exceeded the probe request threshold.

At line 11, if the evaluation time has not exceeded ten seconds and the number of probe requests

received from the client has already exceeded the threshold, the CLIENT_STATUS_ACTIVE

NetStumbler bit is set to indicate that this client was a NetStumbler.

Authentication and Association State Machine Code Walkthrough

 Figure 7.1.6 is a flowchart of the state machine that is used to trace a client’s association

and authentication with an access point. The state based tracking is implemented entirely within

the case statements in handle_wlansniffrm() that decodes the 802.11b management

frames. Each client’s state is maintained using a variable that is stored together with NetStumbler

detection data structures. Because of this, the first thing that is done when an authentication and

association type management frame is received is to call getHashTable() to determine

whether the client is already in the hash table and also the client’s current state.

 Tracing through the authentication and association state machine is fairly simple. The

only critical thing is to carefully make sure each packet is valid by checking whether details such

as the SSID and the MAC address of the access point that the client is communicating with is

valid. This is just to ensure that any potential attacker did not try to fool our state machine by

generating their own authentication and association packets. As indicated by the final process in

ECE 4006 Wireless Intrusion Detection and Response Group 2

 58

the flowchart, a client is automatically removed from NetStumbler lists if it goes through the

whole state machine.

 The reader is directed to refer to the handle_wlansniffrm() function that is

documented in the appendix for details on the implementation. The code is well documented and

should be easy to follow.

Unauthenticated Client

Received Authentication
Request

Authentication Pending

Authenticated

AP Transmits Authentication
Response

Client Transmits
Association Request

Association Pending

AP Transmits
Association Response

Authenticated Client
Removed from Active Scan List

Figure 7.1.6. Authentication-Association state machine.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 59

7.2 Counter Measures

7.2.1 Fake Probe Responses

Another way of confusing a potential network intruder is transmit fake probe responses.

A fake probe response is sent only after a probe request is received from an already established

NetStumbler. A list of active APs is maintained rather than generating random MAC addresses.

The fake MAC addresses are also devised to look similar to MAC addresses of existing network

cards. Hence, the NetStumbler sees a small number of intermittently active APs rather than a

large number of fake APs which are active no more than once. This strategy will confuse a

WarDriver since it would be difficult to differentiate the actual active AP from the bogus APs.

To add to the confusion, the product periodically transmits fake probe responses with the

MAC address of the active AP but at random channels. This is so that even if the intruder can

determine the actual network, he/she will still be confused as to which channel the actual

network is on. These fake probe responses of the actual AP are only transmitted to clients that

have been established as NetStumblers so as to allow valid clients to connect to the network.

By transmitting probe responses on all channels, it would appear to NetStumbler as if the

APs seem to exist on all 11 channels at the same time. Since the physical channel needs to be the

same as the channel specified within the probe response frame, the AP has to hop frequencies

itself to send probe responses on those channels (i.e. we can’t stay on channel 11 while

transmitting probe responses at different channels, the card has to hop to the same channel that

the probe response is destined for). A disadvantage of this is that any packets being sent by

active users on the real channel may be lost while hopping.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 60

Figure 7.2.1.1 below shows the anatomy of a probe response frame:

Fake Access Point Data Structure

 The list of fake access points is maintained as a static array of BogusAP data structures.

Figure 7.2.1.2 displays the data structure declaration for BogusAp.

 Two significant items that are stored in the data structure is the SSID of the fake AP and

the MAC address. Only these two fields are required because other information like the access

point’s channel can be generated randomly. In the case of our IDS, the current channel that the

card is on determines which channel the fake access point will reside on.

Code Walkthrough

 Implementation of fake probe responses depend on two components: generation of probe

response packets and channel hopping. Channel hopping is a critical component of fake probe

 1. typedef struct BogusAp_t {
 2. u8 addr[6]; /* mac addr of bogus AP */
 3. char ssid[10];
 4. char ssid_len;
 5. char state; /* zero if free, non zero if allocated */
 6. } BogusAp;

Figure 7.2.1.2. Data structure declaration of BogusAp.

Figure 7.2.1.1. Probe Response Frame Anatomy

ECE 4006 Wireless Intrusion Detection and Response Group 2

 61

responses because probe responses need to contain the same channel that they are physically

transmitted out on. Figure 7.2.1.3 illustrates the flow of the probe response generation algorithm.

As indicated in the flowchart, probe response transmissions are only initiated by

reception of probe requests because wireless clients only actively listen for probe responses in

active scan mode which is initiated by transmission of a probe request. This means that there is

no point in transmitting out probe responses arbitrarily until a probe request is seen. After a

request is received, the IDS checks whether the user has chosen to disable fake probe response

transmission by checking the state of the enable_fake_ap variable.

 The algorithm then checks whether the current client is a NetStumbler. If this is true and

the randomization routine yields a particular result with ¼ probability, a probe response or a null

SSID probe response is then prepared. Our IDS only transmits probe responses mirroring the

actual access point if the client is an established NetStumbler because we would not like to

Figure 7.2.1.3. Flowchart of fake probe response scheduling.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 62

confuse valid clients that are trying to connect initially. We only add randomization to the

channel of the actual access point after we have established that the client is a NetStumbler.

 Our IDS then goes through the array of BogusAp structures, looking for an entry that is

valid. Once a valid entry is found, the parameters are passed to send_response() which

forms the packet and sends it out. It then saves the pointer to the last fake access point that was

transmitted so that the next time a fake probe response is scheduled, the algorithm would

transmit out a fake probe response corresponding to the next access point on the list. Fake probe

responses are thus transmitted out by the IDS in a round robin fashion.

 Figure 7.2.1.4 is a code listing extracted from handle_wlansniffrm() that goes

through the BogusAp list, searching for a valid entry to transmit in a round robin manner.

curBogusAp is a pointer to the last fake access point that was used. Since it is a round

robin scheduling algorithm, it first checks whether this pointer has exceeded the maximum

number of items in the array (line 1). The loop at line 4 then linearly searches through the list for

the next entry that is valid. If a valid entry is found, the details from the table are then extracted

and passed to send_response() to frame a probe response packet.

 1. if (curBogusAp >= MAX_BOGUS_AP)
 2. curBogusAp = 0;
 3. /* advance to valid entry */
 4. while (bogusAp[curBogusAp].state == 0 &&
 5. curBogusAp < MAX_BOGUS_AP) {
 6. curBogusAp++;
 7. }
 8. i = curBogusAp;
 9. /* if entry is valid */
10. if (i < MAX_BOGUS_AP) {
11. /* send out the bogus response */
12. send_response(hapd, frm->addr2, bogusAp[i].addr,
13. bogusAp[i].ssid, bogusAp[i].ssid_len,
14. hop_channel);
15. }
16. curBogusAp++;

Figure 7.2.1.4. Code from handle_wlansniffrm() demonstrating selection of fake access
point.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 63

 Figure 7.2.1.5 is a code listing of the send_response() function. As indicated in the

function header, this function expects a pointer to a hostapd structure. The data in this

structure is used to get access to the socket index used for transmission. The function also

expects to receive a pointer to the destination MAC address, the SSID of the probe response

packet, the number of bytes in the SSID, and the channel that the access point is supposed to be

on. In our code, all calls to send_response() have the temp_channel parameter set to

hop_channel so that there is no overhead of channel switching to transmit the probe response

packet since hop_channel is the current channel.

 The function first casts the packet scratchpad (sbuf) into an ieee80211_mgmt data

structure so that all the fields in the 802.11b packet can be accessed easily. At line 7, the packet

type is set to a management type with the probe response bit set so that the packet would appear

as a probe response. The addresses of the source and destinations are then filled in at line 9 to 10.

The capability field is then filled in so that the probe response would appear to be coming from

an access point that implements WEP encryption.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 64

At line 7, the SSID tagged parameter is prepared. First the tag identification is filled in so

that the wireless card receiving the packet knows that the tag that follows is a SSID tag. The

SSID and SSID length are filled into the packet based on the parameters that were passed in.

1. void send_response(hostapd * hapd, char * dest, char * bssid,
2. char * ssid, char ssid_len, char temp_channel) {
3. struct ieee80211_mgmt * mgmt = (struct ieee80211_mgmt *) sbuf;
4. char extra_len;
5. char * p;
6. memset(sbuf, 0, sizeof(sbuf));
7. mgmt->frame_control = IEEE80211_FC(WLAN_FC_TYPE_MGMT,
8. WLAN_FC_STYPE_PROBE_RESP);
9. memcpy(mgmt->da, dest, ETH_ALEN);
10. memcpy(mgmt->sa, bssid, ETH_ALEN);
11. memcpy(mgmt->bssid, bssid, ETH_ALEN);
12. mgmt->u.beacon.beacon_int = 0x0064;
13. mgmt->u.beacon.capab_info = 0x0011;/* WEP enabled, station is AP */
14. extra_len = sizeof(mgmt->u.probe_resp);
15. p = (char *) mgmt->u.probe_resp.variable;
16. /* tagged parameters follow */
17. *p++ = WLAN_EID_SSID;
18. *p++ = ssid_len;
19. memcpy(p, ssid, ssid_len);
20. extra_len += ssid_len + 2;
21. p += ssid_len;
22. /* fill in supported rates tagged parameter */
23. *p++ = WLAN_EID_SUPP_RATES;
24. *p++ = 4; /* len */
25. *p++ = 0x82; /* 1 Mbps, base set */
26. *p++ = 0x84; /* 2 Mbps, base set */
27. *p++ = 0x0b; /* 5.5 Mbps */
28. *p++ = 0x16; /* 11 Mbps */
29. extra_len += 6;
30. /* current channel */
31. *p++ = WLAN_EID_DS_PARAMS;
32. *p++ = 1; /* len */
33. *p++ = temp_channel;
34. extra_len += 3;
35. /* channel hop to newly selected channel only if different*/
36. if (temp_channel != hop_channel)
37. set_channel(hapd, temp_channel);
38. /* send it out */
39. if (send(hapd->sock, mgmt, IEEE80211_HDRLEN + extra_len,
40. 0) < 0)
41. perror("Unable to send response");
42. /* switch back to AP's current hop channel */
43. if (temp_channel != hop_channel)
44. set_channel(hapd, channel);
45. }

Figure 7.2.1.5. Code listing for send_response().

ECE 4006 Wireless Intrusion Detection and Response Group 2

 65

Next, at line 23, the supported transmission rates of the access point are filled in. In this case, we

have chosen to support all possible rates. Throughout generation of these packets, the

extra_len variable is used to keep track of the size of the packet. Later, at line 39, this

variable is passed as a variable to send() so that this function knows how many bytes are

contained in the packet. At line 31, the channel of the fake access point is specified.

 Before the packet is transmitted, the IDS first checks whether the card is currently on a

different channel at line 36. This check is carried out because we noticed that probe responses

that claimed to be from channels that are different from the physical channel usually get dropped

by the wireless card. At line 37, the program hops to a different channel if the requested channel

is different from the current channel. Finally, at line 39, the packet is transmitted out.

 Figure 7.2.1.6 lists the code for periodic channel hopping.

 This code is contained within the infinite loop in the main() function. As such it is

continuously getting evaluated. The conditional statement at line 2 checks whether the user has

enabled channel hopping. If channel hopping is enabled, the conditional statement will also

check whether more than one second has elapsed since the last channel hop. If this is true, the

code updates the timestamp and increments hop_channel at line 4. If this variable exceeds the

maximum number of channels, the program resets the channel back to channel 1. Finally,

set_channel() is called with the new channel passed as a parameter. This function then executes a

wireless ioctl to change the channel.

 1: /* check if its time to hop channels */
 2: if ((enable_hop) && (now.tv_sec - last_hop) > 1) {
 3: last_hop = now.tv_sec;
 4: hop_channel++;
 5: if (hop_channel > 11) hop_channel = 1;
 6: set_channel(&hapd, hop_channel);
 7: }

Figure 7.2.1.6. Code listing implementing channel hopping extracted from main().

ECE 4006 Wireless Intrusion Detection and Response Group 2

 66

7.2.2 AirSnort Spoofing

 One of the fundamental problems with 802.11b is the weakness of the RC4 key

scheduling algorithm used in WEP encryption [10]. By collecting enough samples of WEP

encrypted packets with weak I.V. flags, it is possible to determine the WEP key that was used to

encrypt the packets. The reader is directed to read [10] for a detailed discussion of the cracking

algorithm. This effectively nullifies any security features of 802.11b because once the WEP key

is discovered, the attacker would be able to listen to all traffic transmitted on the wireless

network just like an Ethernet card connected to an Ethernet segment. The vulnerability is even

more attractive to hackers because they are able to passively listen to all network traffic from a

distance.

 Since the discovery of the weakness, several 802.11b manufacturers have developed

newer firmware that would avoid transmission of packets with weak I.V. flags. Although this

apparently fixes the problem, all it takes for this scheme to fail is a single user on the network

using a wireless card that still transmits WEP encrypted data packets with weak I.V. flags. In a

big enterprise network, this is a very real threat since it is impossible for a network administrator

to ensure that every single user uses updated firmware.

 To date, two open source programs for cracking WEP keys have already been developed.

WEPCrack was the first tool to be released to the public. AirSnort was later released with a

better and wider weak I.V. flag pool and a highly intuitive graphical user interface. AirSnort

claims to be able to discover the WEP key of a wireless network in under a second after

gathering approximately 5 million to 10 million encrypted packets. This estimate could be much

lower if the attacker happened to start passively listening when one of the cards on the network

was transmitting data packets in the weak I.V. flag range. The amount of packets required to

ECE 4006 Wireless Intrusion Detection and Response Group 2

 67

discover a WEP key is also dependent on the WEP key length. Therefore the key for a wireless

network utilizing 64-bit WEP encryption would be discovered much faster than a wireless

network utilizing 128-bit WEP encryption. Although the amount of packets required might be

discouraging, the threat is still real because a determined hacker with equipment such as

parabolic antennas and amplifiers could easily collect the required amount of packets from a

distance in under a week.

AirSnort Countermeasure

 WEP cracking activity is entirely passive. All the attacker needs to do is to set the

wireless card to the RF Monitor mode and collect packets with weak I.V. flags. Because of this

passive nature, it is impossible to detect the presence of this activity on the network. A recent

spike of NetStumbling activity which can be detected using our product could serve as an

indicator that the network has been discovered and the attacker might be in the second stage of

his/her attack, trying to determine the WEP key of the network.

 In order to defend against this type of attack, we have chosen to periodically transmit

fake WEP encrypted data packets with I.V. flags that appear interesting to AirSnort. The purpose

of this is to pollute the data pool that is analyzed by AirSnort. We have chosen to focus our

attention on AirSnort instead of WEPCrack because AirSnort is more commonly used. The

fundamental algorithm of both applications are also very similar, hence a countermeasure

devised for AirSnort should work equally well for the other application.

Analyzing AirSnort

 Our first task was to determine how AirSnort determines whether a data packet possesses

a weak I.V. flag. This involved tracing the path of a packet through the AirSnort program. Table

ECE 4006 Wireless Intrusion Detection and Response Group 2

 68

7.2.2.1 is a list of the functions that a packet passes through and a general overview of what

occurs.

From the analysis of the packet flow through AirSnort, we came up with a few

observations that would proof that our spoofing algorithm works. They are:

a) I.V. flag only logged once

In the addSample() function, the I.V. of the packet that is passed in is checked

with the list of I.V. flags that has already been sampled. If it is a duplicate, AirSnort

Table 7.2.2.1. Packet path through AirSnort.
File / Function Description
Capture.c/packet() This is the main packet capture thread. It looks at the type field

of each packet and isolates data packets. Unencrypted packets
are discarded. Encrypted packets are passed further down.

bssidlist.c/addPacket() Determines BSSID of encrypted packet and finds the
corresponding internal data structure for the access point. Passes
the packet further down if the corresponding access point was
detected to be using WEP.

Packet.c/enqueuePacket() Waits for packet decryption semaphore to be released and adds
the packet to the decryption queue.

crack.c/cracker() This is the main WEP cracking thread. It sleeps until it received
a signal from the capture thread that more encrypted packets are
available. Dequeues all packets from the decryption queue
passes each packet further down.

crack.c/addCrackPacket() Checks whether packet that was passed in was NULL. This is
used as a signal from the GUI to the backend to stop cracking
this particular access point. If it was not NULL, the function
passes the packet further down.

crack.c/addSample() Checks whether the I.V. flag of this packet has already been
logged. Discards new packets with duplicate I.V. flags. Passes
the packet further down otherwise.

crack.c/classify() Returns the index of the WEP key byte that the I.V. flag of this
packet could be used to resolve. This is the function that
determines whether the packet posses a weak I.V. flag.

crack.c/addSample() Returns from classify(). If index was non-negative, updates a
linked list of sampled encrypted data corresponding to a WEP
key byte index.

crack.c/cracker() If the current access point has not been cracked yet, and there
are new interesting packets available, attempt to crack the WEP
key at 64 bits and 128 bits.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 69

automatically discards the packet. This is a good point for our algorithm because all we

need to do is to randomly generate I.V. flags. As long as our I.V. flag is the first one to be

seen by AirSnort, we are assured that any future valid packets on the network with the

similar I.V. flag will not be sampled by AirSnort. This greatly simplifies the algorithm

and reduces memory requirements because the algorithm does not need to constantly

monitor all encrypted packets to check if a weak I.V. flag has been transmitted and to

consequently transmit out a fake WEP encrypted data packet with the same I.V. flag.

b) WEP Cracking is terminated once a WEP key is guessed

In the addCrackPacket() function, the cracking thread ceases to crack new

packets associated with an access point after a key has been guessed. The cracking thread

is signaled by the graphical user interface to stop cracking the WEP key by the queuing

of a null packet. This means that AirSnort will stop capturing interesting packets

including valid interesting packets after the key has been guessed. AirSnort’s behavior

complements our spoofing algorithm because our algorithm will generate weak packets

much faster than a real network and reduce the time before AirSnort stops sampling data

corresponding with the wireless network. In the real world, a hacker leaving AirSnort

running on a hidden computer will be disappointed when he/she comes back a few hours

later only to discover a WEP key that does not work and also lack any extra data samples

to analyze since AirSnort stopped sampling data when the fake key was guessed.

 The discovery of both of these behaviors assured us that our initial algorithm design will

work against AirSnort and effectively thwart the casual attackers’ efforts in gaining the WEP key

of the wireless network.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 70

AirSnort’s Definition of Weak Packets

 As listed in Table 7.2.2.1, the function that is responsible for deciding whether a data

packet possesses a weak packet is the classify() function. Figure 7.2.2.1 is a listing of the

code for this function.

According to line 4 in the code listing, AirSnort looks for I.V. flags which contain a 255

in the second byte. In addition to this, it also isolates out I.V. flags that have first bytes between 2

and 16. If this criteria matches, classify() returns an index to a WEP key byte

corresponding to the value in the first byte reduced by three. This will effectively return up to 13

locations which is the amount of bytes in a 128-bit WEP key. Note, a 128-bit key only needs 13

x 8 bits = 104 bits to specify the WEP key since the remaining 24-bits are specified by the 3 byte

I.V. flag. The other checks from line 7 to line 19 are meant to catch other obscure I.V. flags. The

function finally returns a ‘-1’ if none of the conditional expressions match.

 1: // determine which key byte an iv is useful in resolving
 2: int classify(unsigned char *p) {
 3: unsigned char sum, k;
 4: if (p[1] == 255 && p[0] > 2 && p[0] < 16) {
 5: return p[0] - 3;
 6: }
 7: sum = p[0] + p[1];
 8: if (sum == 1) {
 9: if (p[2] <= 0x0A) {
10: return p[2] + 2;
11: }
12: else if (p[2] == 0xFF) {
13: return 0;
14: }
15: }
16: k = 0xFE - p[2];
17: if (sum == k && (p[2] >= 0xF2 && p[2] <= 0xFE && p[2] != 0xFD)) {
18: return k;
19: }
20: return -1;
21: }

Figure 7.2.2.1. Code listing of AirSnort’s classify() function.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 71

 In our AirSnort spoofing algorithm, we chose to randomly transmit fake encrypted

packets according to the criteria described on line 4 instead of including the other cases because

this case is very straightforward and can be used to potentially generate up to 13 * 256 = 3328

weak I.V. flags which is more than sufficient to spoof AirSnort (this value was selected based on

the possibility of choosing 13 values in the first byte and 256 values in the third I.V. byte).

AirSnort Spoofing Code Tour

 Basically, the AirSnort spoofing algorithm works by transmitting out a fake encrypted

packet every 10 seconds. The packet is transmitted with a BSSID that matches the actual BSSID

of the wireless network so that AirSnort will automatically group this fake packet with other

valid packets. Figure 7.2.2.2 lists the code in the “main” function of ids.c which determines

whether a fake encrypted packet is to be transmitted.

The program first checks whether the option to transmit fake WEP encrypted packets has

been enabled by checking the enable_bogus_wep variable. It then compares the current time

with the last time a fake packet was transmitted (stored in last_fake_ap) to determine if the

time difference is greater than 10 seconds. After this, the program only calls

send_encrypted() to perform transmission of an encrypted packet if the card has hopped to

 1: gettimeofday(&now, NULL);
 2: /* check whether its time to transmit out another bogus data */
 3: if (enable_bogus_wep) {
 4: if ((now.tv_sec - last_fake_data) > 10) {
 5: /* only transmit if hop_channel is main channel */
 6: if (hop_channel == channel) {
 7: send_encrypted(&hapd);
 8: last_fake_data = now.tv_sec;
 9: #ifdef DEBUG_IDS
10: printf("Sent fake encrypted\n");
11: #endif
12: }
13: }
13: }

Figure 7.2.2.2. Code excerpt of ids.c / main() for scheduling of fake packet transmissions.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 72

the main channel of the wireless network. Hence, the program might not transmit out the fake

packet even though the 10 second time limit has elapsed. It waits until the channel hopping

routine swaps the channel back to the main channel. The purpose of doing this is to avoid

unnecessary changing of channels on the card. Whenever a channel is changed, there is a certain

amount of latency before the card is able to begin transmission of data on the new channel.

According to our observation, if send_encrypted() was called immediately after the

channel was switched, the packet does not get transmitted. This delay does not affect the

effectiveness of our AirSnort spoofing algorithm because transmission of fake encrypted packets

in our algorithm is not time critical.

 Figure 7.2.2.3 lists the code for the send_encrypted() function.

sbuf in line 3 is a common array of characters that is statically declared at the top of the

file. It is used by all packet construction functions as a “scratchpad” for packet framing. We

chose to statically declare this “scratchpad” instead of locally declaring a buffer in each function

 1: /* sends an encrypted data frame out */
 2: void send_encrypted(hostapd * hapd) {
 3: struct ieee80211_data * data = (struct ieee80211_data *) sbuf;
 4: static u8 seed;
 5: seed++;
 6: memset(sbuf, 0, sizeof(sbuf));
 7: data->frame_control = 0x4208; /* DATA type, WEP enabled */
 8: memset(data->da, 0xff, ETH_ALEN);
 9: memcpy(data->bssid, apaddr, ETH_ALEN);
10: memcpy(data->sa, apaddr, ETH_ALEN);
11: data->iv[0] = (my_random() % 13) + 3;
12: data->iv[1] = 0xff;
13: data->iv[2] = seed;
14: data->key = 0;
15: data->data = my_random();
16: if (send(hapd->sock, data, sizeof(struct ieee80211_data), 0) < 0)
17: perror("Unable to send bogus packet");
18: }

Figure 7.2.2.3. Code listing of ids.c / send_encrypted().

ECE 4006 Wireless Intrusion Detection and Response Group 2

 73

to avoid the overhead of stacking and unstacking the buffer every time a packet is to be

constructed.

 In line 3, the “scratchpad” buffer is cast into an ieee80211_data struct. Please refer

to the full code listing of ids.c in the appendix for the definition of this data structure. A static

seed variable is also declared in this function which gets incremented every time this function

gets called. This variable is used to provide an incrementally increasing value for the third byte

of the I.V. flag. Before the ieee80211_dat” struct is filled in, the whole structure is first

initialized to zero on line 6. The frame control for this packet is then filled in such that the type

field is set to “data” while the WEP flag is set so that the packet would appear as an encrypted

data packet to AirSnort. The destination address is then arbitrarily filled with any value on line 8

because this field is not considered by AirSnort. The BSSID field is then filled with the BSSID

of the actual wireless network so that AirSnort considers this packet together with other packets

that have been collected from the actual network. Next, the source address is filled with an

arbitrary value, in this case, we conveniently chose to set the source address to the same address

as the BSSID.

 Lines 11 to 13 function to fill in the I.V. flag fields of the data packet. In order to meet

AirSnort’s criteria for weak I.V. flags, the first byte is filled with a random value between 2 and

16 while the second byte is filled with a 0xff. The third byte is filled using the incremental value

of seed as described earlier. Finally the data field is filled in with one random byte. Only one

byte is required because that is all that is stored by AirSnort. Extra bytes were also not added to

minimize the possibility of a wireless adapter interpreting this fake data packet as a valid one.

Note that other fields like seq_ctrl and duration were not filled in because these fields are

handled by the firmware. Any values filled into these fields will be overwritten.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 74

7.2.3 Denial of Service Attack

 In the course of the development of our fake access point probe responses, we

accidentally stumbled on an 802.11b denial of service attack. This attack involves transmission

of probe responses with null and zero-length SSID. On cards that are susceptible to this attack,

the wireless network adapter would stop working until the card is reinserted. On some operating

systems, the problem can only be rectified by a system reboot. On these operating systems, the

GUI would also start acting sluggish.

Cards that are Susceptible

 So far, we have verified that the attack works on cards that are based on the Hermes

chipset and Prism 2/2.5. Here is a list of cards that we tested and the effects that were observed.

1) Linksys WPC11 running Host AP drivers in Linux

Driver stopped responding to iwconfig commands. Could not associate with any access

points. Required card reinsertion.

2) Linksys CompactFlash 802.11b on Sharp Zaurus

Driver stopped responding to iwconfig commands. Required card reinsertion.

3) Lucent Orinoco Gold on Windows 2000

NetStumbler program and site monitor hung. System started acting sluggish. Physical

reinsertion of card did not rectify the problem. Required rebooting.

4) D-Link CompactFlash 802.11b on Pocket PC 2002

Card stopped responding. Reinsertion of card did not fix it. Rebooting of system did not

work because card immediately sent out probe request as soon as system booted up.

5) Dell TrueMobile 1150 on Windows 2000

ECE 4006 Wireless Intrusion Detection and Response Group 2

 75

NetStumbler program and site monitor hung. System started acting sluggish. Physical

reinsertion of card did not rectify the problem. Required rebooting.

Implementation Details

As mentioned in the 802.11b introduction section of this report, probe responses contain

a variable list of tagged parameters after the initial probe response header. Each tagged

parameter consists of three standard fields which are:

• Tag ID: (example: SSID, channel, transfer rates)

• Tag Length

• Tag Data: (example "GTwireless" (SSID), 11 (channel))

In the null SSID DoS attack, the Tag ID needs to be set to WLAN_EID_SSID which

correspond to a byte value of 0. The tag length corresponding to this tagged parameter then

needs to be set to 0. Finally the tag data should be null. That means that the next tagged

parameter should follow or the end of the packet should follow. Figure 7.2.3.1 shows a packet

capture of a null SSID probe response.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 76

The SSID tagged parameter is highlighted by the cursor in the screen capture. The

corresponding byte in the packet is highlighted at the bottom panel of the window. Following

this byte is the tag length which is set to zero. Notice how “Tag Interpretation” in the SSID

tagged parameter is left blank. Also in the bottom pane, the byte after tag length is “01” which is

Figure 7.2.3.1. Screen capture of Ethereal with null SSID probe response.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 77

the tag number for the next tagged parameter which is the “supported rates” parameter. This

demonstrates that the entire tag payload is not present in the packet.

It would seem like this specific tagged parameter settings would be interpreted as a probe

response from an access point which did not want to report its SSID. In fact this was exactly

what we were trying to do when we discovered the attack. We were trying to transmit probe

responses that had the same MAC address as the real access point on the network but at random

channels. After further investigation, we discovered that this was not how access points masked

their SSIDs. Instead of setting the tag length to zero, they actually set it to 1 and transmit out an

ASCII space character.

Limitations

 This attack only works on cards that are doing active scanning since the wireless adapters

do not interpret probe responses unless they are actively looking for probe responses. Therefore,

it does not allow an attacker to arbitrarily disable a wireless client any time. However, it could be

possible to force the client to enter into a state where active scans are required. One example of

this is to transmit a false deauthentication request to the client, forcing it to automatically

reconnect by first scanning for new access points.

 The attack also does not seem to work with newer chipsets. For example, when testing

the attack against a D-Link adapter with the Prism 3 chipset on Windows XP, the attack did not

cause any harmful effects.

Effectiveness against NetStumbler

 Our attack is highly effective against wireless clients that are running NetStumbler since

this utility relies on active scanning to detect wireless networks. This DoS attack, coupled with

ECE 4006 Wireless Intrusion Detection and Response Group 2

 78

NetStumbler detection complement each other very well. NetStumbler detection provides a

means to differentiate between friendly and hostile clients; we then employ the denial of service

attack to snub out active scanners that have been determined as hostile. Furthermore, since the

IDS remembers previous NetStumblers, the next time this client approaches the area for more

reconnaissance work, his/her card will be immediately disabled.

 Here is a typical scenario of what a hacker would face with our intrusion detection in

place and denial of service enabled. The WarDriver initially drives by with NetStumbler actively

scanning. It immediately detects a probe response from the actual access point, however this

valid probe response is made obscure by the presence of other fake probe responses transmitted

by the IDS. The IDS identifies this client as a NetStumbler and immediately transmits out a null

SSID which the client happily accepts because it is in active scanning mode. This causes the

WarDriver’s network card to stall. If the WarDriver is inquisitive, he/she might return to the site

again to investigate the presence of so many access points with different SSIDs. As soon as the

first probe request is detected by the IDS from the hostile client, a null SSID probe response is

immediately sent out. This means that the hostile client will always crash from now on,

whenever it is in the area carrying out active scanning. The only way the attacker could do more

snooping here is to change the MAC address of the wireless card or revert to passive scanning.

 Although this DoS attack does not seem to work on all wireless cards, this does not

reduce the effectiveness of our DoS attack against NetStumbler because NetStumbler only works

on cards using the Hermes chipset. Based on our tests, all cards that had Hermes chipsets were

susceptible to the attack.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 79

Code Walkthrough

 Figure 7.2.3.2 is a flow chart of the algorithm for denial of service attack scheduling. As

illustrated in the diagram, transmission of the denial of service attack is only considered after the

IDS determines that a fake probe response needs to be transmitted. This means that the IDS just

received a probe request packet and should transmit out a response immediately since the

wireless client is in active scanning mode.

 The algorithm first checks whether the current MAC address matches a MAC address of

an established NetStumbler. If no match is found, a plain probe response from the list of fake

access points is transmitted, otherwise the algorithm decides whether it should transmit a probe

response of the actual access point but at different channels by using my_random(). Next, if

the denial of service option is enabled, it immediately transmits out the attack; otherwise it

transmits out a probe response that mirrors the actual access point.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 80

Figure 7.2.3.2. Flow chart of DoS attack scheduling.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 81

Figure 7.2.3.3 is a code listing extracted from handle_wlansniffrm()in ids.c

that demonstrates the bulk of the DoS scheduling algorithm.

As demonstrated on line 12, the code to send out a denial of service attack is as simple as

reusing the send_response() function which constructs probe response packets. Instead of

transmitting a SSID, a null string with 0 length is passed in to the function instead.

 1: if (enable_fake_ap) {
 2: /* if this client is an established netstumbler,
 3: * we want to send him fake probe response for the actual
 4: * AP but at different channels */
 5: /* do some randomization (1/4 chance) */
 6: if ((current->status & CLIENT_STATUS_ACTIVE) &&
 7: ((my_random() & 0x11) == 0x01)) {
 8: /* send out the response */
 9: if (enable_dos) {
10: /* if we are in DOS mode, send out malformed probe response
11: * causing 'certain' cards to hang */
12: send_response(hapd, current->addr, apaddr, "", 0, hop_channel);
13: } else {
14: /* send a plain probe response, with ssid field not filled in
15: * so as not to reveal the network's SSID. This response
16: * still pops up in Netstumbler at the same entry as the
17: * actual network */
18: send_response(hapd, current->addr, apaddr, " ", 1,
hop_channel);
19: }

Figure 7.2.3.3. Code listing from handle_wlansniffrm() demonstrating DoS
scheduling.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 82

7.3 User Interface

The entire system is controlled via a web-based user interface available only through the

wired Ethernet port. There is basic web server security and the administrator is required to enter

a username and password to view the pages.

General operation

The structure of the webpages is shown in Figure 7.3.2.

The webpages require a frame-capable browser. Also required is support for tables,

forms, and JavaScript. To access these pages, the user is required to perform a standard HTTP

log-in. The default username is “foo” and the password is “bar”. These should be changed as

soon as possible to secure the device. A screenshot of the initial password dialog can be seen in

Figure 7.3.1.

The menu options (visible in Figures 7.3.3 through 7.3.11) list the functions offered by

the IDS program. The following will describe the options in greater detail.

Figure 7.3.1. Password dialog.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 83

Figure 7.3.2. Structure of web interface.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 84

IDS Status (Figure 7.3.3) – This page displays whether the IDS is running or has been

stopped and provides a control to stop or start the IDS.

Set Time/Date (Figure 7.3.4) – The device does not have a battery-backed hardware clock

and thus needs to have its clock reset upon powering up. The clock is used for logging. The

options on this page allow the user to set the date and time separately.

Figure 7.3.3. IDS status.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 85

Wired Interface (Figure 7.3.5) – This page is for the user to change the settings of the

wired Ethernet port. Currently, the only setting available is the IP address used by the interface.

Figure 7.3.4. Setting of date and time.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 86

Wireless Interface (Figure 7.3.6) – The settings used here describe the wireless settings of

the base station that the device is monitoring. The user may configure the BSSID and channel

used by the base station and this information would be taken into account when countermeasures

are used against an attacker.

Figure 7.3.5. Wired interface configuration.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 87

Intrusion Detection (Figure 7.3.7) – Under this page is the list of MAC addresses that

made probe requests. The system can store up to 256 unique MAC addresses. The user is

presented with options to remove individual MAC addresses from the list or clear the entire list.

Other than the MAC address, the user may also see the first time it was detected, the last time it

was detected, the number of times it was detected, whether it is a NetStumbler client, and the last

detected authentication state.

Figure 7.3.6. Wireless interface configuration.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 88

Fake AP (Figure 7.3.8 and 7.3.9) – This section is divided into two pages. The first page

lists the fake access points that the appliance is emulating. The information includes both the

SSID and the MAC address. The second page allows the list of fake access points to be

modified. The user may add or delete individual entries and may also save and load the list to

flash memory.

Figure 7.3.7: Probe request list.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 89

 Figure 7.3.8: Fake AP list.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 90

Miscellaneous Options (Figure 7.3.10) – Miscellaneous options include options used by

the countermeasures system. Provided here are toggles for channel hopping, fake probe

responses, fake WEP encryption, and the denial-of-service response. Also available is a setting to

adjust the sensitivity of the NetStumbler detection algorithm.

Figure 7.3.9. Add a fake AP.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 91

Web UI Options (Figure 7.3.11) – The web server username and password is set through

this page.

Figure 7.3.10: Miscellaneous options.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 92

In most cases, the input required is self-evident to the user. The input boxes on all these

pages perform simple error checking to prevent out of range values from corrupting the system.

However, not much feedback is given to the user on what went wrong. This could be improved

upon in a future version of the product.

Technical operation

The web server is provided by a HTTPD module for BusyBox. This HTTPD module

provides basic web server functionality, including file permissions and a common gateway

interface (CGI). It was decided to leave the HTTPD code unchanged and instead develop a

separate CGI module that would provide the additional functionality we require.

Figure 7.3.11: Web interface options.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 93

In order to separate the data generation and the data presentation, the CGI module

implements a form of server-side include (SSI). These are simple markup tags that are present in

a special HTML file (extension .shtml). When the CGI program encounters one of these tags, it

substitutes it with the appropriate data, otherwise, the SHTML file is sent to the browser

unmodified as plain HTML. This means that the formatting and layout are expressed entirely by

the SHTML files. These files can be created and edited using standard HTML tools and the data

is provided “live” by the CGI program. To specify which file to use, the “file” attribute must be

set in the query string. For example, the list of probe requests (mac.shtml) would be viewed

using http://192.168.0.200/cgi-bin/client?file=mac.shtml. These are provided as links on the

front page of the UI so the user does not need to know the names of the files used. The pages

used are included in Table 7.3.1. These files have to be placed in the same directory as client (i.e.

/etc/www/cgi-bin). The source of these pages are listed in Appendix A.

SSI tags are limited to two uppercase characters prefixed by a string character (‘$’). This

was chosen to simplify the parser used. They are broadly divided into two classes – one set of

standard tags and another set of tags that apply to tabular data. The standard tags may occur any

Table 7.3.1: List of pages used by user interface.
SSI Page Filename
IDS status status.shtml
Set time and date datetime.shtml
Wired interface configuration wiredcfg.shtml
Wired configuration result wiredresult.shtml
Wireless interface configuration wireless.shtml
List of probe requests mac.shtml
List of fake APs fake.shtml
Adding a fake AP addfake.shtml
Results page result.shtml
Miscellaneous options options.shtml
Web interface configuration httpd.shtml

http://192.168.0.200/cgi-bin/client?file=mac.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 94

where else in the document except within special table tags. The standard tags are listed in Table

7.3.2.

The $AC and $RS tags are special tags that represent an action performed by the user and

the result of that action respectively. These tags are used in several instances, for example, when

a user deletes an entry from the probe request list or when the user changes the time. Table 7.3.3

lists the instances when $AC and $RS are used and what values they return. The actual

commands are discussed later in this section.

Table 7.3.2: SSI Tags
Tag Value
$TI System time
$DA System date
$IP IP address of the wired interface
$TS Timestamp to be used at the bottom of a page
$AC Action requested. See details below.
$RS Result of action. See details below.
$BS BSSID of wireless interface
$MC Channel of wireless interface
$ST IDS status (“Started” or “Stopped”)
$EH Channel hopping status (‘Y’ for enabled, ‘N’ for disabled)
$EP Fake AP status (‘Y’ for enabled, ‘N’ for disabled)
$EW Fake WEP status (‘Y’ for enabled, ‘N’ for disabled)
$ED DoS status (‘Y’ for enabled, ‘N’ for disabled)
$TH NetStumbler detection threshold (Probe requests per 10-second interval)

ECE 4006 Wireless Intrusion Detection and Response Group 2

 95

Several tags are reserved to delimit the start of tables (Table 7.3.4). Tables are used to

present multiple rows of data as is required for the list of probe requests and fake access points.

Different start-of-table tags delimit different tables and immediately following these tags would

Table 7.3.3: Instances where $AC and $RS tags are used.
Command Value of $AC Value of $AC
1 MAC of entry being removed, e.g.

“Removing AA:BB:CC:DD:EE:01”
“Success” or “Failure” respectively

2 MAC of entry being removed, e.g.
“Removing fake AP
AA:BB:CC:DD:EE:01”

“Success” or “Failure” respectively

3 MAC of entry being added, e.g.
“Adding AA:BB:CC:DD:EE:01”

“Success” or “Table Full”
respectively

4 Time being set, e.g. “Setting time: HR:
12 MIN: 18 SEC: 21”

Not used

5 Date being set, e.g. “Setting date:
YEAR: 100 MONTH: 11 DAY: 9”

Not used

6 IP address being set, e.g. “Setting IP to
192.168.0.200”

“SUCCESS”, “ERROR: Could not
open configuration file”, “ERROR:
Could not commit changes”, or
“ERROR: Invalid IP” respectively

7 “Removing all logs” “Success” or “Failure” respectively
8 BSSID being set, e.g. “Setting BSSID

to foobar”
“Success” , “Failure”, or “ERROR:
Could not commit changes”
respectively

9 Channel being set, e.g. “Setting
channel to 11”

“Success” , “Failure”, or “ERROR:
Could not commit changes”
respectively

10 Not used “SUCCESS” or “ERROR: Could not
start/stop IDS” respectively

11 “Setting options” “Success”, “Failure”, or “ERROR:
Could not commit changes”
respectively

12 “Saving fake AP list” If successful, the number of entries
wrote, e.g. “Success. Wrote 4
entries.” Otherwise “ERROR: Unable
to write list” or “ERROR: Unable to
commit changes” respectively

13 “Loading fake AP list” “Success” or “Failure” respectively
14 “Setting web interface username and

password”
“Success”, “ERROR: Could not write
to httpd.conf”, or “ERROR: Could
not commit changes” respectively

15 “Removing all fake AP” “Success” or “Failure” respectively

ECE 4006 Wireless Intrusion Detection and Response Group 2

 96

be the definition of a single row of the table. The row is then ended by the “$ET” tag. The CGI

program would duplicate the table row as many times as required. Within table tags, there are a

few specialized tags that may be used. Depending on what table it is, these tags represent

different data. The list of tags, what they represent, and their associated tables can be seen in

Table 7.3.5.

Actions are used on several pages to allow the user to interact with the system. These

commands are sent to the CGI program using a standard HTML form. Since HTTPD passes both

HTTP POST and GET queries identically through environment variables, either method can be

used in the form. The actions require a few standard variables to be set along with a few optional

parameters that vary with the action. Command codes themselves are passed using the command

attribute while other parameters are passed using their respective attributes. The standard

variables, action list and optional parameter list are listed in Tables 7.3.6, 7.3.7, and 7.3.8

respectively.

Table 7.3.4: List Generation Tags.
Tag Table
$TL List of probe requests
$TV List of valid MACs
$TF List of fake APs
$ET End of table

Table 7.3.5: Tags used in table entries and their associated tables.
Tag Table Value
$MA Probe request MAC of request originator
$FI Probe request Time the request was first seen
$LA Probe request Time the request was last seen
$TO Probe request Total number of times the request was seen
$NS Probe request ‘Y’ if the client is believe to be NetStumbler, ‘N’ otherwise
$AU Probe request Authentication state of the client
$MA Fake AP MAC address of fake AP
$ID Fake AP SSID of fake AP

ECE 4006 Wireless Intrusion Detection and Response Group 2

 97

Table 7.3.6: Standard CGI parameters.
Variable Usage
file Next SHTML page to be loaded. Usually results.shtml.
command Command to be executed. Table 7 lists the possible values.

Table 7.3.7: Interpretation of actions associated with command variable
Command Usage
1 Remove an entry from the list of probe requests
2 Remove an entry from the list of fake APs
3 Add a fake AP
4 Set the time
5 Set the date
6 Set the wired IP
7 Remove all entries from the list of probe requests
8 Set the BSSID of the wireless interface
9 Set the channel of the wireless interface
10 Start or stop the IDS
11 Toggle channel hopping, fake AP, fake WEP, and DoS

and set NetStumbler detection threshold
12 Save the fake AP list
13 Load the fake AP list
14 Set the web interface username and password
15 Remove all entries from the list of fake APs

Table 7.3.8: Optional CGI parameters.
Variable Associated

Command
Usage

macaddr 1 MAC of entry to be removed
macaddr 2 MAC of entry to be removed
macaddr 3 MAC of fake AP to be added
ssid 3 SSID of fake AP to be added
time 4 New time to use (HH:MM:SS format)
date 5 New date to use (mm/dd/yy or mm/dd/yyyy format)
ip 6 New IP of wired interface
bssid 8 New BSSID of wireless interface
channel 9 New channel of wireless interface
checkval 11 Concatenated values of channel hopping, fake AP, fake WEP, DoS

toggles in that order. ‘0’ disables the corresponding setting and ‘1’
enables it.

threshold 11 NetStumbler detection threshold (Probe requests per 10-second
interval)

username 14 Username for web interface
password 14 Password for web interface

ECE 4006 Wireless Intrusion Detection and Response Group 2

 98

Usage scenario

To demonstrate how SSI works and the important functions in the CGI code, the

following is an example of how mac.shtml is parsed.

The menu option for “Probe Request Table” is linked to http://192.168.0.200/cgi-

bin/client?file=mac.shtml. When clicked, HTTPD recognizes, based on the cgi-bin path, that

client is a CGI program that has executed. It sets up the environment variable CGI_file with

the value mac.shtml before executing client.

In main(), the client checks for any commands that may be passed to it. In this case, no

commands are passed to client, so client goes on to load mac.shtml. If it loads without errors,

main() would read the file one line at a time. As each line is read, it is tested with

isTable() to determine if it contains a table tag. If there are no table tags, the line is passed to

parseLine() to check for standard tags. The first few lines of mac.shtml contain no tags and

thus pass through without any changes (Figure 7.3.12).

http://192.168.0.200/cgibin/client?file=mac.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 99

The first tag encountered is the $TL tag after the first row of the HTML table. This tag is

detected by isTable() and indicates a table of probe requests. main() reads the subsequent

lines until it reaches a $ET tag. Next, using IPC calls (details in “Inter-Process

Communications”), main() retrieves the necessary data from the IDS program. It then invokes

parseLoggedTableLine() with the data and lines it read from the SHTML file.

parseLoggedTableLine() needs to duplicate the lines from the SHTML file for each row

of data. Rows are delimited by carriage-returns and individual fields are delimited by pipe

characters. For each row, parseLoggedTableLine() splits the fields into their

corresponding values. It then scans thru the SHTML row definition for tags where it replaces

where appropriate. Tags are detected using the getSSItag() function and it returns with

pointers to the tag. The tag is hashed using parseSSIcmd() and the hash value is used in a

switch statement to select the correct value to use. The original SHTML and resultant HTML for

a single row is shown in Figure 7.3.13.

<HTML><BODY>
Probe Request Table
<SCRIPT>
function del(a) {
document.fr.command.value=1;
document.fr.macaddr.value=a;
document.fr.submit();
}
function delAll() {
document.fr.command.value=7;
document.fr.submit();
}</SCRIPT>
<FORM name=fr action=client>
<INPUT TYPE=hidden NAME=command>
<INPUT TYPE=hidden NAME=macaddr>
<INPUT TYPE=hidden NAME=file VALUE=result.shtml>
<TABLE BORDER=1>
<TR><TH>Action</TH><TH>MAC Address</TH><TH>First Transmission</TH><TH>Last
Transmission</TH><TH>Total Requests</TH><TH>Netstumbler</TH><TH>Auth
State</TH></TR>

Figure 7.3.12: Initial HTML code derived directly from SHTML before the first tag.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 100

When parseLoggedTableLine() has iterated through all rows, the resulting

HTML looks like Figure 7.3.14. The function returns to main(). The next tag detected is the

$TS tag. The $TS tag is not a table tag, so it is handled by parseLine(). parseLine()

handles the line in a fashion similar to how parseLoggedTableLine() processes table

rows. The $TS tag is handled in a switch statement where the current time is determined and

formatted. This formatted time is then appended to the output stream. The final resultant HTML

is shown in Figure 15.

$TL
<TR><TD><INPUT TYPE=button onClick="del('$MA')" value=Remove></TD>
<TD>$MA</TD><TD>$FI</TD><TD>$LA</TD><TD>$TO</TD><TD>$NS</TD><TD>$AU</TD></T
R>
$ET

<TR><TD><INPUT TYPE=button onClick="del('00:06:25:b1:1f:02')"
value=Remove></TD>
<TD>00:06:25:b1:1f:02</TD><TD>Fri Nov 15 18:24:03 2002</TD><TD> Fri Nov 15
18:25:54 2002</TD><TD>3</TD><TD>N</TD><TD>1</TD></TR>

Figure 7.3.13. SHTML code (top) for a single row and resultant HTML (below).

ECE 4006 Wireless Intrusion Detection and Response Group 2

 101

<HTML><BODY>
Probe Request Table
<SCRIPT>
function del(a) {
document.fr.command.value=1;
document.fr.macaddr.value=a;
document.fr.submit();
}
function delAll() {
document.fr.command.value=7;
document.fr.submit();
}</SCRIPT>
<FORM name=fr action=client>
<INPUT TYPE=hidden NAME=command>
<INPUT TYPE=hidden NAME=macaddr>
<INPUT TYPE=hidden NAME=file VALUE=result.shtml>
<TABLE BORDER=1>
<TR><TH>Action</TH><TH>MAC Address</TH><TH>First Transmission</TH><TH>Last
Transmission</TH><TH>Total Requests</TH><TH>Netstumbler</TH><TH>Auth
State</TH></TR>
<TR><TD><INPUT TYPE=button onClick="del('00:06:25:b1:1f:02')"
value=Remove></TD>
<TD>00:06:25:b1:1f:02</TD><TD>Fri Nov 15 18:24:03 2002</TD><TD>Fri Nov 15
18:26:54 2002</TD><TD>5</TD><TD>N</TD><TD>1</TD></TR>
<TR><TD><INPUT TYPE=button onClick="del('00:50:56:c0:00:01')"
value=Remove></TD>
<TD>00:50:56:c0:00:01</TD><TD>Fri Nov 15 18:24:07 2002</TD><TD>Fri Nov 15
18:24:23 2002</TD><TD>3</TD><TD>Y</TD><TD>0</TD></TR>
<TR><TD><INPUT TYPE=button onClick="del('00:06:25:b1:1f:02')"
value=Remove></TD>
<TD>00:01:02:73:89:3B</TD><TD>Fri Nov 15 18:25:38 2002</TD><TD>Fri Nov 15
18:26:56 2002</TD><TD>2</TD><TD>N</TD><TD>1</TD></TR>
</TABLE>

<INPUT TYPE=button onClick="delAll()" value="Remove All"></FORM>
<FONT
SIZE=0>Fri Nov 15 18:26:56 2002
</BODY></HTML>

Figure 7.3.15: Complete HTML output for the entire page.

<TR><TD><INPUT TYPE=button onClick="del('00:06:25:b1:1f:02')"
value=Remove></TD>
<TD>00:06:25:b1:1f:02</TD><TD>Fri Nov 15 18:24:03 2002</TD><TD> Fri Nov 15
18:26:54 2002</TD><TD>5</TD><TD>N</TD><TD>1</TD></TR>
<TR><TD><INPUT TYPE=button onClick="del('00:50:56:c0:00:01')"
value=Remove></TD>
<TD>00:50:56:c0:00:01</TD><TD>Fri Nov 15 18:24:07 2002</TD><TD> Fri Nov 15
18:24:23 2002</TD><TD>3</TD><TD>Y</TD><TD>0</TD></TR>
<TR><TD><INPUT TYPE=button onClick="del('00:06:25:b1:1f:02')"
value=Remove></TD>
<TD>00:01:02:73:89:3B</TD><TD>Fri Nov 15 18:25:38 2002</TD><TD> Fri Nov 15
18:26:56 2002</TD><TD>2</TD><TD>N</TD><TD>1</TD></TR>

Figure 7.3.13. SHTML code (top) for a single row and resultant HTML (below).

ECE 4006 Wireless Intrusion Detection and Response Group 2

 102

Engineering Tradeoffs

Web-based administration is the de facto standard on most embedded devices. It allows

the unit to be administered through a network, possibly even remotely. The only software

required is a web browser that supports a recent version of HTML, thus allowing any platform to

be used as the administrative terminal. Also, a simple web server has little resource requirements

and makes it ideal for low-performance embedded processors. It is with these reasons that a web

user interface (UI) was chosen for the final product.

Other alternatives include serial communications, telnet access, a proprietary protocol

over TCP/IP, or the Simple Network Management Protocol (SNMP).

The serial port is the primary means of communicating with the device. Serial terminals

are available on nearly every platform and the device can be easily connected to another

computer using a null modem cable with a DB9 connector. In fact, it is through this interface that

most of our work is done. However, from our testing, it is extremely unreliable and is not

suitable for anything beyond simple debugging. The signals tend to lose timing and become

corrupted.

There is already a telnet daemon available on the device for low level configuration of

the device and has been used extensively in debugging. Currently, the telnet interface is simply a

UNIX command shell supported by BusyBox. Basic UNIX commands are available along with a

few supplemental commands for wireless configuration and to reflash the device. These are

already provided by OpenAP. For the telnet interface to be practical, a simple text-based UI

would probably be required. From the programming aspect, outputting text for a telnet interface

is little different from outputting HTML for a web interface. Nonetheless, the usability of a text-

based UI is significantly worse than a web-based interface. Colors are not uniformly available on

ECE 4006 Wireless Intrusion Detection and Response Group 2

 103

all telnet clients. Also, where one click would be required on a web-based GUI, one could

require several keystrokes on the text-based one.

A proprietary protocol would require a custom client to display the data. There are a few

issues with this. Firstly, it has to be decided what platform or platforms this client would have to

run on. A web-based UI has no such limitation. Secondly, the user interface for the client

program would have to be developed from scratch. When we chose a web-based UI, we can

leverage on existing UI building blocks. These two reasons would result in a significantly longer

development time for the client alone with hardly any edge over a web-based UI.

Communications between the client and the device would not be much more challenging than

what was undertaken using IPC calls (see “Inter-Process Communications”).

Finally, SNMP is not much different from a proprietary protocol. There is the added

bonus that we could develop a plug-in for an existing extensible SNMP client rather than

develop our own client. Another advantage is that more processing can be offloaded to the client

computer (the “management system” in SNMP terms) and the device would have less data to

store. SNMP might be considered as an additional means of interfacing the device to supplement

the web interface.

User Interface design is not the primary goal of this project. Instead, the UI is seen as a

means to present useful data on the functioning of the system. The interface presented to the user

is purely functional. There is certainly room for improvement in terms of usability and aesthetics,

but this would be left as a possible extension to the product.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 104

7.4 Inter-Process Communications

Inter-Process Communications (IPC) seems counter to the product being developed for

this project. IPC takes place between processes running on the same machine instead of between

machines on a network.

As noted before, the actual software running on the finished product consists of several

discrete components. Two major components are the IDS software itself and the CGI script used

to generate the web interface and these two programs do not run independently. The CGI

program requires up-to-date information from the IDS software and in turn, it informs the IDS

software of configuration changes made by the user. This is where IPC comes into play.

The specific IPC API used is the standard System V IPC functions provided by the Linux

kernel. This had to be configured explicitly in the case of OpenAP (Refer to “OpenAP setup”).

The IPC API provides functions for three basic areas: shared memory, semaphores, and message

queues. For this project, only shared memory and message queues were used, since semaphores

are generally required only for variable-locking or file-locking operations.

To simplify integration with the rest of the components, the IPC calls were encapsulated

in a separate set of C files and their corresponding headers (Appendix A). The system was

designed to resemble the common Berkeley Sockets API. The CGI program is the client program

making requests to the IDS program, which acts as a server. The functions are documented

briefly below:

initializeclient() – Does the basic initialization required for IPC calls, including

generation of keys from the specified files names and the creation of the appropriate message

queues and allocation of shared memory. This function is used by the client program. It is similar

to creating a socket.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 105

initializeserver() – Same as above, except the initialization is now tailored for the

server program.

requestinfo() – Sends a single request from the client to the server. This can be a request

for information or informing the server of a change in configuration options. This is a blocking

function and would not return until the server has responded. The server’s response is stored in

the specified buffer. This is similar to the send() function in the Sockets API.

getrequest() – This non-blocking function allows the server to poll the message queues for

any pending requests from the client. The server is then updated with the specific request being

made. Similar to a combination of listen() and recv() from the Sockets API.

sendinfo() – This is also a non-blocking function used by the server. When the server has

prepared the appropriate response in a buffer, it sends it back to the client using this function.

Again, this is similar to send().

deinitialize() – Used to release resources used by both the client and the server. It is akin

to closing a socket.

Two message queues are used, one each for the server and client. When the client sends a

request, it places a message in the server’s message queue. When the server has prepared the

response, it sends a message via the client’s message queue informing the client of the new data.

The actual transfer of data takes place using a shared memory buffer. This allows larger amounts

of data to be transferred without being limited by the message queue. To prevent any confusion,

the server must respond with a message identical to the one the client sent. Also, to ensure

compatibility, all data is passed in pure ASCII, even numerical data.

There is a simple protocol used to format the messages being passed. The requests are

single character commands followed by optional parameters and are null-terminated. These are

ECE 4006 Wireless Intrusion Detection and Response Group 2

 106

documented in Table 7.4.1. The responses are more complex. All responses are in ASCII.

Occasionally, multi-line responses are required, usually when generating tables with several

rows of data. All responses are listed in Table 7.4.2.

Whenever the CGI program is invoked, it might be able to generate the requested data on

its own, but most often, it would require information from the IDS program.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 107

Table 7.4.1: Protocol for IPC between client and server.
Command Parameters Delimiter Meaning
0 Retrieve table of logged MAC addresses
1 MAC to be removed Remove a single entry from the logged

MAC address table
2 Remove all entries from logged MAC

address table
3 MAC to be added (17

bytes)
SSID to be added

Fixed
length

Adds a fake AP to the countermeasure
system.

4 Retrieve table of fake AP information
5 MAC to be removed Remove a single entry from the fake AP

table
6 Remove all entries from the fake AP

table
7 Retrieve wireless settings (BSSID and

channel)
8 BSSID to set Set BSSID of wireless interface
9 Channel to set Set channel of wireless interface
A Retrieve channel hopping status
B Retrieve fake probe response status
C Retrieve fake WEP status
D Channel hopping status

to set (‘0’ to disable,
‘1’ to enable)

 Set channel hopping status

E Fake probe response
status to set (‘0’ to
disable, ‘1’ to enable)

 Set fake probe response status

F Fake WEP status to set
(‘0’ to disable, ‘1’ to
enable)

 Set fake WEP status

G Save fake AP table (This is implemented
in the client program and has no effect
here)

H Load fake AP table
I Detection threshold to

set
 Set NetStumbler detection threshold in

probe requests per 10-second interval
J Retrieve NetStumbler detection

threshold in probe requests per 10-
second interval

O Set DoS status
P DoS status to set (‘0’ Retrieve DoS status

ECE 4006 Wireless Intrusion Detection and Response Group 2

 108

Table 7.4.2: Table of responses for IPC between server and client.
Response Multi-line Delimiter Fields
0 Yes |

null-
terminated

MAC address logged
First seen time
Last seen time
Total probe requests detected
Flag indicating if identified as NetStumbler
Authentication state

2 No “DONE”
1 No “DONE” if address was removed successfully

“ERR” if address was not found
3 No “DONE” if new AP information was successfully added

“ERR” is maximum number of fake APs reached
4 Yes Fixed length MAC address (17 bytes)

SSID (To end of string)
5 No “DONE” if address was removed successfully

“ERR” if address was not found
6 No “DONE”
7 Yes New-line BSSID of wireless interface

Channel of wireless interface
8 No “DONE”
9 No “DONE” if channel is valid

“ERR” if channel is out of range
A No “Y” if channel hopping is enabled

“N” is channel hopping is disabled
B No “Y” if fake probe responses are enabled

“N” is fake probe responses disabled
C No “Y” if fake WEP is enabled

“N” is fake WEP is disabled
D No “DONE” if channel hopping status was set successfully

“ERR” if channel hopping status was not set successfully
E No “DONE” if fake probe response status was set successfully

“ERR” if fake probe response status was not set successfully

ECE 4006 Wireless Intrusion Detection and Response Group 2

 109

F No “DONE” if fake WEP status was set successfully
“ERR” if fake WEP status was not set successfully

G No N/A
H No “DONE” if fake AP table was loaded successfully

“ERR” if fake AP table could not be loaded
I No “DONE”
J No NetStumbler detection threshold in probe requests per 10-second interval
O No “DONE” if DoS status was set successfully

“ERR” if DoS status was not set successfully
P No “Y” if DoS is enabled

“N” is DoS is disabled

ECE 4006 Wireless Intrusion Detection and Response Group 2

 110

Usage scenario

Figure 7.4.1 is a flowchart of the IPC process between the client and server programs. In

this example, the messages being passed concern the list of probe requests detected.

The CGI program main() function would be parsing an SHTML file until it encounters

a $TL tag (details of the parsing process is covered in the “User Interface” section). This tag tells

the CGI program that it needs to generate a table of logged probe requests. To retrieve the

required data, the CGI program would need to send a single character “0” using

requestinfo() and at the same time, passing an empty buffer to be filled with the data.

Since requestinfo() is a blocking function, control effectively passes to the IDS

program. It is the responsibility of the IDS program to poll its message queue for messages using

the getrequest() function. The is done in a infinite loop in main() and when a message is

present, it would be passed to handle_IPC(). handle_IPC() is a large switch statement

that determines what information is required. Since the data required is always live data, it is

retrieved from memory. In this case, the data is stored in an array. handle_IPC() would

traverse the array and concatenate the corresponding fields with “|” as the separator. Each row in

the array is terminated with a carriage-return (‘\n’). The resultant string is and the original

message is passed as parameters to sendinfo().

Internally, sendinfo() copies the string to a shared memory buffer and send the

message to the client’s message queue. On the client side, the requestinfo() function would

retrieve the message from the client’s message queue, check if it matches the original message

and then copy the string from shared memory to the CGI program’s buffer.

It is now up to the CGI program to parse the string. The string and the table SHTML is

passed to parseLoggedTableLine(). Since this is a table, the string would be broken

ECE 4006 Wireless Intrusion Detection and Response Group 2

 111

down into individual rows, using the carriage-return character as row delimiters. Each row is in

turn split to the component values using “|” as the delimiter. The CGI program then scans

through the SHTML string for the appropriate tags to replace with the corresponding data.

Again, details of the scanning and replacement procedure are documented in the “User Interface”

section.

Tradeoffs

IPC calls probably are not the optimal way to provide the functionality we require. An

alternative would use the proc filesystem. The proc filesystem is a standard feature even in

OpenAP’s kernel and thus would require less memory. It also does not have much size

restrictions on the data being transferred. However, programming for the proc filesystem is more

involved. This could be considered in future revisions of this project. Meanwhile, IPC calls are

used because a quick solution was required and only a small amount of data (less than 2KB) is

required to be passed between the processes.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 112

Figure 7.4.1: Flowchart of IPC between server and client.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 113

8.0 Product Testing

 Testing of individual modules has been documented in the sections related to the

respective modules. For example, testing of the AirSnort spoofing algorithm is detailed in the

section describing the AirSnort countermeasure. The purpose of this section is to document tests

that were conducted to examine the functionality of the system as a whole.

Results of Miscellaneous Tests

 Table 8.1 lists the results of a few tests that were conducted to evaluate the stability of the

IDS on an access point platform.

 The goal of the first test was to determine if the boot-up process was stable. This process

is one of the most critical components of the implementation because many different drivers are

being loaded in this process. We wanted to make sure all the drivers were loaded in the proper

order to ensure that all dependencies were resolved. In order to pass this test, we had to tweak the

start up scripts to add extra delays before loading the IDS program and the web server.

 The second test was intended to stress test the flash writing component of the access

point. We also wanted to make sure that our IDS program could read any configuration out of the

flash files. In the burn-in test, we left the access point running for an entire week to see if the

hardware could take the stress and whether our IDS would remain running. Finally, the last test

involved going through the entire user interface to determine if all configuration changes

Table 8.1. Results of stability tests.
Test Result
1. Reliably starts up IDS and HTTP server on powercycle Passed
2. Saves configuration information across powercycles Passed
3. One week burn-in Passed
4. Stability of user interface Passed

ECE 4006 Wireless Intrusion Detection and Response Group 2

 114

requested were properly forwarded to the IDS and also whether there were any pattern of inputs

that would crash the system.

NetStumbler Detection Tests

 In order to determine the reliability of the IDS in detecting WarDrivers that are actually

driving through instead of being stationary, a test was conducted outside the labs. The test

involved placing the IDS system beside a window that was 50 feet from a main road. Since this

was quite a busy main road, vehicles traveling on this road were possibly traveling as fast as 40

mph. In this test, the NetStumbler detection threshold was kept at a constant of 30 across all

scenarios. The speed of the WarDriving vehicle was varied while NetStumbler’s scanning

frequency was varied. Table 8.2 lists the results of our tests.

Table 8.2: Results of NetStumbler Detection Tests.
Speed
(MPH)

Scan
Frequency

APs listed
in
NetStumbler

Probes
Detected

NetStumbler
Detected

Observations

40 Slowest 1 4 N
40 Medium 4 15 N APs only on one

channel
40 Faster 6 23 N APs on 3 or 4

channels
30 Slowest 3 8 N APs only on

single channels
30 Medium 5 20 N APs on 2 or 3

channels
30 Faster 5 33 Y APs on at most 5

channels
20 Slowest 3 15 N APs only on one

channel
20 Medium 5 35 Y APs on at most 4

channels
20 Faster 5 45 Y APs on at most 5

channels

ECE 4006 Wireless Intrusion Detection and Response Group 2

 115

Our results indicate that our IDS operates better if the client is within the wireless

network range for a longer period of time. This means that a slower WarDriver will have a

higher probability of getting logged. Also, NetStumbler detection functions better if NetStumbler

is scanning fast because more probe requests are being transmitted out by the driver. The

occurrence of multiple channels assigned to an access point is purely because a channel hop

occurred while the WarDriver was in range and the IDS happened to transmit out. In the real-

world, WarDrivers would probably have NetStumbler configured for faster scanning mode since

they would want to make sure they get every wireless network in the area. In addition to this,

WarDrivers would probably be driving much slower than 40 mph so that they can detect more

networks. This means that even though our algorithm does not really detect WarDrivers that are

driving very fast with slow scanning, our algorithm would still be effective in detecting

WarDrivers because they are more likely to be driving slower and scanning at a higher rate. In

addition to this, the NetStumbler detection threshold can always be tweaked to increase

sensitivity of the algorithm.

 Although our IDS did not identify clients as NetStumblers in some cases, it still managed

to log the MAC address of the client and also a timestamp. An administrator should use this

information to interpret whether his/her network is being probed frequently by outsiders. The

logging of many different clients could mean that the location was a hot spot and active steps

should be taken to secure the network. The administrator could also increase the sensitivity of the

detection algorithm and enable denial of service attacks to disable any potential intruders before

they get the chance to launch any attacks.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 116

Effect of IDS on Network Throughput

 These tests were designed to determine the effect of the presence of a wireless intrusion

detection system on network performance. A wireless network was set up between two

computers and an access point. The computers were using Linksys WPC11 cards running Host

AP drivers in managed mode with software WEP encryption. A D-Link DWP900AP access

point was used. This access point is an entry level access point that is intended for home use. The

802.11b network was configured to use 64-bit WEP encryption.

A TCP generator and sink from ECE4110 was used to measure the throughput between

these two computers using these settings:

 Packet Size: 1024 bytes

 Port: 5000

 Inter-Arrival Time: 0.0 seconds

 Packet Variance: 0

For each test, the generator was left running for approximately 57 seconds before

obtaining throughput measurements. The test was first conducted with IDS disabled. IDS was

then enabled and measurements were made. Next, NetStumbler was started on a third computer

while the IDS was running without the DoS option (since this would immediately terminate

NetStumbler). The scanning speed of NetStumbler was varied for this tests to determine the

affect of scanning speed on network throughput. Finally the tests with NetStumbler were

repeated again with the IDS system disabled. Data from all the tests can be found in the

appendix. Table 8.3 tabulates the results that were obtained.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 117

Note that in all our tests, the highest throughput that we achieved was 1.96 Mbps when

both IDS and NetStumbler was disabled. This is much less than the speed that the cards were

operating at, which is 11 Mbps. This discrepancy might be cause by a few reasons. The primary

reason might be Host AP’s use of software WEP encryption which is slower than hardware

encryption. In addition to this, the use of encryption significantly reduces the throughput of the

network due to encryption overheads of encrypting the packet and the bigger packet sizes. It has

been documented that encryption can potentially reduce throughput of the network by half on

some access points. Finally, the entry level access point that we used might not be powerful

enough to support high throughputs.

 The throughput of the network dropped by 0.04 Mbps as soon as IDS was enabled, even

without NetStumbler running. This drop is due to the periodic transmission of fake WEP

encrypted data packets which temporarily disrupt network transmission. Transmitting in RF

Monitor mode disrupts the network more than normal transmissions because the card is not able

to carry out network usage arbitration through RTS/CTS packets since CTS packets are not

interpreted by the firmware in this mode. It just simply transmits out the packet while possibly

disrupting any ongoing transmissions, forcing costly retransmissions which reduce network

throughput.

Table 8.3: Result of network throughput tests.
Test # IDS NetStumbler Throughput (Mbps)
1 Disabled Disabled 1.964434
2 Enabled Disabled 1.926827
3 Enabled Faster Scanning 1.539379
4 Enabled Medium Scanning 1.716082
5 Enabled Slow Scanning 1.710721
6 Disabled Faster Scanning 1.691049
7 Disabled Medium Scanning 1.702565
8 Disabled Slow Scanning 1.726033

ECE 4006 Wireless Intrusion Detection and Response Group 2

 118

Network throughput dropped from 1.96 Mbps to 1.69 Mbps when NetStumbler was

scanning at high speed even without IDS enabled. This is caused by the active behavior of

NetStumbler. Network activity literally grinds to a halt because the access point has to respond to

NetStumbler’s probe request. This is another reason why WarDriving activity is undesirable.

Figure 8.1 is a plot of throughput at different NetStumbler scan speeds, comparing tests

where IDS was enabled with tests where IDS was disabled.

With the exception of the medium scan speed case, the general trend was that throughput

was reduced when IDS was enabled while NetStumbler was running. The inversion in the

medium scan case might be due to the presence of RF interference while the test was conducted.

The biggest difference in throughput was detected when NetStumbler was scanning at a fast rate.

This reduction is caused by the transmission of fake probe responses by the IDS. With the fast

scanning speed, the IDS responded with probe responses at a higher rate. The reduction in

throughput was probably exacerbated by the inefficient transmit mechanism of the firmware in

RF Monitor mode, which was discussed earlier.

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Fast Medium Slow

Netstumbler Scan Speed

Th
ro

ug
hp

ut
 (M

bp
s)

Enabled
Disabled

IDS

Figure 8.1. Plot of throughput vs. NetStumbler scan speed with IDS
enabled and disabled.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 119

 The overhead caused by the presence of an IDS is unavoidable since the IDS needs to

occupy the transmission medium (air) to accomplish its task. However, the cost of having clients

running NetStumbler within the network is much higher, as seen by the significant drop in

throughput. Therefore the cost of having an IDS outweighs the cost of having clients running

NetStumbler since our IDS is able to silence these clients through the use of the denial of service

attack. Perhaps with future development of better firmware meant for IDS purposes, we would

be able to accomplish the same IDS features with a lower overhead since we would not need to

resort to RF Monitor mode to accomplish our purposes.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 120

9.0 Demonstration

The demonstration is a walkthrough of most of the functions in the final product and will

show its effectiveness against intrusion attempts.

Equipment needed

• Modified USR 2450 Access Point from this project

• PC with the following

o Ethernet adapter

o Serial terminal

o Telnet

o Web browser

• Windows PC with the following

o 802.11b interface card (Orinoco chipset)

o NetStumbler

• Linux PC with the following

o 802.11b interface card

o Airsnort

• Null-modem cable

• Ethernet patch cable

Setup

The access point is to be connected to the first PC using the null-modem cable and the

patch cable. The other PCs are set up independently. It is recommended that the demonstration

be conducted in an area where there is at least some 802.11b traffic.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 121

Text interface demonstration

1. Start the terminal program on the main PC and ensure it is reading from the correct port

with the correct settings.

2. Turn on the access point.

3. The boot sequence of the access point can be observed.

4. When “Press Enter to start Busybox” appears, press Enter.

5. Use basic Linux commands to navigate the filesystem and view the contents of files. This

shows the underlying OS and our primary means of communicating with the unit for

debugging.

6. Start the telnet program on the main PC.

7. Connect to 192.168.1.200. This is the access point’s default IP.

8. As before, use basic Linux commands to demonstrate the system. This might be suitable

for low-level remote administration.

Graphical interface demonstration

1. Start the web browser on the main PC.

2. Open the URL http://192.168.1.200. This will connect to the web administration system

of the device.

3. A log-in screen will appear. Log in with the default user name foo and the default

password bar. This is basic HTTP-based security.

4. A screen will appear with a button to start and stop the IDS. Click the button once to stop

the IDS.

http://192.168.1.200

ECE 4006 Wireless Intrusion Detection and Response Group 2

 122

5. When the change in IDS status is reflected, click the button again to start the IDS. This

provides a means of restarting the IDS system remotely in case of any configuration

changes that take place outside of the web interface.

6. Click on “Set Data & Time”.

7. Enter the correct time and click “Set”.

8. Enter the correct data and click “Set”.

9. Click on “Configure Wired Interface”. This shows the setting to change the IP address of

the wired Ethernet port.

10. Change the IP address to 192.168.1.201 and click “Set IP”.

11. The web browser may be unable to open the results page. Open http://192.168.1.201 from

the browser instead.

12. Click on “Wireless Settings”. This shows options for setting the valid wireless network

parameters.

13. Enter the BSSID of the valid network and click “Set BSSID”.

14. Click on “Wireless Settings” again. Enter the channel used by the valid network and click

“Set Channel”.

15. Click on “Web UI Options”. This allows the setting of the log-in username and password.

16. Enter a new username and password. Click “Set”.

17. An authentication dialog box similar to that in Step 3 would appear. Enter the new

username and password.

Intrusion detection

1. Ensure that the IDS is enabled (See Step 5 of the preceding section).

http://192.168.1.201

ECE 4006 Wireless Intrusion Detection and Response Group 2

 123

2. Click on “View Probe Request Table”. This shows a list of probe requests received. If

there is sufficient traffic, there should be a few entries in the table.

3. Start NetStumbler on the Windows PC.

4. Click on “View Probe Request Table” again to refresh the page. The NetStumbler PC’s

MAC address should be listed. The “NetStumbler” column should be marked with a “Y”

indicating that it is NetStumbling.

5. Click “Miscellaneous Options”. This shows various settings for the IDS.

6. Change the detection threshold to “60”. Click “Set”.

7. Click on “View Probe Request Table” again. Click “Remove” next to the MAC address

of the NetStumbler computer. This removes the entry from the list.

8. Wait a few seconds and click on “View Probe Request Table” again to refresh the list.

The NetStumbler MAC address would have reappeared on the list, but it would not be

marked as a NetStumbler.

9. Click on “Miscellaneous Options” again. Change the detection threshold to “10” and

click “Set”.

10. Click on “View Probe Request Table” again. Any new MAC addresses detected should

be indicated as a NetStumbler. These steps show how the sensitivity setting can be

changed.

11. Click on “Miscellaneous Options”. Change the detection threshold back to “30” and click

“Set”.

12. Click on “View Probe Request Table” and click “Remove All”. This resets the system.

Countermeasures

1. Click on “Miscellaneous Options”.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 124

2. Check “Enable fake probe responses” and click “Set”. The enables Fake AP-like

functionality.

3. Within a few seconds, NetStumbler on the Windows PC should show a few new access

points with SSIDs like “Fake AP 1”, “Fake AP 2”, and so on. “GTwireless” and “test”

fake access points will appear too.

4. Click on “View Fake AP Table”. This shows a list of fake access points that the device is

simulating.

5. Click “Remove” next to the access point with SSID “test”. NetStumbler will show no

more signal from the “test” access point.

6. Click “Add Fake AP”. This presents a screen allowing the user to add more access points

to simulate.

7. Enter an SSID and a MAC address. Click “Submit Query”.

8. Click on “View Fake AP Table”. It will reflect the newly added access point information.

NetStumbler too will show the new access point.

9. Click “Save list”. This stores the list for future retrieval.

10. Click on “View Fake AP Table” again. Click “Remove All”. This clears the list.

11. Click on “View Fake AP Table” again to see the empty list. Click “Load list”. This will

restore the saved table.

12. Click on “View Fake AP Table” again to see the restored list.

13. Click on “Miscellaneous Options”. Check the “Enable channel hopping” and click “Set”.

This makes the device switch channels repeatedly, thus further confusing NetStumbler.

NetStumbler will start showing a growing list of channels for each fake access point.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 125

14. Click on “Miscellaneous Options” again. Check “Enable fake WEP” and click “Set”.

This enables AirSnort spoofing.

15. Start AirSnort on the Linux PC. It should begin collecting packets from the device and

maybe from other networks in the vicinity. The interesting packets from the IDS should

exceed those of other networks, assuming they are properly secured. If there is sufficient

time, AirSnort will collect enough packets to determine a WEP key, which is obviously

wrong.

16. Click on “Miscellaneous Options” again. Check “Enable DOS” and click “Set”. This tells

the device to transmit malformed packets that jam NetStumbling computers. Observe the

NetStumbler computer. Within a few seconds, NetStumbler will display an error in the

status bar. Any utilities for the wireless card would indicate that it has been disconnected.

On most versions of Windows, the system will slow down to a crawl and would require a

reboot.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 126

10.0 Product Economics

Marketing

Our product is fairly unique in the market with the ability to both detect and block

intruders. Several competitors do exist, the most major competitor being AirDefense in terms of

product characteristics. AirDefense’s product is a system outside of the network that analyses

packets coming to and from the network. It checks for possible intruders and logs intruder

activity.

AirDefense Product Cost:

The AirDefense Server Appliance is sold on a device license perspective. A device

license equals:

A (Authorized Access Points) + B (AirDefense Sensors) = C (device license size).

10 device license: $19,900.00

25 device license: $29,500.00

50 device license: $44,900.00

100 device license: $79,900.00

AirDefense sensors are the elements that reside in the enterprise and monitor the "airwaves" and

then report the data back to the AirDefense Server Appliance. They are sold on an individual

basis at $300.00 each. One sensor can monitor multiple AP's depending on the deployment.

Our product is different from that of AirDefense as it is standalone rather than a system-

wide application. Each access point has an inbuilt intrusion detection system which may be

connected to a system-wide database of potential intruders. Each access point is capable of

detecting intruders and taking countermeasures. Our product is therefore an access point itself

with intrusion detection capabilities.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 127

Our IDS excels over AirDefense’s product because it actively tries to interfere with

intrusion attempts. AirDefense merely passively monitors for any suspicious activity. Many

times, intrusion attempts need to be stopped immediately or a network could be compromised in

a few minutes. AirDefense’s scheme which relies on the network administrator to take active

steps to stop the intrusion is not practical because the network might have already been

compromised once the administrator discovers the intrusion. Our product solves this problem by

immediately activating countermeasures to deal with the intruder.

The product would be priced after taking into account the costs incurred developing it.

The following costs were incurred for the project.

Total Hardware Costs Incurred: $426

Total Development Costs: Hardware Costs + (Total Man Hours X Avg. Salary for GT Engineer)

 = $426 + (225 x $20) = $4926

Since installing the AirDefense system costs in the thousands even for a small network,

our product will be successful in the market even if it was priced a few hundred over the cost of

the access point itself. A reasonable price would be $200 over the cost of the access point.

No. of Units to Sell to Break Even: Total Development Cost / Price of Product

 = $4926/ ($137 + $200) ~ 15

Table 10.1. Project Costs
Part Units Price

USR 2450 Access Point 1 $137
Linksys Wireless Cards 2 $69.99

Orinoco Gold Wireless card 1 $76.99
Pretec Linear Mapped card 1 $72

ECE 4006 Wireless Intrusion Detection and Response Group 2

 128

Risks

Through the course of the semester, we faced several challenges in completing the

project. Our entire project might have been severely delayed if the hardware combination that we

chose initially was not compatible with the drivers. To minimize this risk, we procured wireless

cards and PCMCIA bridges that had been tested by other members of the Linux community.

Since the AP had limited memory space (4MB Flash), the Intrusion Detection System

had to be minimized to fit in that space. This was a major constraint for our project as it limited

the use of existing libraries and we had to make-do with the minimal set of tools. Limited space

also meant that we had to tradeoff space with speed of application development.

Another challenge in WarDriving detection was the determination of an algorithm that

could reliably differentiate WarDriving clients from legitimate clients. This is complicated

because programs like NetStumbler do not transmit any irregular packets. They rely on 802.11b

probe requests to seek out wireless access points. Any algorithm that we produce had to be tested

with a pool of wireless network cards that are used legitimately to minimize the chances of our

program triggering a false alarm.

Devising countermeasures was a difficult task because any countermeasure taken should

not interfere detrimentally with the normal operation of the wireless network. For example, we

could flood the entire 2.4 GHz spectrum with noise but this would effectively disrupt normal

operation of the network.

Another major risk inherent with our project was the eventual porting of the IDS to the

OpenAP from the Linux computers. There was no guarantee that a program that successfully

compiles and runs on the Linux computer will also work on the AP. Since the access point

operates on an AMD Élan embedded platform, all sources for the access point had to be cross-

ECE 4006 Wireless Intrusion Detection and Response Group 2

 129

compiled on an ix86 platform targeting the embedded platform. An access point also lacks the

accessibility of a normal PC. It does not have connections for a monitor or keyboard. The only

way of interactively communicating with the linux console is through a serial port. On top of the

inaccessibility of the access point, we were not able to install debuggers such as “gdb” on the

access point due to memory constrains. Because of this, most of the modules had to be developed

for the ix86 first and tested extensively before they were ported to the access point.

One of the main problems that we ran into in both intrusion detection and counter

measures was the inability to override the firmware. Though we used open-source products

wherever possible, we do not have access to the firmware. This makes it impossible to

accomplish certain low level tasks done by the firmware. Although we successfully transmitted

Probe Response packets, this is quite a high-level packet. We were unable to directly transmit

lower level packets like RTS packets because the firmware would just throw them away without

transmitting. We also do not have access to manipulate 802.11 fields like duration, CRC etc.

which prevents us from trying out 802.11 denial of service attacks.

To implement a complete intrusion detection system, we should be able to listen and

examine traffic from all 11 802.11 channels. Unfortunately, the wireless card can only listen to

one channel at a time. As such, our product might be limited to applications where all access

points occupy the same channel.

We also had problems passing large messages between processes and ensuring data

integrity. This functionality was required to successfully implement counter measures and

intrusion detection as a single database of potential NetStumblers would be used and updated by

the two processes. We therefore overcame this problem by implementing IPC’s shared memory

and storing messages in buffers.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 130

Another major problem which held up progress in our project had been the inavailability

of a working Access Point. The final stage of the project involved intalling Host AP and moving

our software to an access point. This stage could not be started on time as the first access point

did not work. A replacement access point was ordered but reached late.

We had several problems with the Host AP software itself. Host AP didn’t work until we

updated the firmware on the Linksys card from Intersil’s website. Malformed packets sent out

from Host AP could not be seen. Host AP was waiting for a CTS (Clear To Send) packet from

the client before it sent out a packet. This problem was fixed by sending the packet to the real

MAC address rather than a fake one. Yet, this took away one of means of counter measures.

Project Characteristics

The project involved understanding the workings of wireless networks, knowledge about

networking hardware and software. Significant changes had to be made to existing networking

software and novel methods used to integrate the hardware used. The project was significantly

complex to be difficult enough to replicate.

We were able to achieve a majority of the goals set out at the inception of our project.

The intrusion detection system developed can successfully detect NetStumbler and take

countermeasures against it. The NetStumbler is confused with a large number of fake APs

without affecting the rest of the network and is also made to crash. This can be done since

NetStumbler is an active intruder unlike AirSnort and Kismet which listen to network traffic

passively. Yet, both programs are confused by transmitting fake packets every now and then.

Very little guidance was necessary from the instructor when the project seemed to have hit a

dead end in terms of countermeasures.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 131

11.0 Conclusion

Suggestions for Future Development

 Based on product testing, we believe that our product has accomplished most of the

objectives that we set forth initially. However, due to the short development cycle of the product,

there are certain areas that could be developed further by others.

1. Centralized Data Collection

Our current implementation is limited by the memory constrains of the embedded

platform. As such only up to 256 clients can be logged at a time. This limitation can be

removed by implementing a centralized server that would collect data from all IDS

nodes. Data interchange can be accomplished using simple TCP/IP sockets programming.

A centralized server would also allow the network administrator to get a more complete

view of the network because all data would be consolidated. For example, if a client

roamed between one coverage area to another coverage area, the centralized server would

be able to keep track of this. Finally, the central server would also provide a quick way to

reconfigure behavior of all IDS nodes.

2. Firmware Level Implementation

We would also suggest porting part of the IDS implementation from the user level

daemon to the wireless card firmware level. This would allow us to overcome most of the

problems that we were facing with operating the wireless card in RF Monitor mode. For

example, if the firmware could be modified to pass up all 802.11b management frames

while operating in master mode, we could easily implement built-in access point

functionality in our IDS. Furthermore, modification of the firmware would allow faster

ECE 4006 Wireless Intrusion Detection and Response Group 2

 132

response times. This is beneficial for generation of probe responses which are very time

critical. Unfortunately, we foresee that modifying the firmware would be extremely

difficult. Firstly, we would need to obtain the source of the firmware from Intersil which

would be next to impossible since the Prism chipset is a commercial product. In addition

to this, we would also need to obtain the proper tools required to compile the firmware

and test the firmware. Although this is quite an involved process, we believe that getting

access to the firmware would allow the product to be improved by leaps and bounds.

3. Multi-channel Receiver / Transmitter

Our current implementation is only able to receive and transmit on one channel at a time.

This severely undermines the effectiveness of the IDS because the system is not able to

monitor all channels simultaneously for suspicious activity. It also increases response

times of the countermeasures because the card can only detect intrusion activity when the

attacker carries out the attack on the channel that the card is currently tuned to. In order to

overcome this issue, we suggest implementing the IDS system on a multi-channel

receiver / transmitter. This can either be achieved by obtained a system that supports 11

wireless cards or procuring a specialized wireless card that is capable of tuning in to all

11 channels simultaneously. This is going to be a very costly solution because hardware

that is capable of performing this is scarce.

4. Extended Network Logging

Another feature that might be interesting for a wireless intrusion detection system is to

provide the capability to log other events such as authentication and association of clients

ECE 4006 Wireless Intrusion Detection and Response Group 2

 133

with access points. This feature, coupled with a central data logging system would allow

the network administrator to monitor activity of wireless clients. Based on the logs, a

network administrator could determine if users are trying to authenticate or associate with

the access point at odd hours of the day when the actual user is not even present at the

premises. This can then be used to determine if an intrusion has occurred. Other than this,

the system could also log transmission statistics for each wireless client. This can be used

for auditing purposes or as a tool for intrusion detection.

Conclusion Summary

 We initially set forth to develop an intrusion detection system that specifically detected

clients running NetStumbler. Our objectives were also to implement automatic countermeasures

that were designed to impede an intruder’s efforts to penetrate the network. We believe that we

have successfully implemented most of the goals that we initially set forth to achieve. We have

managed to produce an embedded solution that successfully differentiates clients running

NetStumbler from valid clients. Countermeasures that were designed such as fake probe

responses are effective in hiding the network amidst a flood of other networks. We have also

managed to thwart the attacker’s second stage of attack by sending out bogus WEP encrypted

data packets periodically. Finally, our denial of service attack effectively disables intruders as

soon as they are detected. This is the ultimate countermeasure and is meant for network

administrators that choose to adopt an aggressive strategy for protecting the network. Although

we failed to integrate access point functionality into our product, we believe that this would not

affect the marketability of our product in any way. Based on our detailed economic analysis, we

believe that our product far excels any competitors in the market due to its ability to detect

ECE 4006 Wireless Intrusion Detection and Response Group 2

 134

intrusions and respond with countermeasures immediately. In conclusion, we believe that our

product can be used to breathe new life into the security aspect of 802.11b networks, providing a

transition period while network administrators upgrade their networks to future protocols that are

more secure.

ECE 4006 Wireless Intrusion Detection and Response Group 2

 135

12.0 Credits

 We wish to express our sincere appreciation to these parties who have aided the

development of our product by providing us technical information, financial support, and even

moral support. They are:

• Dr. Henry Owen

• The School of Electrical and Computer Engineering, Georgia Tech

• ECE4006D Fall 2002

• Pam Halverson

• Members of Host AP mailing list

• Jouni Malinen

• Members of OpenAP mailing list

• Joshua Wright

ECE 4006 Wireless Intrusion Detection and Response Group 2

 136

13.0 Bibliography and References

[1] W. Slavin, “net stumbler dot com,” [Website], 2002 Sep 18, Available HTTP:

http://www.netstumbler.com/

[2] Air Defense Inc, “Wireless LAN Intrusion Detection and Monitoring Enterprise

Security.” Air Defense, [Website], Available HTTP: http://www.airdefense.net/

[3] J Malinen, “Host AP driver for Intersil Prism2/2.5/3,” [Online document], 2002 Sep 12,

Available HTTP: http://hostap.epitest.fi/

[4] S. Barber, J. Chung, D. Kimdon, D. Lopes, B. McClintock, and D. Wang, “OpenAP,”

[Website], Available HTTP: http://opensource.instant802.com/

[5] temsiK, “Kismet,” [Website], 2002 Sep 5, Available HTTP:

http://www.kismetwireless.net/

[6] Black Alchemy Enterprises, “Black Alchemy Weapons Lab: Fake AP.” Black Alchemy

Enterprises, [Online document], 2002 Sep 3, Available HTTP:

http://www.blackalchemy.to/Projects/fakeap/fake-ap.html

[7] Snax, “AirSnort Homepage,” [Online document], 2002 Aug 31, Available HTTP:

http://airsnort.shmoo.com/

[8] P. Lee, “Elixir.net – Wireless,” [Online document], 2001 Nov 11, Available HTTP:

http://www.elixar.net/wireless/download/download.html

[9] P. Karlsson and J Ländin, “cqure.net/WaveStumbler,” [Online document], Available

HTTP: http://www.cqure.net/tools08.html

[10] Jupitermedia Corporation, “802.11 tutorials” 802.11 Planet, [Website], Available HTTP:

http://www.80211-planet.com/tutorials/

http://www.netstumbler.com/
http://www.airdefense.net/
http://hostap.epitest.fi/
http://opensource.instant802.com/
http://www.kismetwireless.net/
http://www.blackalchemy.to/Projects/fakeap/fake-ap.html
http://airsnort.shmoo.com/
http://www.elixar.net/wireless/download/download.html
http://www.cqure.net/tools08.html
http://www.80211-planet.com/tutorials/

ECE 4006 Wireless Intrusion Detection and Response Group 2

 137

[11] The Unofficial 802.11 Security Web Page, [Website], Available HTTP:

http://www.drizzle.com/~aboba/IEEE/

[12] Tom Guides Publishing LLC, “Wireless Local Area Networking:

An Introduction.”, [Online Document], Available HTTP:

http://www6.tomshardware.com/network/01q3/010822/wlan-02.html

[13] Anomaly, Inc, “Wireless Ethernet Networking with 802.11b, an overview”, [Online

Document], Available HTTP: http://www.homenethelp.com/802.11b/index.asp

[14] Jim Zyren and Al Petrick, “IEEE 802.11 Tutorial”, [Online Document], Available HTTP:

http://www.media.mit.edu/physics/projects/IP/bldg/bi/802.11.pdf

[15] Daniel L. Lough, T. Keith Blankenship, Kevin J. Krizman, “A Short Tutorial on Wireless

LANs and IEEE 802.11”, [Website], Available HTTP:

http://www.computer.org/students/looking/summer97/ieee802.htm

[16] Jim Geier, “802.11 WEP: Concepts and Vulnerability”, [Online Document], Available

HTTP: http://www.80211-planet.com/tutorials/article.php/1368661

[17] WorldWide WarDrive, [Website], Available HTTP: http://www.worldwidewardrive.org/

[18] Nikita Borisov, Ian Goldberg, and David Wagner, “Security of the WEP algorithm”,

[Website], Available HTTP: http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html

[19] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling Algorithm of

RC4,” [Online document], Available HTTP:

http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf

[20] Matthew S. Gast, “802.11 Wireless Networks: The Definitive Guide”, O’Reilly &

Associates, Inc, April 2002

http://www.drizzle.com/~aboba/IEEE/
http://www6.tomshardware.com/network/01q3/010822/wlan-02.html
http://www.homenethelp.com/802.11b/index.asp
http://www.media.mit.edu/physics/projects/IP/bldg/bi/802.11.pdf
http://www.computer.org/students/looking/summer97/ieee802.htm
http://www.80211-planet.com/tutorials/article.php/1368661
http://www.worldwidewardrive.org/
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf

ECE 4006 Wireless Intrusion Detection and Response Group 2

 138

[21] Mendel Cooper, “Advanced Bash-Scripting Guide,” [Online document], Available

HTTP: http://www.tldp.org/LDP/abs/html/index.html

[22] Joshua Wright, “Layer 2 Analysis of WLAN Discovery Applications for Intrusion

Detection,” [Online document], Availble HTTP: http://home.jwu.edu/jwright/papers/l2-

wlan-ids.pdf

[23] telos EDV Systementwicklung GmbH, “alios,” [Website], Available HTTP:

http://www.telos.de/linux/alios/default_e.htm

[24] Erik Andersen, “BusyBox,” [Website], Available HTTP: http://www.busybox.net/

[25] Erik Andersen, “uClibc – a C library for embedded systems,” [Website], Available

HTTP: http://www.uclibc.org/

[26] Mark Allen, “The CTDP Linux Startup Manual Version 0.6.0,” [Online document],

Available HTTP: http://ctdp.tripod.com/os/linux/startupman/index.html

http://www.tldp.org/LDP/abs/html/index.html
http://home.jwu.edu/jwright/papers/l2-
http://www.telos.de/linux/alios/default_e.htm
http://www.busybox.net/
http://www.uclibc.org/
http://ctdp.tripod.com/os/linux/startupman/index.html

ECE 4006 Wireless Intrusion Detection and Response Group 2

 139

Appendix A: Source Code

ECE 4006 Wireless Intrusion Detection and Response Group 2

 140

ipc.h

ECE 4006 Wireless Intrusion Detection and Response Group 2

 141

 1 /* Maximum message size */
 2 #define MSG_SIZE 32
 3 /* Maximum shared memory size */
 4 #define SHM_SIZE 4096
 5 /* Required by SysV IPC */
 6 #define PROJ_ID 1
 7
 8 void initializeclient(const char *server, const char *client); /* Client's
initialization */
 9 void initializeserver(const char *server, const char *client); /* Server's
initialization */
10 void deinitialize();
11
12 void requestinfo(const char *msg, void *data); /* Blocking request for
information by client */
13 void getrequest(char *msg); /* Non-blocking check for requests by server
*/
14 void sendinfo(const void *data, const char *msg); /* Non-blocking response
by server */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 142

config.h

ECE 4006 Wireless Intrusion Detection and Response Group 2

 143

1 /* The maximum number of lines in a config file */
2 #define CFG_MAX_LINES 32
3 /* The maximum length of a line in the config file */
4 #define CFG_LINE_LEN 128
5
6 int setAttribute(char const* file, char const* attr, char const* value);
7 int getAttribute(char const* file, char const* attr, char* value);
8 int runScript(char const *script);

ECE 4006 Wireless Intrusion Detection and Response Group 2

 144

ids.h

ECE 4006 Wireless Intrusion Detection and Response Group 2

 145

 1 #ifndef _ids_h
 2 #define _ids_h
 3 #define CLIENT_STATUS_ACTIVE 0x02 /* indicates that this is an active scanner */
 4 #define AUTH_STATE_NOAUTH 0
 5 #define AUTH_STATE_OPEN_AUTH_SENT 1
 6 #define AUTH_STATE_SHARED_AUTH_SENT 2
 7 #define AUTH_STATE_SHARED_AUTH_RECEIVED_CHALLENGE 3
 8 #define AUTH_STATE_SHARED_AUTH_SENT_CHALLANGE_RESPONSE 4
 9 #define AUTH_STATE_AUTH_RECEIVED 5
10 #define AUTH_STATE_ASSOCIATION_REQ 6
11 #define AUTH_STATE_ASSOCIATED 7
12 #endif

ECE 4006 Wireless Intrusion Detection and Response Group 2

 146

hostap_wlan.h

ECE 4006 Wireless Intrusion Detection and Response Group 2

 147

 1 #ifndef HOSTAP_WLAN_H
 2 #define HOSTAP_WLAN_H
 3
 4 #include "hostap_config.h"
 5 #include "hostap_crypt.h"
 6
 7 #define MAX_PARM_DEVICES 8
 8 #define PARM_MIN_MAX "1-" __MODULE_STRING(MAX_PARM_DEVICES)
 9 #define DEF_INTS -1, -1, -1, -1, -1, -1, -1
 10 #define GET_INT_PARM(var,idx) var[var[idx] < 0 ? 0 : idx]
 11
 12
 13 #define BIT(x) (1 << (x))
 14
 15 /* Specific skb->protocol value that indicates that the packet already contains
 16 * txdesc header.
 17 * FIX: This might need own value that would be allocated especially for Prism2
 18 * txdesc; ETH_P_CONTROL is commented as "Card specific control frames".
 19 * However, these skb's should have only minimal path in the kernel side since
 20 * prism2_send_mgmt() sends these with dev_queue_xmit() to prism2_tx(). */
 21 #define ETH_P_HOSTAP ETH_P_CONTROL
 22
 23 #ifndef ETH_P_PAE
 24 #define ETH_P_PAE 0x888E /* Port Access Entity (IEEE 802.1X) */
 25 #endif /* ETH_P_PAE */
 26
 27 #ifndef ARPHRD_IEEE80211
 28 #define ARPHRD_IEEE80211 801
 29 #endif
 30 #ifndef ARPHRD_IEEE80211_PRISM
 31 #define ARPHRD_IEEE80211_PRISM 802
 32 #endif
 33
 34 /* ARPHRD_IEEE80211_PRISM uses a bloated version of Prism2 RX frame header
 35 * (from linux-wlan-ng) */
 36 struct linux_wlan_ng_val {
 37 u32 did;
 38 u16 status, len;
 39 u32 data;
 40 } __attribute__ ((packed));
 41
 42 struct linux_wlan_ng_prism_hdr {
 43 u32 msgcode, msglen;
 44 char devname[16];
 45 struct linux_wlan_ng_val hosttime, mactime, channel, rssi, sq, signal,
 46 noise, rate, istx, frmlen;
 47 } __attribute__ ((packed));
 48
 49
 50 struct hfa384x_rx_frame {
 51 /* HFA384X RX frame descriptor */
 52 u16 status; /* HFA384X_RX_STATUS_ flags */
 53 u32 time; /* timestamp, 1 microsecond resolution */
 54 u8 silence; /* 27 .. 154; seems to be 0 */
 55 u8 signal; /* 27 .. 154 */
 56 u8 rate; /* 10, 20, 55, or 110 */
 57 u8 rxflow;
 58 u32 reserved;
 59
 60 /* 802.11 */
 61 u16 frame_control;
 62 u16 duration_id;
 63 u8 addr1[6];

ECE 4006 Wireless Intrusion Detection and Response Group 2

 148

 64 u8 addr2[6];
 65 u8 addr3[6];
 66 u16 seq_ctrl;
 67 u8 addr4[6];
 68 u16 data_len;
 69
 70 /* 802.3 */
 71 u8 dst_addr[6];
 72 u8 src_addr[6];
 73 u16 len;
 74
 75 /* followed by frame data; max 2304 bytes */
 76 } __attribute__ ((packed));
 77
 78
 79 struct hfa384x_tx_frame {
 80 /* HFA384X TX frame descriptor */
 81 u16 status; /* HFA384X_TX_STATUS_ flags */
 82 u16 reserved1;
 83 u16 reserved2;
 84 u32 sw_support;
 85 u8 retry_count; /* not yet implemented */
 86 u8 tx_rate; /* Host AP only; 0 = firmware, or 10, 20, 55, 110 */
 87 u16 tx_control; /* HFA384X_TX_CTRL_ flags */
 88
 89 /* 802.11 */
 90 u16 frame_control; /* parts not used */
 91 u16 duration_id;
 92 u8 addr1[6];
 93 u8 addr2[6]; /* filled by firmware */
 94 u8 addr3[6];
 95 u16 seq_ctrl; /* filled by firmware */
 96 u8 addr4[6];
 97 u16 data_len;
 98
 99 /* 802.3 */
 100 u8 dst_addr[6];
 101 u8 src_addr[6];
 102 u16 len;
 103
 104 /* followed by frame data; max 2304 bytes */
 105 } __attribute__ ((packed));
 106
 107
 108 struct hfa384x_rid_hdr
 109 {
 110 u16 len;
 111 u16 rid;
 112 } __attribute__ ((packed));
 113
 114
 115 struct hfa384x_comp_ident
 116 {
 117 u16 id;
 118 u16 variant;
 119 u16 major;
 120 u16 minor;
 121 } __attribute__ ((packed));
 122
 123 #define HFA384X_COMP_ID_PRI 0x15
 124 #define HFA384X_COMP_ID_STA 0x1f
 125 #define HFA384X_COMP_ID_FW_AP 0x14b
 126

ECE 4006 Wireless Intrusion Detection and Response Group 2

 149

 127 struct hfa384x_sup_range
 128 {
 129 u16 role;
 130 u16 id;
 131 u16 variant;
 132 u16 bottom;
 133 u16 top;
 134 } __attribute__ ((packed));
 135
 136 struct hfa384x_build_id
 137 {
 138 u16 pri_seq;
 139 u16 sec_seq;
 140 } __attribute__ ((packed));
 141
 142 /* FD01 - Download Buffer */
 143 struct hfa384x_rid_download_buffer
 144 {
 145 u16 page;
 146 u16 offset;
 147 u16 length;
 148 } __attribute__ ((packed));
 149
 150 /* BSS connection quality (RID FD43 range, RID FD51 dBm-normalized) */
 151 struct hfa384x_comms_quality {
 152 u16 comm_qual; /* 0 .. 92 */
 153 u16 signal_level; /* 27 .. 154 */
 154 u16 noise_level; /* 27 .. 154 */
 155 } __attribute__ ((packed));
 156
 157 /* Macro for converting signal levels (range 27 .. 154) to wireless ext
 158 * dBm value with some accuracy */
 159 #define HFA384X_LEVEL_TO_dBm(v) 0x100 + (v) * 100 / 255 - 100
 160
 161 struct hfa384x_scan_request {
 162 u16 channel_list;
 163 u16 txrate; /* HFA384X_RATES_* */
 164 } __attribute__ ((packed));
 165
 166 struct hfa384x_hostscan_request {
 167 u16 channel_list;
 168 u16 txrate;
 169 u16 target_ssid_len;
 170 u8 target_ssid[32];
 171 } __attribute__ ((packed));
 172
 173 struct hfa384x_join_request {
 174 u8 bssid[6];
 175 u16 channel;
 176 } __attribute__ ((packed));
 177
 178 struct hfa384x_info_frame {
 179 u16 len;
 180 u16 type;
 181 } __attribute__ ((packed));
 182
 183 struct hfa384x_comm_tallies {
 184 u16 tx_unicast_frames;
 185 u16 tx_multicast_frames;
 186 u16 tx_fragments;
 187 u16 tx_unicast_octets;
 188 u16 tx_multicast_octets;
 189 u16 tx_deferred_transmissions;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 150

 190 u16 tx_single_retry_frames;
 191 u16 tx_multiple_retry_frames;
 192 u16 tx_retry_limit_exceeded;
 193 u16 tx_discards;
 194 u16 rx_unicast_frames;
 195 u16 rx_multicast_frames;
 196 u16 rx_fragments;
 197 u16 rx_unicast_octets;
 198 u16 rx_multicast_octets;
 199 u16 rx_fcs_errors;
 200 u16 rx_discards_no_buffer;
 201 u16 tx_discards_wrong_sa;
 202 u16 rx_discards_wep_undecryptable;
 203 u16 rx_message_in_msg_fragments;
 204 u16 rx_message_in_bad_msg_fragments;
 205 } __attribute__ ((packed));
 206
 207 struct hfa384x_scan_result_hdr {
 208 u16 reserved;
 209 u16 scan_reason;
 210 #define HFA384X_SCAN_IN_PROGRESS 0 /* no results available yet */
 211 #define HFA384X_SCAN_HOST_INITIATED 1
 212 #define HFA384X_SCAN_FIRMWARE_INITIATED 2
 213 #define HFA384X_SCAN_INQUIRY_FROM_HOST 3
 214 } __attribute__ ((packed));
 215
 216 #define HFA384X_SCAN_MAX_RESULTS 32
 217
 218 struct hfa384x_scan_result {
 219 u16 chid;
 220 u16 anl;
 221 u16 sl;
 222 u8 bssid[6];
 223 u16 beacon_interval;
 224 u16 capability;
 225 u16 ssid_len;
 226 u8 ssid[32];
 227 u8 sup_rates[10];
 228 u16 rate;
 229 } __attribute__ ((packed));
 230
 231 struct comm_tallies_sums {
 232 unsigned int tx_unicast_frames;
 233 unsigned int tx_multicast_frames;
 234 unsigned int tx_fragments;
 235 unsigned int tx_unicast_octets;
 236 unsigned int tx_multicast_octets;
 237 unsigned int tx_deferred_transmissions;
 238 unsigned int tx_single_retry_frames;
 239 unsigned int tx_multiple_retry_frames;
 240 unsigned int tx_retry_limit_exceeded;
 241 unsigned int tx_discards;
 242 unsigned int rx_unicast_frames;
 243 unsigned int rx_multicast_frames;
 244 unsigned int rx_fragments;
 245 unsigned int rx_unicast_octets;
 246 unsigned int rx_multicast_octets;
 247 unsigned int rx_fcs_errors;
 248 unsigned int rx_discards_no_buffer;
 249 unsigned int tx_discards_wrong_sa;
 250 unsigned int rx_discards_wep_undecryptable;
 251 unsigned int rx_message_in_msg_fragments;
 252 unsigned int rx_message_in_bad_msg_fragments;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 151

 253 };
 254
 255
 256 struct hfa384x_regs {
 257 u16 cmd;
 258 u16 evstat;
 259 u16 offset0;
 260 u16 offset1;
 261 u16 swsupport0;
 262 };
 263
 264
 265 #if defined(PRISM2_PCCARD) || defined(PRISM2_PLX)
 266 /* I/O ports for HFA384X Controller access */
 267 #define HFA384X_CMD_OFF 0x00
 268 #define HFA384X_PARAM0_OFF 0x02
 269 #define HFA384X_PARAM1_OFF 0x04
 270 #define HFA384X_PARAM2_OFF 0x06
 271 #define HFA384X_STATUS_OFF 0x08
 272 #define HFA384X_RESP0_OFF 0x0A
 273 #define HFA384X_RESP1_OFF 0x0C
 274 #define HFA384X_RESP2_OFF 0x0E
 275 #define HFA384X_INFOFID_OFF 0x10
 276 #define HFA384X_CONTROL_OFF 0x14
 277 #define HFA384X_SELECT0_OFF 0x18
 278 #define HFA384X_SELECT1_OFF 0x1A
 279 #define HFA384X_OFFSET0_OFF 0x1C
 280 #define HFA384X_OFFSET1_OFF 0x1E
 281 #define HFA384X_RXFID_OFF 0x20
 282 #define HFA384X_ALLOCFID_OFF 0x22
 283 #define HFA384X_TXCOMPLFID_OFF 0x24
 284 #define HFA384X_SWSUPPORT0_OFF 0x28
 285 #define HFA384X_SWSUPPORT1_OFF 0x2A
 286 #define HFA384X_SWSUPPORT2_OFF 0x2C
 287 #define HFA384X_EVSTAT_OFF 0x30
 288 #define HFA384X_INTEN_OFF 0x32
 289 #define HFA384X_EVACK_OFF 0x34
 290 #define HFA384X_DATA0_OFF 0x36
 291 #define HFA384X_DATA1_OFF 0x38
 292 #define HFA384X_AUXPAGE_OFF 0x3A
 293 #define HFA384X_AUXOFFSET_OFF 0x3C
 294 #define HFA384X_AUXDATA_OFF 0x3E
 295 #endif /* PRISM2_PCCARD || PRISM2_PLX */
 296
 297 #ifdef PRISM2_PCI
 298 /* Memory addresses for ISL3874 controller access */
 299 #define HFA384X_CMD_OFF 0x00
 300 #define HFA384X_PARAM0_OFF 0x04
 301 #define HFA384X_PARAM1_OFF 0x08
 302 #define HFA384X_PARAM2_OFF 0x0C
 303 #define HFA384X_STATUS_OFF 0x10
 304 #define HFA384X_RESP0_OFF 0x14
 305 #define HFA384X_RESP1_OFF 0x18
 306 #define HFA384X_RESP2_OFF 0x1C
 307 #define HFA384X_INFOFID_OFF 0x20
 308 #define HFA384X_CONTROL_OFF 0x28
 309 #define HFA384X_SELECT0_OFF 0x30
 310 #define HFA384X_SELECT1_OFF 0x34
 311 #define HFA384X_OFFSET0_OFF 0x38
 312 #define HFA384X_OFFSET1_OFF 0x3C
 313 #define HFA384X_RXFID_OFF 0x40
 314 #define HFA384X_ALLOCFID_OFF 0x44
 315 #define HFA384X_TXCOMPLFID_OFF 0x48

ECE 4006 Wireless Intrusion Detection and Response Group 2

 152

 316 #define HFA384X_PCICOR_OFF 0x4C
 317 #define HFA384X_SWSUPPORT0_OFF 0x50
 318 #define HFA384X_SWSUPPORT1_OFF 0x54
 319 #define HFA384X_SWSUPPORT2_OFF 0x58
 320 #define HFA384X_PCIHCR_OFF 0x5C
 321 #define HFA384X_EVSTAT_OFF 0x60
 322 #define HFA384X_INTEN_OFF 0x64
 323 #define HFA384X_EVACK_OFF 0x68
 324 #define HFA384X_DATA0_OFF 0x6C
 325 #define HFA384X_DATA1_OFF 0x70
 326 #define HFA384X_AUXPAGE_OFF 0x74
 327 #define HFA384X_AUXOFFSET_OFF 0x78
 328 #define HFA384X_AUXDATA_OFF 0x7C
 329 #define HFA384X_PCI_M0_ADDRH_OFF 0x80
 330 #define HFA384X_PCI_M0_ADDRL_OFF 0x84
 331 #define HFA384X_PCI_M0_LEN_OFF 0x88
 332 #define HFA384X_PCI_M0_CTL_OFF 0x8C
 333 #define HFA384X_PCI_STATUS_OFF 0x98
 334 #define HFA384X_PCI_M1_ADDRH_OFF 0xA0
 335 #define HFA384X_PCI_M1_ADDRL_OFF 0xA4
 336 #define HFA384X_PCI_M1_LEN_OFF 0xA8
 337 #define HFA384X_PCI_M1_CTL_OFF 0xAC
 338
 339 /* PCI bus master control bits (these are undocumented; based on guessing and
 340 * experimenting..) */
 341 #define HFA384X_PCI_CTL_FROM_BAP (BIT(5) | BIT(1) | BIT(0))
 342 #define HFA384X_PCI_CTL_TO_BAP (BIT(5) | BIT(0))
 343
 344 #endif /* PRISM2_PCI */
 345
 346
 347 /* Command codes for CMD reg. */
 348 #define HFA384X_CMDCODE_INIT 0x00
 349 #define HFA384X_CMDCODE_ENABLE 0x01
 350 #define HFA384X_CMDCODE_DISABLE 0x02
 351 #define HFA384X_CMDCODE_ALLOC 0x0A
 352 #define HFA384X_CMDCODE_TRANSMIT 0x0B
 353 #define HFA384X_CMDCODE_INQUIRE 0x11
 354 #define HFA384X_CMDCODE_ACCESS 0x21
 355 #define HFA384X_CMDCODE_ACCESS_WRITE (0x21 | BIT(8))
 356 #define HFA384X_CMDCODE_DOWNLOAD 0x22
 357 #define HFA384X_CMDCODE_READMIF 0x30
 358 #define HFA384X_CMDCODE_WRITEMIF 0x31
 359 #define HFA384X_CMDCODE_TEST 0x38
 360
 361 /* Test mode operations */
 362 #define HFA384X_TEST_MONITOR 0x0B
 363 #define HFA384X_TEST_STOP 0x0F
 364 #define HFA384X_TEST_CFG_BITS 0x15
 365 #define HFA384X_TEST_CFG_BIT_ALC BIT(3)
 366
 367 #define HFA384X_CMD_BUSY BIT(15)
 368
 369 #define HFA384X_CMD_TX_RECLAIM BIT(8)
 370
 371 #define HFA384X_OFFSET_ERR BIT(14)
 372 #define HFA384X_OFFSET_BUSY BIT(15)
 373
 374
 375 /* ProgMode for download command */
 376 #define HFA384X_PROGMODE_DISABLE 0
 377 #define HFA384X_PROGMODE_ENABLE_VOLATILE 1
 378 #define HFA384X_PROGMODE_ENABLE_NON_VOLATILE 2

ECE 4006 Wireless Intrusion Detection and Response Group 2

 153

 379 #define HFA384X_PROGMODE_PROGRAM_NON_VOLATILE 3
 380
 381 #define HFA384X_AUX_MAGIC0 0xfe01
 382 #define HFA384X_AUX_MAGIC1 0xdc23
 383 #define HFA384X_AUX_MAGIC2 0xba45
 384
 385 #define HFA384X_AUX_PORT_DISABLED 0
 386 #define HFA384X_AUX_PORT_DISABLE BIT(14)
 387 #define HFA384X_AUX_PORT_ENABLE BIT(15)
 388 #define HFA384X_AUX_PORT_ENABLED (BIT(14) | BIT(15))
 389 #define HFA384X_AUX_PORT_MASK (BIT(14) | BIT(15))
 390
 391 #define PRISM2_PDA_SIZE 1024
 392
 393
 394 /* Events; EvStat, Interrupt mask (IntEn), and acknowledge bits (EvAck) */
 395 #define HFA384X_EV_TICK BIT(15)
 396 #define HFA384X_EV_WTERR BIT(14)
 397 #define HFA384X_EV_INFDROP BIT(13)
 398 #ifdef PRISM2_PCI
 399 #define HFA384X_EV_PCI_M1 BIT(9)
 400 #define HFA384X_EV_PCI_M0 BIT(8)
 401 #endif /* PRISM2_PCI */
 402 #define HFA384X_EV_INFO BIT(7)
 403 #define HFA384X_EV_DTIM BIT(5)
 404 #define HFA384X_EV_CMD BIT(4)
 405 #define HFA384X_EV_ALLOC BIT(3)
 406 #define HFA384X_EV_TXEXC BIT(2)
 407 #define HFA384X_EV_TX BIT(1)
 408 #define HFA384X_EV_RX BIT(0)
 409
 410
 411 /* HFA384X Configuration RIDs */
 412 #define HFA384X_RID_CNFPORTTYPE 0xFC00
 413 #define HFA384X_RID_CNFOWNMACADDR 0xFC01
 414 #define HFA384X_RID_CNFDESIREDSSID 0xFC02
 415 #define HFA384X_RID_CNFOWNCHANNEL 0xFC03
 416 #define HFA384X_RID_CNFOWNSSID 0xFC04
 417 #define HFA384X_RID_CNFOWNATIMWINDOW 0xFC05
 418 #define HFA384X_RID_CNFSYSTEMSCALE 0xFC06
 419 #define HFA384X_RID_CNFMAXDATALEN 0xFC07
 420 #define HFA384X_RID_CNFWDSADDRESS 0xFC08
 421 #define HFA384X_RID_CNFPMENABLED 0xFC09
 422 #define HFA384X_RID_CNFPMEPS 0xFC0A
 423 #define HFA384X_RID_CNFMULTICASTRECEIVE 0xFC0B
 424 #define HFA384X_RID_CNFMAXSLEEPDURATION 0xFC0C
 425 #define HFA384X_RID_CNFPMHOLDOVERDURATION 0xFC0D
 426 #define HFA384X_RID_CNFOWNNAME 0xFC0E
 427 #define HFA384X_RID_CNFOWNDTIMPERIOD 0xFC10
 428 #define HFA384X_RID_CNFWDSADDRESS1 0xFC11 /* AP f/w only */
 429 #define HFA384X_RID_CNFWDSADDRESS2 0xFC12 /* AP f/w only */
 430 #define HFA384X_RID_CNFWDSADDRESS3 0xFC13 /* AP f/w only */
 431 #define HFA384X_RID_CNFWDSADDRESS4 0xFC14 /* AP f/w only */
 432 #define HFA384X_RID_CNFWDSADDRESS5 0xFC15 /* AP f/w only */
 433 #define HFA384X_RID_CNFWDSADDRESS6 0xFC16 /* AP f/w only */
 434 #define HFA384X_RID_CNFMULTICASTPMBUFFERING 0xFC17 /* AP f/w only */
 435 #define HFA384X_RID_UNKNOWN1 0xFC20
 436 #define HFA384X_RID_UNKNOWN2 0xFC21
 437 #define HFA384X_RID_CNFWEPDEFAULTKEYID 0xFC23
 438 #define HFA384X_RID_CNFDEFAULTKEY0 0xFC24
 439 #define HFA384X_RID_CNFDEFAULTKEY1 0xFC25
 440 #define HFA384X_RID_CNFDEFAULTKEY2 0xFC26
 441 #define HFA384X_RID_CNFDEFAULTKEY3 0xFC27

ECE 4006 Wireless Intrusion Detection and Response Group 2

 154

 442 #define HFA384X_RID_CNFWEPFLAGS 0xFC28
 443 #define HFA384X_RID_CNFWEPKEYMAPPINGTABLE 0xFC29
 444 #define HFA384X_RID_CNFAUTHENTICATION 0xFC2A
 445 #define HFA384X_RID_CNFMAXASSOCSTA 0xFC2B /* AP f/w only */
 446 #define HFA384X_RID_CNFTXCONTROL 0xFC2C
 447 #define HFA384X_RID_CNFROAMINGMODE 0xFC2D
 448 #define HFA384X_RID_CNFHOSTAUTHENTICATION 0xFC2E /* AP f/w only */
 449 #define HFA384X_RID_CNFRCVCRCERROR 0xFC30
 450 #define HFA384X_RID_CNFMMLIFE 0xFC31
 451 #define HFA384X_RID_CNFALTRETRYCOUNT 0xFC32
 452 #define HFA384X_RID_CNFBEACONINT 0xFC33
 453 #define HFA384X_RID_CNFAPPCFINFO 0xFC34 /* AP f/w only */
 454 #define HFA384X_RID_CNFSTAPCFINFO 0xFC35
 455 #define HFA384X_RID_CNFPRIORITYQUSAGE 0xFC37
 456 #define HFA384X_RID_CNFTIMCTRL 0xFC40
 457 #define HFA384X_RID_UNKNOWN3 0xFC41 /* added in STA f/w 0.7.x */
 458 #define HFA384X_RID_CNFTHIRTY2TALLY 0xFC42 /* added in STA f/w 0.8.0 */
 459 #define HFA384X_RID_CNFENHSECURITY 0xFC43 /* AP f/w only */
 460 #define HFA384X_RID_CNFDBMADJUST 0xFC46 /* added in STA f/w 1.3.1 */
 461 #define HFA384X_RID_GROUPADDRESSES 0xFC80
 462 #define HFA384X_RID_CREATEIBSS 0xFC81
 463 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD 0xFC82
 464 #define HFA384X_RID_RTSTHRESHOLD 0xFC83
 465 #define HFA384X_RID_TXRATECONTROL 0xFC84
 466 #define HFA384X_RID_PROMISCUOUSMODE 0xFC85
 467 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD0 0xFC90 /* AP f/w only */
 468 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD1 0xFC91 /* AP f/w only */
 469 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD2 0xFC92 /* AP f/w only */
 470 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD3 0xFC93 /* AP f/w only */
 471 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD4 0xFC94 /* AP f/w only */
 472 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD5 0xFC95 /* AP f/w only */
 473 #define HFA384X_RID_FRAGMENTATIONTHRESHOLD6 0xFC96 /* AP f/w only */
 474 #define HFA384X_RID_RTSTHRESHOLD0 0xFC97 /* AP f/w only */
 475 #define HFA384X_RID_RTSTHRESHOLD1 0xFC98 /* AP f/w only */
 476 #define HFA384X_RID_RTSTHRESHOLD2 0xFC99 /* AP f/w only */
 477 #define HFA384X_RID_RTSTHRESHOLD3 0xFC9A /* AP f/w only */
 478 #define HFA384X_RID_RTSTHRESHOLD4 0xFC9B /* AP f/w only */
 479 #define HFA384X_RID_RTSTHRESHOLD5 0xFC9C /* AP f/w only */
 480 #define HFA384X_RID_RTSTHRESHOLD6 0xFC9D /* AP f/w only */
 481 #define HFA384X_RID_TXRATECONTROL0 0xFC9E /* AP f/w only */
 482 #define HFA384X_RID_TXRATECONTROL1 0xFC9F /* AP f/w only */
 483 #define HFA384X_RID_TXRATECONTROL2 0xFCA0 /* AP f/w only */
 484 #define HFA384X_RID_TXRATECONTROL3 0xFCA1 /* AP f/w only */
 485 #define HFA384X_RID_TXRATECONTROL4 0xFCA2 /* AP f/w only */
 486 #define HFA384X_RID_TXRATECONTROL5 0xFCA3 /* AP f/w only */
 487 #define HFA384X_RID_TXRATECONTROL6 0xFCA4 /* AP f/w only */
 488 #define HFA384X_RID_CNFSHORTPREAMBLE 0xFCB0
 489 #define HFA384X_RID_CNFEXCLUDELONGPREAMBLE 0xFCB1
 490 #define HFA384X_RID_CNFAUTHENTICATIONRSPTO 0xFCB2
 491 #define HFA384X_RID_CNFBASICRATES 0xFCB3
 492 #define HFA384X_RID_CNFSUPPORTEDRATES 0xFCB4
 493 #define HFA384X_RID_UNKNOWN5 0xFCB5 /* added in STA f/w 1.3.1 */
 494 #define HFA384X_RID_WEPKEYDISABLE 0xFCB6 /* added in STA f/w 1.3.1 */
 495 #define HFA384X_RID_TICKTIME 0xFCE0
 496 #define HFA384X_RID_SCANREQUEST 0xFCE1
 497 #define HFA384X_RID_JOINREQUEST 0xFCE2
 498 #define HFA384X_RID_AUTHENTICATESTATION 0xFCE3 /* AP f/w only */
 499 #define HFA384X_RID_CHANNELINFOREQUEST 0xFCE4 /* AP f/w only */
 500 #define HFA384X_RID_HOSTSCAN 0xFCE5 /* added in STA f/w 1.3.1 */
 501
 502 /* HFA384X Information RIDs */
 503 #define HFA384X_RID_MAXLOADTIME 0xFD00
 504 #define HFA384X_RID_DOWNLOADBUFFER 0xFD01

ECE 4006 Wireless Intrusion Detection and Response Group 2

 155

 505 #define HFA384X_RID_PRIID 0xFD02
 506 #define HFA384X_RID_PRISUPRANGE 0xFD03
 507 #define HFA384X_RID_CFIACTRANGES 0xFD04
 508 #define HFA384X_RID_NICSERNUM 0xFD0A
 509 #define HFA384X_RID_NICID 0xFD0B
 510 #define HFA384X_RID_MFISUPRANGE 0xFD0C
 511 #define HFA384X_RID_CFISUPRANGE 0xFD0D
 512 #define HFA384X_RID_CHANNELLIST 0xFD10
 513 #define HFA384X_RID_REGULATORYDOMAINS 0xFD11
 514 #define HFA384X_RID_TEMPTYPE 0xFD12
 515 #define HFA384X_RID_CIS 0xFD13
 516 #define HFA384X_RID_STAID 0xFD20
 517 #define HFA384X_RID_STASUPRANGE 0xFD21
 518 #define HFA384X_RID_MFIACTRANGES 0xFD22
 519 #define HFA384X_RID_CFIACTRANGES2 0xFD23
 520 #define HFA384X_RID_PRODUCTNAME 0xFD24 /* added in STA f/w 1.3.1;
 521 * only Prism2.5(?) */
 522 #define HFA384X_RID_PORTSTATUS 0xFD40
 523 #define HFA384X_RID_CURRENTSSID 0xFD41
 524 #define HFA384X_RID_CURRENTBSSID 0xFD42
 525 #define HFA384X_RID_COMMSQUALITY 0xFD43
 526 #define HFA384X_RID_CURRENTTXRATE 0xFD44
 527 #define HFA384X_RID_CURRENTBEACONINTERVAL 0xFD45
 528 #define HFA384X_RID_CURRENTSCALETHRESHOLDS 0xFD46
 529 #define HFA384X_RID_PROTOCOLRSPTIME 0xFD47
 530 #define HFA384X_RID_SHORTRETRYLIMIT 0xFD48
 531 #define HFA384X_RID_LONGRETRYLIMIT 0xFD49
 532 #define HFA384X_RID_MAXTRANSMITLIFETIME 0xFD4A
 533 #define HFA384X_RID_MAXRECEIVELIFETIME 0xFD4B
 534 #define HFA384X_RID_CFPOLLABLE 0xFD4C
 535 #define HFA384X_RID_AUTHENTICATIONALGORITHMS 0xFD4D
 536 #define HFA384X_RID_PRIVACYOPTIONIMPLEMENTED 0xFD4F
 537 #define HFA384X_RID_DBMCOMMSQUALITY 0xFD51 /* added in STA f/w 1.3.1 */
 538 #define HFA384X_RID_CURRENTTXRATE1 0xFD80 /* AP f/w only */
 539 #define HFA384X_RID_CURRENTTXRATE2 0xFD81 /* AP f/w only */
 540 #define HFA384X_RID_CURRENTTXRATE3 0xFD82 /* AP f/w only */
 541 #define HFA384X_RID_CURRENTTXRATE4 0xFD83 /* AP f/w only */
 542 #define HFA384X_RID_CURRENTTXRATE5 0xFD84 /* AP f/w only */
 543 #define HFA384X_RID_CURRENTTXRATE6 0xFD85 /* AP f/w only */
 544 #define HFA384X_RID_OWNMACADDR 0xFD86 /* AP f/w only */
 545 #define HFA384X_RID_SCANRESULTSTABLE 0xFD88 /* added in STA f/w 0.8.3 */
 546 #define HFA384X_RID_HOSTSCANRESULTS 0xFD89 /* added in STA f/w 1.3.1 */
 547 #define HFA384X_RID_AUTHENTICATIONUSED 0xFD8A /* added in STA f/w 1.3.4 */
 548 #define HFA384X_RID_PHYTYPE 0xFDC0
 549 #define HFA384X_RID_CURRENTCHANNEL 0xFDC1
 550 #define HFA384X_RID_CURRENTPOWERSTATE 0xFDC2
 551 #define HFA384X_RID_CCAMODE 0xFDC3
 552 #define HFA384X_RID_SUPPORTEDDATARATES 0xFDC6
 553 #define HFA384X_RID_BUILDSEQ 0xFFFE
 554 #define HFA384X_RID_FWID 0xFFFF
 555
 556 /* HFA384X Information frames */
 557 #define HFA384X_INFO_COMMTALLIES 0xF100
 558 #define HFA384X_INFO_SCANRESULTS 0xF101
 559 #define HFA384X_INFO_CHANNELINFORESULTS 0xF102 /* AP f/w only */
 560 #define HFA384X_INFO_HOSTSCANRESULTS 0xF103
 561 #define HFA384X_INFO_LINKSTATUS 0xF200
 562
 563 enum { HFA384X_LINKSTATUS_CONNECTED = 1,
 564 HFA384X_LINKSTATUS_DISCONNECTED = 2,
 565 HFA384X_LINKSTATUS_AP_CHANGE = 3,
 566 HFA384X_LINKSTATUS_AP_OUT_OF_RANGE = 4,
 567 HFA384X_LINKSTATUS_AP_IN_RANGE = 5,

ECE 4006 Wireless Intrusion Detection and Response Group 2

 156

 568 HFA384X_LINKSTATUS_ASSOC_FAILED = 6 };
 569
 570 enum { HFA384X_PORTTYPE_BSS = 1, HFA384X_PORTTYPE_WDS = 2,
 571 HFA384X_PORTTYPE_PSEUDO_IBSS = 3, HFA384X_PORTTYPE_IBSS = 0,
 572 HFA384X_PORTTYPE_HOSTAP = 6 };
 573
 574 #define HFA384X_RATES_1MBPS BIT(0)
 575 #define HFA384X_RATES_2MBPS BIT(1)
 576 #define HFA384X_RATES_5MBPS BIT(2)
 577 #define HFA384X_RATES_11MBPS BIT(3)
 578
 579 #define HFA384X_ROAMING_FIRMWARE 1
 580 #define HFA384X_ROAMING_HOST 2
 581 #define HFA384X_ROAMING_DISABLED 3
 582
 583 #define HFA384X_WEPFLAGS_PRIVACYINVOKED BIT(0)
 584 #define HFA384X_WEPFLAGS_EXCLUDEUNENCRYPTED BIT(1)
 585 #define HFA384X_WEPFLAGS_HOSTENCRYPT BIT(4)
 586 #define HFA384X_WEPFLAGS_HOSTDECRYPT BIT(7)
 587
 588 #define HFA384X_RX_STATUS_MSGTYPE (BIT(15) | BIT(14) | BIT(13))
 589 #define HFA384X_RX_STATUS_PCF BIT(12)
 590 #define HFA384X_RX_STATUS_MACPORT (BIT(10) | BIT(9) | BIT(8))
 591 #define HFA384X_RX_STATUS_UNDECR BIT(1)
 592 #define HFA384X_RX_STATUS_FCSERR BIT(0)
 593
 594 enum { HFA384X_RX_MSGTYPE_NORMAL = 0, HFA384X_RX_MSGTYPE_RFC1042 = 1,
 595 HFA384X_RX_MSGTYPE_BRIDGETUNNEL = 2, HFA384X_RX_MSGTYPE_MGMT = 4 };
 596
 597
 598 #define HFA384X_TX_CTRL_ALT_RTRY BIT(5)
 599 #define HFA384X_TX_CTRL_802_11 BIT(3)
 600 #define HFA384X_TX_CTRL_802_3 0
 601 #define HFA384X_TX_CTRL_TX_EX BIT(2)
 602 #define HFA384X_TX_CTRL_TX_OK BIT(1)
 603
 604 #define HFA384X_TX_STATUS_RETRYERR BIT(0)
 605 #define HFA384X_TX_STATUS_AGEDERR BIT(1)
 606 #define HFA384X_TX_STATUS_DISCON BIT(2)
 607 #define HFA384X_TX_STATUS_FORMERR BIT(3)
 608
 609 /* HFA3861/3863 (BBP) Control Registers */
 610 #define HFA386X_CR_TX_CONFIGURE 0x12
 611 #define HFA386X_CR_RX_CONFIGURE 0x14
 612 #define HFA386X_CR_A_D_TEST_MODES2 0x1A
 613 #define HFA386X_CR_MANUAL_TX_POWER 0x3E
 614
 615 /* IEEE 802.11 defines */
 616
 617 #define WLAN_FC_PVER (BIT(1) | BIT(0))
 618 #define WLAN_FC_TODS BIT(8)
 619 #define WLAN_FC_FROMDS BIT(9)
 620 #define WLAN_FC_MOREFRAG BIT(10)
 621 #define WLAN_FC_RETRY BIT(11)
 622 #define WLAN_FC_PWRMGT BIT(12)
 623 #define WLAN_FC_MOREDATA BIT(13)
 624 #define WLAN_FC_ISWEP BIT(14)
 625 #define WLAN_FC_ORDER BIT(15)
 626
 627 #define WLAN_FC_GET_TYPE(fc) (((fc) & (BIT(3) | BIT(2))) >> 2)
 628 #define WLAN_FC_GET_STYPE(fc) \
 629 (((fc) & (BIT(7) | BIT(6) | BIT(5) | BIT(4))) >> 4)
 630

ECE 4006 Wireless Intrusion Detection and Response Group 2

 157

 631 #define WLAN_GET_SEQ_FRAG(seq) ((seq) & (BIT(3) | BIT(2) | BIT(1) | BIT(0)))
 632 #define WLAN_GET_SEQ_SEQ(seq) \
 633 (((seq) & (~(BIT(3) | BIT(2) | BIT(1) | BIT(0)))) >> 4)
 634
 635 #define WLAN_FC_TYPE_MGMT 0
 636 #define WLAN_FC_TYPE_CTRL 1
 637 #define WLAN_FC_TYPE_DATA 2
 638
 639 /* management */
 640 #define WLAN_FC_STYPE_ASSOC_REQ 0
 641 #define WLAN_FC_STYPE_ASSOC_RESP 1
 642 #define WLAN_FC_STYPE_REASSOC_REQ 2
 643 #define WLAN_FC_STYPE_REASSOC_RESP 3
 644 #define WLAN_FC_STYPE_PROBE_REQ 4
 645 #define WLAN_FC_STYPE_PROBE_RESP 5
 646 #define WLAN_FC_STYPE_BEACON 8
 647 #define WLAN_FC_STYPE_ATIM 9
 648 #define WLAN_FC_STYPE_DISASSOC 10
 649 #define WLAN_FC_STYPE_AUTH 11
 650 #define WLAN_FC_STYPE_DEAUTH 12
 651
 652 /* control */
 653 #define WLAN_FC_STYPE_PSPOLL 10
 654 #define WLAN_FC_STYPE_RTS 11
 655 #define WLAN_FC_STYPE_CTS 12
 656 #define WLAN_FC_STYPE_ACK 13
 657 #define WLAN_FC_STYPE_CFEND 14
 658 #define WLAN_FC_STYPE_CFENDACK 15
 659
 660 /* data */
 661 #define WLAN_FC_STYPE_DATA 0
 662 #define WLAN_FC_STYPE_DATA_CFACK 1
 663 #define WLAN_FC_STYPE_DATA_CFPOLL 2
 664 #define WLAN_FC_STYPE_DATA_CFACKPOLL 3
 665 #define WLAN_FC_STYPE_NULLFUNC 4
 666 #define WLAN_FC_STYPE_CFACK 5
 667 #define WLAN_FC_STYPE_CFPOLL 6
 668 #define WLAN_FC_STYPE_CFACKPOLL 7
 669
 670 /* Authentication algorithms */
 671 #define WLAN_AUTH_OPEN 0
 672 #define WLAN_AUTH_SHARED_KEY 1
 673
 674 #define WLAN_AUTH_CHALLENGE_LEN 128
 675
 676 #define WLAN_CAPABILITY_ESS BIT(0)
 677 #define WLAN_CAPABILITY_IBSS BIT(1)
 678 #define WLAN_CAPABILITY_CF_POLLABLE BIT(2)
 679 #define WLAN_CAPABILITY_CF_POLL_REQUEST BIT(3)
 680 #define WLAN_CAPABILITY_PRIVACY BIT(4)
 681
 682 /* Status codes */
 683 #define WLAN_STATUS_SUCCESS 0
 684 #define WLAN_STATUS_UNSPECIFIED_FAILURE 1
 685 #define WLAN_STATUS_CAPS_UNSUPPORTED 10
 686 #define WLAN_STATUS_REASSOC_NO_ASSOC 11
 687 #define WLAN_STATUS_ASSOC_DENIED_UNSPEC 12
 688 #define WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG 13
 689 #define WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION 14
 690 #define WLAN_STATUS_CHALLENGE_FAIL 15
 691 #define WLAN_STATUS_AUTH_TIMEOUT 16
 692 #define WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA 17
 693 #define WLAN_STATUS_ASSOC_DENIED_RATES 18

ECE 4006 Wireless Intrusion Detection and Response Group 2

 158

 694 /* 802.11b */
 695 #define WLAN_STATUS_ASSOC_DENIED_NOSHORT 19
 696 #define WLAN_STATUS_ASSOC_DENIED_NOPBCC 20
 697 #define WLAN_STATUS_ASSOC_DENIED_NOAGILITY 21
 698
 699 /* Reason codes */
 700 #define WLAN_REASON_UNSPECIFIED 1
 701 #define WLAN_REASON_PREV_AUTH_NOT_VALID 2
 702 #define WLAN_REASON_DEAUTH_LEAVING 3
 703 #define WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY 4
 704 #define WLAN_REASON_DISASSOC_AP_BUSY 5
 705 #define WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA 6
 706 #define WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA 7
 707 #define WLAN_REASON_DISASSOC_STA_HAS_LEFT 8
 708 #define WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH 9
 709
 710
 711 /* Information Element IDs */
 712 #define WLAN_EID_SSID 0
 713 #define WLAN_EID_SUPP_RATES 1
 714 #define WLAN_EID_FH_PARAMS 2
 715 #define WLAN_EID_DS_PARAMS 3
 716 #define WLAN_EID_CF_PARAMS 4
 717 #define WLAN_EID_TIM 5
 718 #define WLAN_EID_IBSS_PARAMS 6
 719 #define WLAN_EID_CHALLENGE 16
 720
 721
 722 #define MAC2STR(a) (a)[0], (a)[1], (a)[2], (a)[3], (a)[4], (a)[5]
 723 #define MACSTR "%02x:%02x:%02x:%02x:%02x:%02x"
 724
 725
 726 /* netdevice private ioctls (used, e.g., with iwpriv from user space) */
 727
 728 #if WIRELESS_EXT >= 12
 729
 730 /* New wireless extensions API - SET/GET convention (even ioctl numbers are
 731 * root only)
 732 */
 733 #define PRISM2_IOCTL_PRISM2_PARAM (SIOCIWFIRSTPRIV + 0)
 734 #define PRISM2_IOCTL_GET_PRISM2_PARAM (SIOCIWFIRSTPRIV + 1)
 735 #define PRISM2_IOCTL_WRITEMIF (SIOCIWFIRSTPRIV + 2)
 736 #define PRISM2_IOCTL_READMIF (SIOCIWFIRSTPRIV + 3)
 737 #define PRISM2_IOCTL_MONITOR (SIOCIWFIRSTPRIV + 4)
 738 #define PRISM2_IOCTL_RESET (SIOCIWFIRSTPRIV + 6)
 739 #define PRISM2_IOCTL_INQUIRE (SIOCIWFIRSTPRIV + 8)
 740 #define PRISM2_IOCTL_WDS_ADD (SIOCIWFIRSTPRIV + 10)
 741 #define PRISM2_IOCTL_WDS_DEL (SIOCIWFIRSTPRIV + 12)
 742 #define PRISM2_IOCTL_SET_RID_WORD (SIOCIWFIRSTPRIV + 14)
 743 #define PRISM2_IOCTL_MACCMD (SIOCIWFIRSTPRIV + 16)
 744 #define PRISM2_IOCTL_ADDMAC (SIOCIWFIRSTPRIV + 18)
 745 #define PRISM2_IOCTL_DELMAC (SIOCIWFIRSTPRIV + 20)
 746 #define PRISM2_IOCTL_KICKMAC (SIOCIWFIRSTPRIV + 22)
 747
 748 /* following are not in SIOCGIWPRIV list; check permission in the driver code
 749 */
 750 #define PRISM2_IOCTL_DOWNLOAD (SIOCDEVPRIVATE + 13)
 751 #define PRISM2_IOCTL_HOSTAPD (SIOCDEVPRIVATE + 14)
 752
 753 #else /* WIRELESS_EXT >= 12 */
 754
 755 /* Old wireless extensions API - check permission in the driver code */
 756 #define PRISM2_IOCTL_MONITOR (SIOCDEVPRIVATE)

ECE 4006 Wireless Intrusion Detection and Response Group 2

 159

 757 #define PRISM2_IOCTL_PRISM2_PARAM (SIOCDEVPRIVATE + 1)
 758 #define PRISM2_IOCTL_READMIF (SIOCDEVPRIVATE + 2)
 759 #define PRISM2_IOCTL_WRITEMIF (SIOCDEVPRIVATE + 3)
 760 #define PRISM2_IOCTL_RESET (SIOCDEVPRIVATE + 4)
 761 #define PRISM2_IOCTL_INQUIRE (SIOCDEVPRIVATE + 5)
 762 #define PRISM2_IOCTL_WDS_ADD (SIOCDEVPRIVATE + 6)
 763 #define PRISM2_IOCTL_WDS_DEL (SIOCDEVPRIVATE + 7)
 764 #define PRISM2_IOCTL_SET_RID_WORD (SIOCDEVPRIVATE + 8)
 765 #define PRISM2_IOCTL_MACCMD (SIOCDEVPRIVATE + 9)
 766 #define PRISM2_IOCTL_ADDMAC (SIOCDEVPRIVATE + 10)
 767 #define PRISM2_IOCTL_DELMAC (SIOCDEVPRIVATE + 11)
 768 #define PRISM2_IOCTL_KICKMAC (SIOCDEVPRIVATE + 12)
 769 #define PRISM2_IOCTL_DOWNLOAD (SIOCDEVPRIVATE + 13)
 770 #define PRISM2_IOCTL_HOSTAPD (SIOCDEVPRIVATE + 14)
 771
 772 #endif /* WIRELESS_EXT >= 12 */
 773
 774
 775 /* PRISM2_IOCTL_PRISM2_PARAM ioctl() subtypes: */
 776 enum {
 777 PRISM2_PARAM_PTYPE = 1,
 778 PRISM2_PARAM_TXRATECTRL = 2,
 779 PRISM2_PARAM_BEACON_INT = 3,
 780 PRISM2_PARAM_PSEUDO_IBSS = 4,
 781 PRISM2_PARAM_ALC = 5,
 782 PRISM2_PARAM_TXPOWER = 6,
 783 PRISM2_PARAM_DUMP = 7,
 784 PRISM2_PARAM_OTHER_AP_POLICY = 8,
 785 PRISM2_PARAM_AP_MAX_INACTIVITY = 9,
 786 PRISM2_PARAM_AP_BRIDGE_PACKETS = 10,
 787 PRISM2_PARAM_DTIM_PERIOD = 11,
 788 PRISM2_PARAM_AP_NULLFUNC_ACK = 12,
 789 PRISM2_PARAM_MAX_WDS = 13,
 790 PRISM2_PARAM_AP_AUTOM_AP_WDS = 14,
 791 PRISM2_PARAM_AP_AUTH_ALGS = 15,
 792 PRISM2_PARAM_MONITOR_ALLOW_FCSERR = 16,
 793 PRISM2_PARAM_HOST_ENCRYPT = 17,
 794 PRISM2_PARAM_HOST_DECRYPT = 18,
 795 PRISM2_PARAM_BUS_MASTER_THRESHOLD_RX = 19,
 796 PRISM2_PARAM_BUS_MASTER_THRESHOLD_TX = 20,
 797 PRISM2_PARAM_HOST_ROAMING = 21,
 798 PRISM2_PARAM_BCRX_STA_KEY = 22,
 799 PRISM2_PARAM_IEEE_802_1X = 23,
 800 PRISM2_PARAM_ANTSEL_TX = 24,
 801 PRISM2_PARAM_ANTSEL_RX = 25,
 802 PRISM2_PARAM_MONITOR_TYPE = 26,
 803 PRISM2_PARAM_WDS_TYPE = 27,
 804 };
 805
 806 enum { HOSTAP_ANTSEL_DO_NOT_TOUCH = 0, HOSTAP_ANTSEL_DIVERSITY = 1,
 807 HOSTAP_ANTSEL_LOW = 2, HOSTAP_ANTSEL_HIGH = 3 };
 808
 809
 810 /* PRISM2_IOCTL_MACCMD ioctl() subcommands: */
 811 enum { AP_MAC_CMD_POLICY_OPEN = 0, AP_MAC_CMD_POLICY_ALLOW = 1,
 812 AP_MAC_CMD_POLICY_DENY = 2, AP_MAC_CMD_FLUSH = 3,
 813 AP_MAC_CMD_KICKALL = 4 };
 814
 815
 816 /* PRISM2_IOCTL_DOWNLOAD ioctl() dl_cmd: */
 817 enum {
 818 PRISM2_DOWNLOAD_VOLATILE = 1 /* RAM */,
 819 PRISM2_DOWNLOAD_NON_VOLATILE = 2 /* FLASH */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 160

 820 };
 821
 822 struct prism2_download_param {
 823 u32 dl_cmd;
 824 u32 start_addr;
 825 u32 num_areas;
 826 struct prism2_download_area {
 827 u32 addr; /* wlan card address */
 828 u32 len;
 829 caddr_t ptr; /* pointer to data in user space */
 830 } data[0];
 831 };
 832
 833 #define PRISM2_MAX_DOWNLOAD_AREA_LEN 131072
 834 #define PRISM2_MAX_DOWNLOAD_LEN 262144
 835
 836
 837 /* PRISM2_IOCTL_HOSTAPD ioctl() cmd: */
 838 enum {
 839 PRISM2_HOSTAPD_FLUSH = 1,
 840 PRISM2_HOSTAPD_ADD_STA = 2,
 841 PRISM2_HOSTAPD_REMOVE_STA = 3,
 842 PRISM2_HOSTAPD_GET_INFO_STA = 4,
 843 PRISM2_HOSTAPD_RESET_TXEXC_STA = 5,
 844 PRISM2_SET_ENCRYPTION = 6,
 845 PRISM2_GET_ENCRYPTION = 7,
 846 PRISM2_HOSTAPD_SET_FLAGS_STA = 8,
 847 PRISM2_HOSTAPD_GET_RID = 9,
 848 PRISM2_HOSTAPD_SET_RID = 10,
 849 };
 850
 851 #define PRISM2_HOSTAPD_MAX_BUF_SIZE 1024
 852 #define PRISM2_HOSTAPD_RID_HDR_LEN \
 853 ((int) (&((struct prism2_hostapd_param *) 0)->u.rid.data))
 854
 855 struct prism2_hostapd_param {
 856 u32 cmd;
 857 u8 sta_addr[ETH_ALEN];
 858 union {
 859 struct {
 860 u16 aid;
 861 u16 capability;
 862 u8 tx_supp_rates;
 863 } add_sta;
 864 struct {
 865 u32 inactive_sec;
 866 u32 txexc;
 867 } get_info_sta;
 868 struct {
 869 u8 alg[HOSTAP_CRYPT_ALG_NAME_LEN];
 870 u32 flags;
 871 u32 err;
 872 u8 idx;
 873 u16 key_len;
 874 u8 key[0];
 875 } crypt;
 876 struct {
 877 u32 flags_and;
 878 u32 flags_or;
 879 } set_flags_sta;
 880 struct {
 881 u16 rid;
 882 u16 len;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 161

 883 u8 data[0];
 884 } rid;
 885 } u;
 886 };
 887
 888 #define HOSTAP_CRYPT_FLAG_SET_TX_KEY BIT(0)
 889 #define HOSTAP_CRYPT_FLAG_PERMANENT BIT(1)
 890
 891 #define HOSTAP_CRYPT_ERR_UNKNOWN_ALG 2
 892 #define HOSTAP_CRYPT_ERR_UNKNOWN_ADDR 3
 893 #define HOSTAP_CRYPT_ERR_CRYPT_INIT_FAILED 4
 894 #define HOSTAP_CRYPT_ERR_KEY_SET_FAILED 5
 895 #define HOSTAP_CRYPT_ERR_TX_KEY_SET_FAILED 6
 896 #define HOSTAP_CRYPT_ERR_CARD_CONF_FAILED 7
 897
 898
 899 #ifdef __KERNEL__
 900
 901 #define PRISM2_TXFID_COUNT 8
 902 #define PRISM2_DATA_MAXLEN 2304
 903 #define PRISM2_TXFID_LEN (PRISM2_DATA_MAXLEN + sizeof(struct hfa384x_tx_frame))
 904 #define PRISM2_TXFID_EMPTY 0xffff
 905 #define PRISM2_TXFID_RESERVED 0xfffe
 906 #define PRISM2_DUMMY_FID 0xffff
 907 #define MAX_SSID_LEN 32
 908 #define MAX_NAME_LEN 32 /* this is assumed to be equal to MAX_SSID_LEN */
 909
 910 #define PRISM2_DUMP_RX_HDR BIT(0)
 911 #define PRISM2_DUMP_TX_HDR BIT(1)
 912 #define PRISM2_DUMP_TXEXC_HDR BIT(2)
 913
 914 typedef struct prism2_wds_info prism2_wds_info_t;
 915
 916 struct prism2_wds_info {
 917 /* must start with dev, since it is used also as a pointer to whole
 918 * prism2_wds_info structure */
 919 struct net_device dev;
 920 u8 remote_addr[6];
 921 struct net_device_stats stats;
 922 prism2_wds_info_t *next;
 923 };
 924
 925
 926 /* IEEE 802.11 requires that STA supports concurrent reception of at least
 927 * three fragmented frames. This define can be increased to support more
 928 * concurrent frames, but it should be noted that each entry can consume about
 929 * 2 kB of RAM and increasing cache size will slow down frame reassembly. */
 930 #define PRISM2_FRAG_CACHE_LEN 4
 931
 932 struct prism2_frag_entry {
 933 unsigned long first_frag_time;
 934 unsigned int seq;
 935 unsigned int last_frag;
 936 struct sk_buff *skb;
 937 u8 src_addr[ETH_ALEN];
 938 u8 dst_addr[ETH_ALEN];
 939 };
 940
 941
 942 struct prism2_crypt_data {
 943 struct list_head list; /* delayed deletion list */
 944 struct hostap_crypto_ops *ops;
 945 void *priv;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 162

 946 atomic_t refcnt;
 947 };
 948
 949 struct hostap_cmd_queue {
 950 struct list_head list;
 951 wait_queue_head_t compl;
 952 volatile enum { CMD_SLEEP, CMD_CALLBACK, CMD_COMPLETED } type;
 953 void (*callback)(struct net_device *dev, void *context, u16 resp0,
 954 u16 res);
 955 void *context;
 956 u16 cmd, param0, param1;
 957 u16 resp0, res;
 958 volatile int issued, issuing;
 959
 960 atomic_t usecnt;
 961 int del_req;
 962 };
 963
 964 /* prism2_rx_80211 'type' argument */
 965 enum {
 966 PRISM2_RX_MONITOR, PRISM2_RX_MGMT, PRISM2_RX_NON_ASSOC,
 967 PRISM2_RX_NULLFUNC_ACK
 968 };
 969
 970 /* options for hw_shutdown */
 971 #define HOSTAP_HW_NO_DISABLE BIT(0)
 972 #define HOSTAP_HW_ENABLE_CMDCOMPL BIT(1)
 973
 974 typedef struct local_info local_info_t;
 975
 976 struct prism2_helper_functions {
 977 /* these functions are defined in hardware model specific files
 978 * (hostap_{cs,plx,pci}.c */
 979 int (*card_present)(local_info_t *local);
 980 void (*cor_sreset)(local_info_t *local);
 981 int (*dev_open)(local_info_t *local);
 982 int (*dev_close)(local_info_t *local);
 983
 984 /* the following functions are from hostap_hw.c, but they may have some
 985 * hardware model specific code */
 986
 987 /* FIX: low-level commands like cmd might disappear at some point to
 988 * make it easier to change them if needed (e.g., cmd would be replaced
 989 * with write_mif/read_mif/testcmd/inquire); at least get_rid and
 990 * set_rid might move to hostap_{cs,plx,pci}.c */
 991 int (*cmd)(struct net_device *dev, u16 cmd, u16 param0, u16 *param1,
 992 u16 *resp0);
 993 void (*read_regs)(struct net_device *dev, struct hfa384x_regs *regs);
 994 int (*from_bap)(struct net_device *dev, u16 bap, void *buf, int len);
 995 int (*get_rid)(struct net_device *dev, u16 rid, void *buf, int len,
 996 int exact_len);
 997 int (*set_rid)(struct net_device *dev, u16 rid, void *buf, int len);
 998 int (*hw_enable)(struct net_device *dev, int initial);
 999 int (*hw_config)(struct net_device *dev, int initial);
1000 void (*hw_reset)(struct net_device *dev);
1001 void (*hw_shutdown)(struct net_device *dev, int no_disable);
1002 int (*reset_port)(struct net_device *dev);
1003 int (*tx)(struct sk_buff *skb, struct net_device *dev);
1004 void (*schedule_reset)(local_info_t *local);
1005 #ifdef PRISM2_DOWNLOAD_SUPPORT
1006 int (*download)(local_info_t *local,
1007 struct prism2_download_param *param);
1008 #endif /* PRISM2_DOWNLOAD_SUPPORT */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 163

1009 int (*rx_80211)(struct net_device *dev,
1010 struct hfa384x_rx_frame *rxdesc,
1011 int type, char *extra, int extra_len, char *buf);
1012 };
1013
1014 struct local_info {
1015 struct module *hw_module;
1016 int card_idx;
1017 int dev_enabled;
1018 struct net_device *dev;
1019 spinlock_t cmdlock, baplock, wdslock, lock;
1020 u16 infofid; /* MAC buffer id for info frame */
1021 /* txfid, intransmitfid, next_txtid, and next_alloc are protected by
1022 * txfidlock */
1023 spinlock_t txfidlock;
1024 int txfid_len; /* length of allocated TX buffers */
1025 u16 txfid[PRISM2_TXFID_COUNT]; /* buffer IDs for TX frames */
1026 /* buffer IDs for intransmit frames or PRISM2_TXFID_EMPTY if
1027 * corresponding txfid is free for next TX frame */
1028 u16 intransmitfid[PRISM2_TXFID_COUNT];
1029 int next_txfid; /* index to the next txfid to be checked for
1030 * availability */
1031 int next_alloc; /* index to the next intransmitfid to be checked for
1032 * allocation events */
1033
1034 /* bitfield for atomic bitops */
1035 #define HOSTAP_BITS_TRANSMIT 0
1036 long bits;
1037
1038 struct ap_data *ap;
1039
1040 char essid[MAX_SSID_LEN + 1];
1041 char name[MAX_NAME_LEN + 1];
1042 int name_set;
1043 u16 channel_mask;
1044 struct comm_tallies_sums comm_tallies;
1045 struct net_device_stats stats;
1046 struct proc_dir_entry *proc;
1047 int iw_mode; /* operating mode (IW_MODE_*) */
1048 int pseudo_adhoc; /* 0: IW_MODE_ADHOC is real 802.11 compliant IBSS
1049 * 1: IW_MODE_ADHOC is "pseudo IBSS" */
1050 char bssid[ETH_ALEN];
1051 int channel;
1052 int beacon_int;
1053 int dtim_period;
1054 int disable_on_close;
1055 int mtu;
1056 int frame_dump; /* dump RX/TX frame headers, PRISM2_DUMP_ flags */
1057 int fw_tx_rate_control;
1058 u16 tx_rate_control;
1059 int hw_resetting;
1060 int hw_ready;
1061 int hw_reset_tries; /* how many times reset has been tried */
1062 int hw_downloading;
1063
1064 enum {
1065 PRISM2_TXPOWER_AUTO = 0, PRISM2_TXPOWER_OFF,
1066 PRISM2_TXPOWER_FIXED, PRISM2_TXPOWER_UNKNOWN
1067 } txpower_type;
1068 int txpower; /* if txpower_type == PRISM2_TXPOWER_FIXED */
1069
1070 /* skb queue for packets to be send using dev_queue_xmit() after
1071 * exiting hard IRQ handler (prism2_rx) */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 164

1072 struct sk_buff_head bridge_list;
1073 struct tq_struct bridge_queue;
1074
1075 /* command queue for hfa384x_cmd(); protected with cmdlock */
1076 struct list_head cmd_queue;
1077 /* max_len for cmd_queue; in addition, cmd_callback can use two
1078 * additional entries to prevent sleeping commands from stopping
1079 * transmits */
1080 #define HOSTAP_CMD_QUEUE_MAX_LEN 16
1081 int cmd_queue_len; /* number of entries in cmd_queue */
1082
1083 /* if card timeout is detected in interrupt context, reset_queue is
1084 * used to schedule card reseting to be done in user context */
1085 struct tq_struct reset_queue;
1086
1087 prism2_wds_info_t *wds; /* list of established wds connections */
1088 int wds_max_connections;
1089 int wds_connections;
1090 #define HOSTAP_WDS_BROADCAST_RA BIT(0)
1091 #define HOSTAP_WDS_AP_CLIENT BIT(1)
1092 u32 wds_type;
1093 u16 tx_control; /* flags to be used in TX description */
1094 int manual_retry_count; /* -1 = use f/w default; otherwise retry count
1095 * to be used with all frames */
1096
1097 #ifdef WIRELESS_EXT
1098 struct iw_statistics wstats;
1099 #if WIRELESS_EXT > 13
1100 unsigned long scan_timestamp; /* Time started to scan */
1101 #endif /* WIRELESS_EXT > 13 */
1102 #endif /* WIRELESS_EXT */
1103 enum {
1104 PRISM2_MONITOR_80211 = 0, PRISM2_MONITOR_PRISM = 1
1105 } monitor_type;
1106 int (*saved_eth_header_parse)(struct sk_buff *skb,
1107 unsigned char *haddr);
1108 int monitor_allow_fcserr;
1109 #ifdef PRISM2_HOSTAPD
1110 struct net_device *apdev;
1111 struct net_device_stats apdevstats;
1112 #endif /* PRISM2_HOSTAPD */
1113
1114 struct prism2_crypt_data *crypt;
1115 struct timer_list crypt_deinit_timer;
1116 struct list_head crypt_deinit_list;
1117
1118 #define WEP_KEYS 4
1119 #define WEP_KEY_LEN 13
1120 int open_wep; /* allow unencrypted frames */
1121 int host_encrypt;
1122 int host_decrypt;
1123 int fw_encrypt_ok; /* whether firmware-based WEP encrypt is working
1124 * in Host AP mode (STA f/w 1.4.9 or newer) */
1125 int bcrx_sta_key; /* use individual keys to override default keys even
1126 * with RX of broad/multicast frames */
1127
1128 struct prism2_frag_entry frag_cache[PRISM2_FRAG_CACHE_LEN];
1129 unsigned int frag_next_idx;
1130
1131 int ieee_802_1x; /* is IEEE 802.1X used */
1132
1133 int antsel_tx, antsel_rx;
1134

ECE 4006 Wireless Intrusion Detection and Response Group 2

 165

1135 struct prism2_helper_functions *func;
1136
1137 int bus_master_threshold_tx;
1138 int bus_master_threshold_rx;
1139 u8 *bus_m1_buf;
1140 int pending_rx_frame_authorized; /* is the receiving station authorized
1141 * (used with IEEE 802.1X) */
1142 prism2_wds_info_t *rx_wds;
1143 struct hfa384x_rx_frame rxdesc;
1144
1145 u8 *pda;
1146 int fw_ap;
1147
1148 int host_roaming;
1149 unsigned long last_join_time; /* time of last JoinRequest */
1150 struct hfa384x_scan_result *last_scan_results;
1151 int last_scan_results_count;
1152 struct tq_struct info_queue;
1153 long pending_info; /* bit field of pending info_queue items */
1154 #define PRISM2_INFO_PENDING_LINKSTATUS 0
1155 #define PRISM2_INFO_PENDING_SCANRESULTS 1
1156 int prev_link_status; /* previous received LinkStatus info */
1157 u8 preferred_ap[6]; /* use this AP if possible */
1158
1159 #ifdef PRISM2_CALLBACK
1160 void *callback_data; /* Can be used in callbacks; e.g., allocate
1161 * on enable event and free on disable event.
1162 * Host AP driver code does not touch this. */
1163 #endif /* PRISM2_CALLBACK */
1164
1165 #ifdef PRISM2_CHECK_INTERRUPT_DELIVERY
1166 /* Interrupt delivery problem detector; number of handled Tick Events
1167 * and timer to check whether events were received */
1168 unsigned int ev_tick_counter;
1169 struct timer_list ev_tick_timer;
1170 #endif /* PRISM2_CHECK_INTERRUPT_DELIVERY */
1171
1172
1173 /* struct local_info is used also in hostap.o that does not define
1174 * any PRISM2_{PCCARD,PLX,PCI}. Make sure that the hardware version
1175 * specific fields are in the end of the struct (these could also be
1176 * moved to void *priv or something like that). */
1177 #ifdef PRISM2_PCCARD
1178 dev_node_t node;
1179 dev_link_t *link;
1180 #endif /* PRISM2_PCCARD */
1181
1182 #ifdef PRISM2_PLX
1183 unsigned long attr_mem;
1184 unsigned int cor_offset;
1185 #endif /* PRISM2_PLX */
1186
1187 #ifdef PRISM2_PCI
1188 unsigned long attr_mem;
1189 unsigned int cor_offset;
1190 #ifdef PRISM2_BUS_MASTER
1191 /* bus master for BAP0 (TX) */
1192 int bus_m0_tx_idx;
1193 u8 *bus_m0_buf;
1194 int bus_m0_in_use;
1195
1196 /* bus master for BAP1 (RX) */
1197 int bus_m1_in_use;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 166

1198 #endif /* PRISM2_BUS_MASTER */
1199 #ifdef CONFIG_PM
1200 u32 pci_save_state[16];
1201 #endif /* CONFIG_PM */
1202 #endif /* PRISM2_PCI */
1203
1204 /* NOTE! Do not add common entries after here after hardware version
1205 * specific blocks. */
1206 };
1207
1208 /* if wireless ext is not supported */
1209 #ifndef IW_MODE_ADHOC
1210 #define IW_MODE_ADHOC 1
1211 #endif
1212 #ifndef IW_MODE_INFRA
1213 #define IW_MODE_INFRA 2
1214 #endif
1215 #ifndef IW_MODE_MASTER
1216 #define IW_MODE_MASTER 3
1217 #endif
1218 #ifndef IW_MODE_REPEAT
1219 #define IW_MODE_REPEAT 4
1220 #endif
1221 #ifndef IW_MODE_SECOND
1222 #define IW_MODE_SECOND 5
1223 #endif
1224 #ifndef IW_MODE_MONITOR
1225 #define IW_MODE_MONITOR 6
1226 #endif
1227
1228 #ifndef PRISM2_NO_DEBUG
1229
1230 #define DEBUG_FID BIT(0)
1231 #define DEBUG_PS BIT(1)
1232 #define DEBUG_FLOW BIT(2)
1233 #define DEBUG_AP BIT(3)
1234 #define DEBUG_HW BIT(4)
1235 #define DEBUG_EXTRA BIT(5)
1236 #define DEBUG_EXTRA2 BIT(6)
1237 #define DEBUG_PS2 BIT(7)
1238 #define DEBUG_MASK (DEBUG_PS | DEBUG_FLOW | DEBUG_AP | DEBUG_HW | \
1239 DEBUG_EXTRA)
1240 #define PDEBUG(n, args...) \
1241 do { if ((n) & DEBUG_MASK) printk(KERN_DEBUG args); } while (0)
1242 #define PDEBUG2(n, args...) \
1243 do { if ((n) & DEBUG_MASK) printk(args); } while (0)
1244
1245 #else /* PRISM2_NO_DEBUG */
1246
1247 #define PDEBUG(n, args...)
1248 #define PDEBUG2(n, args...)
1249
1250 #endif /* PRISM2_NO_DEBUG */
1251
1252 enum { BAP0 = 0, BAP1 = 1 };
1253
1254 #ifdef PRISM2_CALLBACK
1255 enum {
1256 /* Called when card is enabled */
1257 PRISM2_CALLBACK_ENABLE,
1258
1259 /* Called when card is disabled */
1260 PRISM2_CALLBACK_DISABLE,

ECE 4006 Wireless Intrusion Detection and Response Group 2

 167

1261
1262 /* Called when RX/TX starts/ends */
1263 PRISM2_CALLBACK_RX_START, PRISM2_CALLBACK_RX_END,
1264 PRISM2_CALLBACK_TX_START, PRISM2_CALLBACK_TX_END
1265 };
1266 void prism2_callback(local_info_t *local, int event);
1267 #else /* PRISM2_CALLBACK */
1268 #define prism2_callback(d, e) do { } while (0)
1269 #endif /* PRISM2_CALLBACK */
1270
1271 #endif /* __KERNEL__ */
1272
1273 #endif /* HOSTAP_WLAN_H */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 168

wireless.h

ECE 4006 Wireless Intrusion Detection and Response Group 2

 169

 1 /*
 2 * This file define a set of standard wireless extensions
 3 *
 4 * Version : 15 12.7.02
 5 *
 6 * Authors : Jean Tourrilhes - HPL - <jt@hpl.hp.com>
 7 * Copyright (c) 1997-2002 Jean Tourrilhes, All Rights Reserved.
 8 */
 9
 10 #ifndef _LINUX_WIRELESS_H
 11 #define _LINUX_WIRELESS_H
 12
 13 /************************** DOCUMENTATION **************************/
 14 /*
 15 * Initial APIs (1996 -> onward) :
 16 * -----------------------------
 17 * Basically, the wireless extensions are for now a set of standard ioctl
 18 * call + /proc/net/wireless
 19 *
 20 * The entry /proc/net/wireless give statistics and information on the
 21 * driver.
 22 * This is better than having each driver having its entry because
 23 * its centralised and we may remove the driver module safely.
 24 *
 25 * Ioctl are used to configure the driver and issue commands. This is
 26 * better than command line options of insmod because we may want to
 27 * change dynamically (while the driver is running) some parameters.
 28 *
 29 * The ioctl mechanimsm are copied from standard devices ioctl.
 30 * We have the list of command plus a structure descibing the
 31 * data exchanged...
 32 * Note that to add these ioctl, I was obliged to modify :
 33 * # net/core/dev.c (two place + add include)
 34 * # net/ipv4/af_inet.c (one place + add include)
 35 *
 36 * /proc/net/wireless is a copy of /proc/net/dev.
 37 * We have a structure for data passed from the driver to /proc/net/wireless
 38 * Too add this, I've modified :
 39 * # net/core/dev.c (two other places)
 40 * # include/linux/netdevice.h (one place)
 41 * # include/linux/proc_fs.h (one place)
 42 *
 43 * New driver API (2002 -> onward) :
 44 * -------------------------------
 45 * This file is only concerned with the user space API and common definitions.
 46 * The new driver API is defined and documented in :
 47 * # include/net/iw_handler.h
 48 *
 49 * Note as well that /proc/net/wireless implementation has now moved in :
 50 * # include/linux/wireless.c
 51 *
 52 * Wireless Events (2002 -> onward) :
 53 * --------------------------------
 54 * Events are defined at the end of this file, and implemented in :
 55 * # include/linux/wireless.c
 56 *
 57 * Other comments :
 58 * --------------
 59 * Do not add here things that are redundant with other mechanisms
 60 * (drivers init, ifconfig, /proc/net/dev, ...) and with are not
 61 * wireless specific.
 62 *
 63 * These wireless extensions are not magic : each driver has to provide

ECE 4006 Wireless Intrusion Detection and Response Group 2

 170

 64 * support for them...
 65 *
 66 * IMPORTANT NOTE : As everything in the kernel, this is very much a
 67 * work in progress. Contact me if you have ideas of improvements...
 68 */
 69
 70 /***************************** INCLUDES *****************************/
 71
 72 #include <linux/types.h> /* for "caddr_t" et al */
 73 #include <linux/socket.h> /* for "struct sockaddr" et al */
 74 #include <linux/if.h> /* for IFNAMSIZ and co... */
 75
 76 /***************************** VERSION *****************************/
 77 /*
 78 * This constant is used to know the availability of the wireless
 79 * extensions and to know which version of wireless extensions it is
 80 * (there is some stuff that will be added in the future...)
 81 * I just plan to increment with each new version.
 82 */
 83 #define WIRELESS_EXT 15
 84
 85 /*
 86 * Changes :
 87 *
 88 * V2 to V3
 89 * --------
 90 * Alan Cox start some incompatibles changes. I've integrated a bit more.
 91 * - Encryption renamed to Encode to avoid US regulation problems
 92 * - Frequency changed from float to struct to avoid problems on old 386
 93 *
 94 * V3 to V4
 95 * --------
 96 * - Add sensitivity
 97 *
 98 * V4 to V5
 99 * --------
100 * - Missing encoding definitions in range
101 * - Access points stuff
102 *
103 * V5 to V6
104 * --------
105 * - 802.11 support (ESSID ioctls)
106 *
107 * V6 to V7
108 * --------
109 * - define IW_ESSID_MAX_SIZE and IW_MAX_AP
110 *
111 * V7 to V8
112 * --------
113 * - Changed my e-mail address
114 * - More 802.11 support (nickname, rate, rts, frag)
115 * - List index in frequencies
116 *
117 * V8 to V9
118 * --------
119 * - Support for 'mode of operation' (ad-hoc, managed...)
120 * - Support for unicast and multicast power saving
121 * - Change encoding to support larger tokens (>64 bits)
122 * - Updated iw_params (disable, flags) and use it for NWID
123 * - Extracted iw_point from iwreq for clarity
124 *
125 * V9 to V10
126 * ---------

ECE 4006 Wireless Intrusion Detection and Response Group 2

 171

127 * - Add PM capability to range structure
128 * - Add PM modifier : MAX/MIN/RELATIVE
129 * - Add encoding option : IW_ENCODE_NOKEY
130 * - Add TxPower ioctls (work like TxRate)
131 *
132 * V10 to V11
133 * ----------
134 * - Add WE version in range (help backward/forward compatibility)
135 * - Add retry ioctls (work like PM)
136 *
137 * V11 to V12
138 * ----------
139 * - Add SIOCSIWSTATS to get /proc/net/wireless programatically
140 * - Add DEV PRIVATE IOCTL to avoid collisions in SIOCDEVPRIVATE space
141 * - Add new statistics (frag, retry, beacon)
142 * - Add average quality (for user space calibration)
143 *
144 * V12 to V13
145 * ----------
146 * - Document creation of new driver API.
147 * - Extract union iwreq_data from struct iwreq (for new driver API).
148 * - Rename SIOCSIWNAME as SIOCSIWCOMMIT
149 *
150 * V13 to V14
151 * ----------
152 * - Wireless Events support : define struct iw_event
153 * - Define additional specific event numbers
154 * - Add "addr" and "param" fields in union iwreq_data
155 * - AP scanning stuff (SIOCSIWSCAN and friends)
156 *
157 * V14 to V15
158 * ----------
159 * - Add IW_PRIV_TYPE_ADDR for struct sockaddr private arg
160 * - Make struct iw_freq signed (both m & e), add explicit padding
161 * - Add IWEVCUSTOM for driver specific event/scanning token
162 * - Add IW_MAX_GET_SPY for driver returning a lot of addresses
163 * - Add IW_TXPOW_RANGE for range of Tx Powers
164 * - Add IWEVREGISTERED & IWEVEXPIRED events for Access Points
165 * - Add IW_MODE_MONITOR for passive monitor
166 */
167
168 /**************************** CONSTANTS ****************************/
169
170 /* -------------------------- IOCTL LIST -------------------------- */
171
172 /* Wireless Identification */
173 #define SIOCSIWCOMMIT 0x8B00 /* Commit pending changes to driver */
174 #define SIOCGIWNAME 0x8B01 /* get name == wireless protocol */
175 /* SIOCGIWNAME is used to verify the presence of Wireless Extensions.
176 * Common values : "IEEE 802.11-DS", "IEEE 802.11-FH", "IEEE 802.11b"...
177 * Don't put the name of your driver there, it's useless. */
178
179 /* Basic operations */
180 #define SIOCSIWNWID 0x8B02 /* set network id (pre-802.11) */
181 #define SIOCGIWNWID 0x8B03 /* get network id (the cell) */
182 #define SIOCSIWFREQ 0x8B04 /* set channel/frequency (Hz) */
183 #define SIOCGIWFREQ 0x8B05 /* get channel/frequency (Hz) */
184 #define SIOCSIWMODE 0x8B06 /* set operation mode */
185 #define SIOCGIWMODE 0x8B07 /* get operation mode */
186 #define SIOCSIWSENS 0x8B08 /* set sensitivity (dBm) */
187 #define SIOCGIWSENS 0x8B09 /* get sensitivity (dBm) */
188
189 /* Informative stuff */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 172

190 #define SIOCSIWRANGE 0x8B0A /* Unused */
191 #define SIOCGIWRANGE 0x8B0B /* Get range of parameters */
192 #define SIOCSIWPRIV 0x8B0C /* Unused */
193 #define SIOCGIWPRIV 0x8B0D /* get private ioctl interface info */
194 #define SIOCSIWSTATS 0x8B0E /* Unused */
195 #define SIOCGIWSTATS 0x8B0F /* Get /proc/net/wireless stats */
196 /* SIOCGIWSTATS is strictly used between user space and the kernel, and
197 * is never passed to the driver (i.e. the driver will never see it). */
198
199 /* Mobile IP support (statistics per MAC address) */
200 #define SIOCSIWSPY 0x8B10 /* set spy addresses */
201 #define SIOCGIWSPY 0x8B11 /* get spy info (quality of link) */
202
203 /* Access Point manipulation */
204 #define SIOCSIWAP 0x8B14 /* set access point MAC addresses */
205 #define SIOCGIWAP 0x8B15 /* get access point MAC addresses */
206 #define SIOCGIWAPLIST 0x8B17 /* Deprecated in favor of scanning */
207 #define SIOCSIWSCAN 0x8B18 /* trigger scanning (list cells) */
208 #define SIOCGIWSCAN 0x8B19 /* get scanning results */
209
210 /* 802.11 specific support */
211 #define SIOCSIWESSID 0x8B1A /* set ESSID (network name) */
212 #define SIOCGIWESSID 0x8B1B /* get ESSID */
213 #define SIOCSIWNICKN 0x8B1C /* set node name/nickname */
214 #define SIOCGIWNICKN 0x8B1D /* get node name/nickname */
215 /* As the ESSID and NICKN are strings up to 32 bytes long, it doesn't fit
216 * within the 'iwreq' structure, so we need to use the 'data' member to
217 * point to a string in user space, like it is done for RANGE... */
218
219 /* Other parameters useful in 802.11 and some other devices */
220 #define SIOCSIWRATE 0x8B20 /* set default bit rate (bps) */
221 #define SIOCGIWRATE 0x8B21 /* get default bit rate (bps) */
222 #define SIOCSIWRTS 0x8B22 /* set RTS/CTS threshold (bytes) */
223 #define SIOCGIWRTS 0x8B23 /* get RTS/CTS threshold (bytes) */
224 #define SIOCSIWFRAG 0x8B24 /* set fragmentation thr (bytes) */
225 #define SIOCGIWFRAG 0x8B25 /* get fragmentation thr (bytes) */
226 #define SIOCSIWTXPOW 0x8B26 /* set transmit power (dBm) */
227 #define SIOCGIWTXPOW 0x8B27 /* get transmit power (dBm) */
228 #define SIOCSIWRETRY 0x8B28 /* set retry limits and lifetime */
229 #define SIOCGIWRETRY 0x8B29 /* get retry limits and lifetime */
230
231 /* Encoding stuff (scrambling, hardware security, WEP...) */
232 #define SIOCSIWENCODE 0x8B2A /* set encoding token & mode */
233 #define SIOCGIWENCODE 0x8B2B /* get encoding token & mode */
234 /* Power saving stuff (power management, unicast and multicast) */
235 #define SIOCSIWPOWER 0x8B2C /* set Power Management settings */
236 #define SIOCGIWPOWER 0x8B2D /* get Power Management settings */
237
238 /* -------------------- DEV PRIVATE IOCTL LIST -------------------- */
239
240 /* These 16 ioctl are wireless device private.
241 * Each driver is free to use them for whatever purpose it chooses,
242 * however the driver *must* export the description of those ioctls
243 * with SIOCGIWPRIV and *must* use arguments as defined below.
244 * If you don't follow those rules, DaveM is going to hate you (reason :
245 * it make mixed 32/64bit operation impossible).
246 */
247 #define SIOCIWFIRSTPRIV 0x8BE0
248 #define SIOCIWLASTPRIV 0x8BFF
249 /* Previously, we were using SIOCDEVPRIVATE, but we now have our
250 * separate range because of collisions with other tools such as
251 * 'mii-tool'.
252 * We now have 32 commands, so a bit more space ;-).

ECE 4006 Wireless Intrusion Detection and Response Group 2

 173

253 * Also, all 'odd' commands are only usable by root and don't return the
254 * content of ifr/iwr to user (but you are not obliged to use the set/get
255 * convention, just use every other two command).
256 * And I repeat : you are not obliged to use them with iwspy, but you
257 * must be compliant with it.
258 */
259
260 /* ------------------------- IOCTL STUFF ------------------------- */
261
262 /* The first and the last (range) */
263 #define SIOCIWFIRST 0x8B00
264 #define SIOCIWLAST SIOCIWLASTPRIV /* 0x8BFF */
265
266 /* Even : get (world access), odd : set (root access) */
267 #define IW_IS_SET(cmd) (!((cmd) & 0x1))
268 #define IW_IS_GET(cmd) ((cmd) & 0x1)
269
270 /* ----------------------- WIRELESS EVENTS ----------------------- */
271 /* Those are *NOT* ioctls, do not issue request on them !!! */
272 /* Most events use the same identifier as ioctl requests */
273
274 #define IWEVTXDROP 0x8C00 /* Packet dropped to excessive retry */
275 #define IWEVQUAL 0x8C01 /* Quality part of statistics (scan) */
276 #define IWEVCUSTOM 0x8C02 /* Driver specific ascii string */
277 #define IWEVREGISTERED 0x8C03 /* Discovered a new node (AP mode)
*/
278 #define IWEVEXPIRED 0x8C04 /* Expired a node (AP mode) */
279
280 #define IWEVFIRST 0x8C00
281
282 /* ------------------------- PRIVATE INFO ------------------------- */
283 /*
284 * The following is used with SIOCGIWPRIV. It allow a driver to define
285 * the interface (name, type of data) for its private ioctl.
286 * Privates ioctl are SIOCIWFIRSTPRIV -> SIOCIWLASTPRIV
287 */
288
289 #define IW_PRIV_TYPE_MASK 0x7000 /* Type of arguments */
290 #define IW_PRIV_TYPE_NONE 0x0000
291 #define IW_PRIV_TYPE_BYTE 0x1000 /* Char as number */
292 #define IW_PRIV_TYPE_CHAR 0x2000 /* Char as character */
293 #define IW_PRIV_TYPE_INT 0x4000 /* 32 bits int */
294 #define IW_PRIV_TYPE_FLOAT 0x5000 /* struct iw_freq */
295 #define IW_PRIV_TYPE_ADDR 0x6000 /* struct sockaddr */
296
297 #define IW_PRIV_SIZE_FIXED 0x0800 /* Variable or fixed nuber of args */
298
299 #define IW_PRIV_SIZE_MASK 0x07FF /* Max number of those args */
300
301 /*
302 * Note : if the number of args is fixed and the size < 16 octets,
303 * instead of passing a pointer we will put args in the iwreq struct...
304 */
305
306 /* ----------------------- OTHER CONSTANTS ----------------------- */
307
308 /* Maximum frequencies in the range struct */
309 #define IW_MAX_FREQUENCIES 16
310 /* Note : if you have something like 80 frequencies,
311 * don't increase this constant and don't fill the frequency list.
312 * The user will be able to set by channel anyway... */
313
314 /* Maximum bit rates in the range struct */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 174

315 #define IW_MAX_BITRATES 8
316
317 /* Maximum tx powers in the range struct */
318 #define IW_MAX_TXPOWER 8
319 /* Note : if you more than 8 TXPowers, just set the max and min or
320 * a few of them in the struct iw_range. */
321
322 /* Maximum of address that you may set with SPY */
323 #define IW_MAX_SPY 8 /* set */
324 #define IW_MAX_GET_SPY 64 /* get */
325
326 /* Maximum of address that you may get in the
327 list of access points in range */
328 #define IW_MAX_AP 8
329
330 /* Maximum size of the ESSID and NICKN strings */
331 #define IW_ESSID_MAX_SIZE 32
332
333 /* Modes of operation */
334 #define IW_MODE_AUTO 0 /* Let the driver decides */
335 #define IW_MODE_ADHOC 1 /* Single cell network */
336 #define IW_MODE_INFRA 2 /* Multi cell network, roaming, ... */
337 #define IW_MODE_MASTER 3 /* Synchronisation master or Access Point */
338 #define IW_MODE_REPEAT 4 /* Wireless Repeater (forwarder) */
339 #define IW_MODE_SECOND 5 /* Secondary master/repeater (backup) */
340 #define IW_MODE_MONITOR 6 /* Passive monitor (listen only) */
341
342 /* Maximum number of size of encoding token available
343 * they are listed in the range structure */
344 #define IW_MAX_ENCODING_SIZES 8
345
346 /* Maximum size of the encoding token in bytes */
347 #define IW_ENCODING_TOKEN_MAX 32 /* 256 bits (for now) */
348
349 /* Flags for encoding (along with the token) */
350 #define IW_ENCODE_INDEX 0x00FF /* Token index (if needed) */
351 #define IW_ENCODE_FLAGS 0xFF00 /* Flags defined below */
352 #define IW_ENCODE_MODE 0xF000 /* Modes defined below */
353 #define IW_ENCODE_DISABLED 0x8000 /* Encoding disabled */
354 #define IW_ENCODE_ENABLED 0x0000 /* Encoding enabled */
355 #define IW_ENCODE_RESTRICTED 0x4000 /* Refuse non-encoded packets */
356 #define IW_ENCODE_OPEN 0x2000 /* Accept non-encoded packets */
357 #define IW_ENCODE_NOKEY 0x0800 /* Key is write only, so not present */
358
359 /* Power management flags available (along with the value, if any) */
360 #define IW_POWER_ON 0x0000 /* No details... */
361 #define IW_POWER_TYPE 0xF000 /* Type of parameter */
362 #define IW_POWER_PERIOD 0x1000 /* Value is a period/duration of
*/
363 #define IW_POWER_TIMEOUT 0x2000 /* Value is a timeout (to go asleep) */
364 #define IW_POWER_MODE 0x0F00 /* Power Management mode */
365 #define IW_POWER_UNICAST_R 0x0100 /* Receive only unicast messages */
366 #define IW_POWER_MULTICAST_R 0x0200 /* Receive only multicast messages */
367 #define IW_POWER_ALL_R 0x0300 /* Receive all messages though PM
*/
368 #define IW_POWER_FORCE_S 0x0400 /* Force PM procedure for sending unicast */
369 #define IW_POWER_REPEATER 0x0800 /* Repeat broadcast messages in PM period */
370 #define IW_POWER_MODIFIER 0x000F /* Modify a parameter */
371 #define IW_POWER_MIN 0x0001 /* Value is a minimum */
372 #define IW_POWER_MAX 0x0002 /* Value is a maximum */
373 #define IW_POWER_RELATIVE 0x0004 /* Value is not in seconds/ms/us */
374
375 /* Transmit Power flags available */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 175

376 #define IW_TXPOW_TYPE 0x00FF /* Type of value */
377 #define IW_TXPOW_DBM 0x0000 /* Value is in dBm */
378 #define IW_TXPOW_MWATT 0x0001 /* Value is in mW */
379 #define IW_TXPOW_RANGE 0x1000 /* Range of value between min/max
*/
380
381 /* Retry limits and lifetime flags available */
382 #define IW_RETRY_ON 0x0000 /* No details... */
383 #define IW_RETRY_TYPE 0xF000 /* Type of parameter */
384 #define IW_RETRY_LIMIT 0x1000 /* Maximum number of retries*/
385 #define IW_RETRY_LIFETIME 0x2000 /* Maximum duration of retries in us */
386 #define IW_RETRY_MODIFIER 0x000F /* Modify a parameter */
387 #define IW_RETRY_MIN 0x0001 /* Value is a minimum */
388 #define IW_RETRY_MAX 0x0002 /* Value is a maximum */
389 #define IW_RETRY_RELATIVE 0x0004 /* Value is not in seconds/ms/us */
390
391 /* Scanning request flags */
392 #define IW_SCAN_DEFAULT 0x0000 /* Default scan of the driver */
393 #define IW_SCAN_ALL_ESSID 0x0001 /* Scan all ESSIDs */
394 #define IW_SCAN_THIS_ESSID 0x0002 /* Scan only this ESSID */
395 #define IW_SCAN_ALL_FREQ 0x0004 /* Scan all Frequencies */
396 #define IW_SCAN_THIS_FREQ 0x0008 /* Scan only this Frequency */
397 #define IW_SCAN_ALL_MODE 0x0010 /* Scan all Modes */
398 #define IW_SCAN_THIS_MODE 0x0020 /* Scan only this Mode */
399 #define IW_SCAN_ALL_RATE 0x0040 /* Scan all Bit-Rates */
400 #define IW_SCAN_THIS_RATE 0x0080 /* Scan only this Bit-Rate */
401 /* Maximum size of returned data */
402 #define IW_SCAN_MAX_DATA 4096 /* In bytes */
403
404 /* Max number of char in custom event - use multiple of them if needed */
405 #define IW_CUSTOM_MAX 256 /* In bytes */
406
407 /****************************** TYPES ******************************/
408
409 /* --------------------------- SUBTYPES --------------------------- */
410 /*
411 * Generic format for most parameters that fit in an int
412 */
413 struct iw_param
414 {
415 __s32 value; /* The value of the parameter itself */
416 __u8 fixed; /* Hardware should not use auto select */
417 __u8 disabled; /* Disable the feature */
418 __u16 flags; /* Various specifc flags (if any) */
419 };
420
421 /*
422 * For all data larger than 16 octets, we need to use a
423 * pointer to memory allocated in user space.
424 */
425 struct iw_point
426 {
427 caddr_t pointer; /* Pointer to the data (in user space) */
428 __u16 length; /* number of fields or size in bytes */
429 __u16 flags; /* Optional params */
430 };
431
432 /*
433 * A frequency
434 * For numbers lower than 10^9, we encode the number in 'm' and
435 * set 'e' to 0
436 * For number greater than 10^9, we divide it by the lowest power
437 * of 10 to get 'm' lower than 10^9, with 'm'= f / (10^'e')...

ECE 4006 Wireless Intrusion Detection and Response Group 2

 176

438 * The power of 10 is in 'e', the result of the division is in 'm'.
439 */
440 struct iw_freq
441 {
442 __s32 m; /* Mantissa */
443 __s16 e; /* Exponent */
444 __u8 i; /* List index (when in range struct) */
445 __u8 pad; /* Unused - just for alignement */
446 };
447
448 /*
449 * Quality of the link
450 */
451 struct iw_quality
452 {
453 __u8 qual; /* link quality (%retries, SNR,
454 %missed beacons or better...) */
455 __u8 level; /* signal level (dBm) */
456 __u8 noise; /* noise level (dBm) */
457 __u8 updated; /* Flags to know if updated */
458 };
459
460 /*
461 * Packet discarded in the wireless adapter due to
462 * "wireless" specific problems...
463 * Note : the list of counter and statistics in net_device_stats
464 * is already pretty exhaustive, and you should use that first.
465 * This is only additional stats...
466 */
467 struct iw_discarded
468 {
469 __u32 nwid; /* Rx : Wrong nwid/essid */
470 __u32 code; /* Rx : Unable to code/decode (WEP) */
471 __u32 fragment; /* Rx : Can't perform MAC reassembly */
472 __u32 retries; /* Tx : Max MAC retries num reached */
473 __u32 misc; /* Others cases */
474 };
475
476 /*
477 * Packet/Time period missed in the wireless adapter due to
478 * "wireless" specific problems...
479 */
480 struct iw_missed
481 {
482 __u32 beacon; /* Missed beacons/superframe */
483 };
484
485 /* ------------------------ WIRELESS STATS ------------------------ */
486 /*
487 * Wireless statistics (used for /proc/net/wireless)
488 */
489 struct iw_statistics
490 {
491 __u16 status; /* Status
492 * - device dependent for now */
493
494 struct iw_quality qual; /* Quality of the link
495 * (instant/mean/max) */
496 struct iw_discarded discard; /* Packet discarded counts */
497 struct iw_missed miss; /* Packet missed counts */
498 };
499
500 /* ------------------------ IOCTL REQUEST ------------------------ */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 177

501 /*
502 * This structure defines the payload of an ioctl, and is used
503 * below.
504 *
505 * Note that this structure should fit on the memory footprint
506 * of iwreq (which is the same as ifreq), which mean a max size of
507 * 16 octets = 128 bits. Warning, pointers might be 64 bits wide...
508 * You should check this when increasing the structures defined
509 * above in this file...
510 */
511 union iwreq_data
512 {
513 /* Config - generic */
514 char name[IFNAMSIZ];
515 /* Name : used to verify the presence of wireless extensions.
516 * Name of the protocol/provider... */
517
518 struct iw_point essid; /* Extended network name */
519 struct iw_param nwid; /* network id (or domain - the cell) */
520 struct iw_freq freq; /* frequency or channel :
521 * 0-1000 = channel
522 * > 1000 = frequency in Hz */
523
524 struct iw_param sens; /* signal level threshold */
525 struct iw_param bitrate; /* default bit rate */
526 struct iw_param txpower; /* default transmit power */
527 struct iw_param rts; /* RTS threshold threshold */
528 struct iw_param frag; /* Fragmentation threshold */
529 __u32 mode; /* Operation mode */
530 struct iw_param retry; /* Retry limits & lifetime */
531
532 struct iw_point encoding; /* Encoding stuff : tokens */
533 struct iw_param power; /* PM duration/timeout */
534 struct iw_quality qual; /* Quality part of statistics */
535
536 struct sockaddr ap_addr; /* Access point address */
537 struct sockaddr addr; /* Destination address (hw) */
538
539 struct iw_param param; /* Other small parameters */
540 struct iw_point data; /* Other large parameters */
541 };
542
543 /*
544 * The structure to exchange data for ioctl.
545 * This structure is the same as 'struct ifreq', but (re)defined for
546 * convenience...
547 * Do I need to remind you about structure size (32 octets) ?
548 */
549 struct iwreq
550 {
551 union
552 {
553 char ifrn_name[IFNAMSIZ]; /* if name, e.g. "eth0" */
554 } ifr_ifrn;
555
556 /* Data part (defined just above) */
557 union iwreq_data u;
558 };
559
560 /* -------------------------- IOCTL DATA -------------------------- */
561 /*
562 * For those ioctl which want to exchange mode data that what could
563 * fit in the above structure...

ECE 4006 Wireless Intrusion Detection and Response Group 2

 178

564 */
565
566 /*
567 * Range of parameters
568 */
569
570 struct iw_range
571 {
572 /* Informative stuff (to choose between different interface) */
573 __u32 throughput; /* To give an idea... */
574 /* In theory this value should be the maximum benchmarked
575 * TCP/IP throughput, because with most of these devices the
576 * bit rate is meaningless (overhead an co) to estimate how
577 * fast the connection will go and pick the fastest one.
578 * I suggest people to play with Netperf or any benchmark...
579 */
580
581 /* NWID (or domain id) */
582 __u32 min_nwid; /* Minimal NWID we are able to set */
583 __u32 max_nwid; /* Maximal NWID we are able to set */
584
585 /* Frequency */
586 __u16 num_channels; /* Number of channels [0; num - 1] */
587 __u8 num_frequency; /* Number of entry in the list */
588 struct iw_freq freq[IW_MAX_FREQUENCIES]; /* list */
589 /* Note : this frequency list doesn't need to fit channel numbers */
590
591 /* signal level threshold range */
592 __s32 sensitivity;
593
594 /* Quality of link & SNR stuff */
595 struct iw_quality max_qual; /* Quality of the link */
596
597 /* Rates */
598 __u8 num_bitrates; /* Number of entries in the list */
599 __s32 bitrate[IW_MAX_BITRATES]; /* list, in bps */
600
601 /* RTS threshold */
602 __s32 min_rts; /* Minimal RTS threshold */
603 __s32 max_rts; /* Maximal RTS threshold */
604
605 /* Frag threshold */
606 __s32 min_frag; /* Minimal frag threshold */
607 __s32 max_frag; /* Maximal frag threshold */
608
609 /* Power Management duration & timeout */
610 __s32 min_pmp; /* Minimal PM period */
611 __s32 max_pmp; /* Maximal PM period */
612 __s32 min_pmt; /* Minimal PM timeout */
613 __s32 max_pmt; /* Maximal PM timeout */
614 __u16 pmp_flags; /* How to decode max/min PM period */
615 __u16 pmt_flags; /* How to decode max/min PM timeout */
616 __u16 pm_capa; /* What PM options are supported */
617
618 /* Encoder stuff */
619 __u16 encoding_size[IW_MAX_ENCODING_SIZES]; /* Different token sizes */
620 __u8 num_encoding_sizes; /* Number of entry in the list */
621 __u8 max_encoding_tokens; /* Max number of tokens */
622
623 /* Transmit power */
624 __u16 txpower_capa; /* What options are supported */
625 __u8 num_txpower; /* Number of entries in the list */
626 __s32 txpower[IW_MAX_TXPOWER]; /* list, in bps */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 179

627
628 /* Wireless Extension version info */
629 __u8 we_version_compiled; /* Must be WIRELESS_EXT */
630 __u8 we_version_source; /* Last update of source */
631
632 /* Retry limits and lifetime */
633 __u16 retry_capa; /* What retry options are supported */
634 __u16 retry_flags; /* How to decode max/min retry limit */
635 __u16 r_time_flags; /* How to decode max/min retry life */
636 __s32 min_retry; /* Minimal number of retries */
637 __s32 max_retry; /* Maximal number of retries */
638 __s32 min_r_time; /* Minimal retry lifetime */
639 __s32 max_r_time; /* Maximal retry lifetime */
640
641 /* Average quality of link & SNR */
642 struct iw_quality avg_qual; /* Quality of the link */
643 /* This should contain the average/typical values of the quality
644 * indicator. This should be the threshold between a "good" and
645 * a "bad" link (example : monitor going from green to orange).
646 * Currently, user space apps like quality monitors don't have any
647 * way to calibrate the measurement. With this, they can split
648 * the range between 0 and max_qual in different quality level
649 * (using a geometric subdivision centered on the average).
650 * I expect that people doing the user space apps will feedback
651 * us on which value we need to put in each driver...
652 */
653 };
654
655 /*
656 * Private ioctl interface information
657 */
658
659 struct iw_priv_args
660 {
661 __u32 cmd; /* Number of the ioctl to issue */
662 __u16 set_args; /* Type and number of args */
663 __u16 get_args; /* Type and number of args */
664 char name[IFNAMSIZ]; /* Name of the extension */
665 };
666
667 /* ----------------------- WIRELESS EVENTS ----------------------- */
668 /*
669 * Wireless events are carried through the rtnetlink socket to user
670 * space. They are encapsulated in the IFLA_WIRELESS field of
671 * a RTM_NEWLINK message.
672 */
673
674 /*
675 * A Wireless Event. Contains basically the same data as the ioctl...
676 */
677 struct iw_event
678 {
679 __u16 len; /* Real lenght of this stuff */
680 __u16 cmd; /* Wireless IOCTL */
681 union iwreq_data u; /* IOCTL fixed payload */
682 };
683
684 /* Size of the Event prefix (including padding and alignement junk) */
685 #define IW_EV_LCP_LEN (sizeof(struct iw_event) - sizeof(union iwreq_data))
686 /* Size of the various events */
687 #define IW_EV_CHAR_LEN (IW_EV_LCP_LEN + IFNAMSIZ)
688 #define IW_EV_UINT_LEN (IW_EV_LCP_LEN + sizeof(__u32))
689 #define IW_EV_FREQ_LEN (IW_EV_LCP_LEN + sizeof(struct iw_freq))

ECE 4006 Wireless Intrusion Detection and Response Group 2

 180

690 #define IW_EV_POINT_LEN (IW_EV_LCP_LEN + sizeof(struct iw_point))
691 #define IW_EV_PARAM_LEN (IW_EV_LCP_LEN + sizeof(struct iw_param))
692 #define IW_EV_ADDR_LEN (IW_EV_LCP_LEN + sizeof(struct sockaddr))
693 #define IW_EV_QUAL_LEN (IW_EV_LCP_LEN + sizeof(struct iw_quality))
694
695 /* Note : in the case of iw_point, the extra data will come at the
696 * end of the event */
697
698 #endif /* _LINUX_WIRELESS_H */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 181

ipc.c

ECE 4006 Wireless Intrusion Detection and Response Group 2

 182

 1 #include <stdlib.h>
 2 #include <string.h>
 3 #include <stdio.h>
 4 #include <sys/ipc.h>
 5 #include <sys/types.h>
 6 #include <sys/msg.h>
 7 #include <sys/shm.h>
 8 #include <errno.h>
 9
 10 #include "ipc.h"
 11
 12 inline void initkeys(const char *server, const char *client);
 13
 14 /* IPC keys used by the client and the server */
 15 key_t clientkey, serverkey;
 16 /* Message queue IDs for client and server */
 17 int clientmsgid, servermsgid;
 18 /* Shared memory ID */
 19 int shmid;
 20 /* Shared memory pointer */
 21 void *shm;
 22
 23 /* structure of a message */
 24 typedef struct {
 25 long mtype;
 26 char mtext[MSG_SIZE];
 27 } msgbuf;
 28
 29 /*
 30 * Initialize the client.
 31 * Creates the client message queue and obtains
 32 * the IDs of the server message queue and shared memory.
 33 */
 34 void initializeclient(const char *server, const char *client) {
 35 initkeys(server, client);
 36 clientmsgid = msgget(clientkey, IPC_CREAT);
 37 servermsgid = msgget(serverkey, 0);
 38 #ifdef DEBUG_IDS
 39 printf("IPC> Server msgid: %d Client msgid: %d\n", servermsgid, clientmsgid);
 40 #endif
 41 shmid = shmget(serverkey, SHM_SIZE, 0);
 42 #ifdef DEBUG_IDS
 43 printf("IPC> Shared memory: %d\n", shmid);
 44 #endif
 45 shm = shmat(shmid, NULL, SHM_RDONLY);
 46 }
 47
 48 /*
 49 * Clean up
 50 * Frees the shared memory
 51 */
 52 void deinitialize() {
 53 shmdt(shm);
 54 }
 55
 56 /*
 57 * Initialize the server
 58 * Creates the server message queue and allocates
 59 * shared memory. Also gets the client message queue ID
 60 */
 61 void initializeserver(const char *server, const char *client) {
 62 initkeys(server, client);
 63 msgget(clientkey, IPC_CREAT); /* HACK: Initialize client msg queue first */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 183

 64 clientmsgid = msgget(clientkey, 0);
 65 servermsgid = msgget(serverkey, IPC_CREAT);
 66 #ifdef DEBUG_IDS
 67 printf("IPC> Server msgid: %d Client msgid: %d\n", servermsgid, clientmsgid);
 68 #endif
 69 shmid = shmget(serverkey, SHM_SIZE, IPC_CREAT | 0x177);
 70 #ifdef DEBUG_IDS
 71 printf("IPC> Shared memory: %d\n", shmid);
 72 #endif
 73 shm = shmat(shmid, NULL, 0);
 74 }
 75
 76 /*
 77 * Request information from the server
 78 * Used by the client to get information from the server.
 79 * This is a blocking call and would not return until
 80 * the server responds.
 81 */
 82 void requestinfo(const char *msg, void *data) {
 83 msgbuf buf;
 84
 85 /* Send request */
 86 buf.mtype = 1;
 87 strcpy(buf.mtext, msg);
 88 msgsnd(servermsgid, &buf, MSG_SIZE, IPC_NOWAIT);
 89 #ifdef IPC_DEBUG
 90 printf("Sent msg: %s\n", buf.mtext); /* DEBUG */
 91 #endif
 92 /* Keep looping until we get a response that matches our request */
 93 do {
 94 /* Wait for acknowledgement */
 95 msgrcv(clientmsgid, &buf, MSG_SIZE, 0, 0);
 96 #ifdef IPC_DEBUG
 97 printf("Received msg: %s\n", buf.mtext);
 98 #endif
 99 } while(strcmp(buf.mtext, msg));
100
101
102 /* Copy response to data buffer */
103 memcpy(data, shm, SHM_SIZE);
104 }
105
106 /*
107 * Gets a request from the queue
108 * Used by the server when it wants to poll for another request.
109 * This is non-blocking. If msg is NULL, then there were no
110 * pending requests.
111 */
112 void getrequest(char *msg) {
113 msgbuf buf;
114
115 if(msgrcv(servermsgid, &buf, MSG_SIZE, 0, IPC_NOWAIT) < 0)
116 msg[0] = '\0';
117 else
118 strncpy(msg, buf.mtext, MSG_SIZE - 1);
119 }
120
121 /*
122 * Send information requested
123 * Used by the server to send information in
124 * response to the client's request. The original
125 * request message needs to be passed to this
126 * function as it is used by the client to

ECE 4006 Wireless Intrusion Detection and Response Group 2

 184

127 * verify it is getting the correct message
128 */
129 void sendinfo(const void *data, const char *msg) {
130 msgbuf buf;
131
132 /* Copy data buffer to shared memory*/
133 memcpy(shm, data, SHM_SIZE);
134
135 /* Send acknowledgement */
136 buf.mtype = 1;
137 strcpy(buf.mtext, msg);
138 msgsnd(clientmsgid, &buf, MSG_SIZE, IPC_NOWAIT);
139 }
140
141 /*
142 * Initialize the client and server keys
143 * This is used for IPC initialization
144 */
145 inline void initkeys(const char *server, const char *client) {
146 serverkey = ftok(server, PROJ_ID);
147 clientkey = ftok(client, PROJ_ID);
148 #ifdef DEBUG_IDS
149 printf("IPC> Server key: %d Client key: %d\n", serverkey, clientkey);
150 #endif
151 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 185

config.c

ECE 4006 Wireless Intrusion Detection and Response Group 2

 186

 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <stdlib.h>
 4 #include <sys/types.h>
 5 #include <sys/wait.h>
 6 #include <unistd.h>
 7 #include "config.h"
 8
 9 /*
 10 * Sets an attribute in a standard config file.
 11 *
 12 * Attributes are of the form:
 13 * attribute="value"
 14 * suitable for shell script variables. Comments have #
 15 * as the first character of the line. If the attribute
 16 * already exists, it is overwritten.
 17 *
 18 * file: path and filename of config file
 19 * attr: attribute to write
 20 * value: value to write
 21 * Returns: 1 if failure, 0 if success
 22 */
 23 int setAttribute(char const* file, char const* attr, char const* value) {
 24 FILE *cfgfile;
 25 int count, i;
 26 char lines[CFG_MAX_LINES][CFG_LINE_LEN];
 27 char *eq;
 28 char fattr[32];
 29 int set;
 30
 31 /* Read the entire file */
 32 count = 0; set = 0;
 33 if((cfgfile = fopen(file, "r")) == NULL) {
 34 return 1;
 35 }
 36 memset(lines, 0, CFG_MAX_LINES * CFG_LINE_LEN);
 37 while(!feof(cfgfile)) {
 38 fgets(lines[count++], CFG_LINE_LEN, cfgfile);
 39 }
 40 fclose(cfgfile);
 41 /* change/add the attribute */
 42 for(i = 0; i < count; i++) {
 43 if(lines[i][0] == '#') {
 44 /* Skip comments */
 45 continue;
 46 }
 47 /* look for setting lines */
 48 if((eq = strchr(lines[i], '=')) == NULL) {
 49 continue;
 50 }
 51 strncpy(fattr, lines[i], eq - lines[i]);
 52 fattr[eq - lines[i]] = '\0';
 53 /* Check if the setting matches */
 54 if(strcmp(fattr, attr) == 0) {
 55 /* We have a match */
 56 sprintf(lines[i], "%s=\"%s\"\n", attr, value);
 57 set = -1;
 58 break;
 59 }
 60 }
 61 /* If we didn't find the attribute we were looking for, append it */
 62 if(!set) {
 63 if((count + 1) < CFG_MAX_LINES) {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 187

 64 sprintf(lines[count++], "%s=\"%s\"\n", attr, value);
 65 } else {
 66 return 1;
 67 }
 68 }
 69 /* Write the file back out */
 70 if((cfgfile = fopen(file, "w")) == NULL) {
 71 return 1;
 72 }
 73 for(i = 0; i < count; i++) {
 74 fprintf(cfgfile, "%s", lines[i]);
 75 }
 76 fclose(cfgfile);
 77 return 0;
 78 }
 79
 80 /*
 81 * Reads an attribute from a config file.
 82 *
 83 * See setAttribute for details on config files.
 84 *
 85 * file: path and filename of config file
 86 * attr: attribute to read
 87 * value: holds value read
 88 * Returns: 1 if failure, 0 if success
 89 */
 90 int getAttribute(char const* file, char const* attr, char* value) {
 91 FILE *cfgfile;
 92 char line[CFG_LINE_LEN];
 93 char fattr[32];
 94 char *eq;
 95
 96 /* open the config file */
 97 cfgfile = NULL; eq = NULL;
 98 if((cfgfile = fopen(file, "r")) == NULL) {
 99 return 1;
100 }
101 memset(line, 0, CFG_LINE_LEN);
102 memset(fattr, 0, CFG_LINE_LEN);
103 while(!feof(cfgfile)) {
104 fgets(line, CFG_LINE_LEN, cfgfile);
105 if((line[0] != '#') && ((eq = strchr(line, '=')) != NULL)) {
106 /* ignore comments and lines without = */
107 strncpy(fattr, line, eq - line);
108 fattr[eq - line] = '\0';
109 if(strcmp(fattr, attr) == 0) {
110 /* We have a match */
111 strcpy(value, eq + 2);
112 value[strlen(value) - 2] = '\0';
113 fclose(cfgfile);
114 return 0;
115 }
116 }
117 }
118 fclose(cfgfile);
119 return 1;
120 }
121
122 /*
123 * Forks and runs external scripts/programs
124 * Returns: -1 if failure, 0 if success
125 */
126 int runScript(char const *script) {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 188

127 int pid;
128
129 pid = fork();
130 if(pid < 0) {
131 return -1;
132 }
133 if(!pid) {
134 /* we are the child */
135 execl(script, NULL);
136 /* we shouldn't get here */
137 _exit(-1);
138 }
139 else {
140 /* we are the parent so we wait for the child to complete */
141 wait(NULL);
142 /* We don't really check if the configfs commit was successful */
143 }
144 return 0;
145 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 189

ids.c

ECE 4006 Wireless Intrusion Detection and Response Group 2

 190

 1 /*
 2 * ECE4006 Group 2, Intrusion Detection System and Countermeasure
 3 *
 4 * This file was modified from the stock distribution of hostapd.c.
 5 * Many features such as 802.1X, standard ioctls, and packet handlers
 6 * were removed leaving the barebones code that does the socket startup
 7 * on the ap interface.
 8 *
 9 * The ids program uses two interface. Thanks to the hostapd option in
 10 * Host AP, two interfaces are provided (wlan0ap, wlan). Ids listens on
 11 * wlan0 and transmits out on wlan0ap
 12 */
 13
 14 /*
 15 * Copyright (c) 2002, Jouni Malinen <jkmaline@cc.hut.fi>
 16 *
 17 * This program is free software; you can redistribute it and/or modify
 18 * it under the terms of the GNU General Public License version 2 as
 19 * published by the Free Software Foundation. See README and COPYING for
 20 * more details.
 21 */
 22
 23 #include <stdlib.h>
 24 #include <stdio.h>
 25 #include <unistd.h>
 26 #include <netinet/in.h>
 27 #include <string.h>
 28 #include <sys/ioctl.h>
 29 #include <signal.h>
 30 #include <arpa/inet.h>
 31 #include <time.h>
 32 #include <sys/time.h>
 33 #include <fcntl.h>
 34 #include <errno.h>
 35 #include <sys/socket.h>
 36 #include <asm/types.h>
 37 #include <linux/if_packet.h>
 38 #include <linux/if_ether.h> /* The L2 protocols */
 39 #include <linux/if_arp.h>
 40 #include <linux/wireless.h>
 41 #include "ids.h"
 42 #include "config.h"
 43
 44 #if WIRELESS_EXT < 9
 45 #error "Linux Wireless Extensions version 9 or newer required"
 46 #endif
 47
 48 #include "hostapd.h"
 49 #include "ipc.h"
 50
 51 /* memory space allocated for frame construction */
 52 char sbuf[256];
 53
 54 /* data structure for storing details of each client that sent probe requests */
 55 typedef struct ClientData_t{
 56 u8 addr[6];/* mac addr of client */
 57 u32 first_sampled;/* first time spotted client */
 58 u32 last_sampled;/* last time probe request seen from client */
 59 u32 active_eval_start;/* time where we are starting to evaluate frequency of
probes */
 60 int total_count;/* total number of probe requests */
 61 int current_count;/* number of probe requests that are being used for active
scanning detection */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 191

 62 u8 status;/* status of client */
 63 u8 auth_state; /* used to store state of client authentication with access
point */
 64 struct ClientData_t * next;
 65 struct ClientData_t * previous;
 66 } ClientData;
 67
 68 /* structure that stores info on Fake AP's */
 69 typedef struct BogusAp_t {
 70 u8 addr[6];/* mac addr of bogus AP */
 71 char ssid[10];
 72 char ssid_len;
 73 char state;/* currently only used to indicate of data struc is free */
 74 /* zero if free, non zero if allocated */
 75 } BogusAp;
 76
 77 #define MAX_CLIENTS 256 /* max # of clients that ids will log */
 78 #define MAX_BOGUS_AP 10 /* max # of fake AP's handled by system */
 79 #define MAX_HASHES 64 /* max # of hash locations */
 80
 81 /* Hashing algorithm, masks out low 6 bits of MACADDR */
 82 #define HASH(x) ((x) & 0x3f)
 83 #define MIN(x,y) (((x) < (y)) ? (x) : (y))
 84
 85 BogusAp bogusAp[MAX_BOGUS_AP];
 86 ClientData * hashTable[MAX_HASHES];
 87 int numClients; /* number of clients currently logged by system */
 88 u8 apaddr[6]; /* the BSSID of the actual network */
 89 char channel; /* the channel of the actual network */
 90 char hop_channel; /* current channel being hopped to, hop_channel == channel
 91 * when enable_hop == 0 */
 92 char enable_hop; /* flag to enable channel hopping */
 93 char enable_bogus_wep; /* flag to enable transmission of fake WEP */
 94 char enable_fake_ap; /* flag to enable transmission of fake probe responses */
 95 char enable_dos; /* flag to enable DoS attacks against wardriver */
 96 char detect_thresh; /* threshold used for Netstumbler determination */
 97 #define DEFAULT_DETECT_THRESH 30
 98 int curBogusAp; /* current bogus AP being transmitted out on the air */
 99
 100 /* static file paths */
 101 #define IDS_PID_TMP "/tmp/ids.pid"
 102 #define IDS_CFG_FILE "/etc/rw/ids"
 103 #define FAKE_AP_FILE "/etc/rw/fakeap"
 104
 105 /* structure for RTS frame */
 106 struct ieee80211_rts {
 107 u16 frame_control;
 108 u16 duration;
 109 u8 da[6];
 110 u8 sa[6];
 111 } __attribute__ ((packed));
 112
 113 /* strucutre for data frame */
 114 struct ieee80211_data {
 115 u16 frame_control;
 116 u16 duration;
 117 u8 da[6];
 118 u8 bssid[6];
 119 u8 sa[6];
 120 u16 seq_ctrl;
 121 u8 iv[3];
 122 u8 key;
 123 u8 data;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 192

 124 } __attribute__ ((packed));
 125
 126 /* structure for standard management frames */
 127 struct ieee80211_mgmt {
 128 u16 frame_control;
 129 u16 duration;
 130 u8 da[6];
 131 u8 sa[6];
 132 u8 bssid[6];
 133 u16 seq_ctrl;
 134 union {
 135 struct {
 136 u16 auth_alg;
 137 u16 auth_transaction;
 138 u16 status_code;
 139 /* possibly followed by Challenge text */
 140 u8 variable[0];
 141 } __attribute__ ((packed)) auth;
 142 struct {
 143 u16 reason_code;
 144 } __attribute__ ((packed)) deauth;
 145 struct {
 146 u16 capab_info;
 147 u16 listen_interval;
 148 /* followed by SSID and Supported rates */
 149 u8 variable[0];
 150 } __attribute__ ((packed)) assoc_req;
 151 struct {
 152 u16 capab_info;
 153 u16 status_code;
 154 u16 aid;
 155 /* followed by Supported rates */
 156 u8 variable[0];
 157 } __attribute__ ((packed)) assoc_resp, reassoc_resp;
 158 struct {
 159 u16 capab_info;
 160 u16 listen_interval;
 161 u8 current_ap[6];
 162 /* followed by SSID and Supported rates */
 163 u8 variable[0];
 164 } __attribute__ ((packed)) reassoc_req;
 165 struct {
 166 u16 reason_code;
 167 } __attribute__ ((packed)) disassoc;
 168 struct {
 169 u8 timestamp[8];
 170 u16 beacon_int;
 171 u16 capab_info;
 172 /* followed by some of SSID, Supported rates,
 173 * FH Params, DS Params, CF Params, IBSS Params, TIM */
 174 u8 variable[0];
 175 } __attribute__ ((packed)) beacon;
 176 /* PROBE RESPONSE FRAME */
 177 struct {
 178 u8 timestamp[8];
 179 u16 beacon_int;
 180 u16 capab_info;
 181 u8 variable[0];
 182 } __attribute__ ((packed)) probe_resp;
 183 } u;
 184 } __attribute__ ((packed));
 185
 186 /* prototypes */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 193

 187
 188 /* initializes hashTable, can be used to clear list as well */
 189 /* FREES EVERYTHING!!! */
 190 /* Frees forever, www.pfs.edu.my */
 191 void initHashTable() {
 192 int i;
 193 for (i=0;i < MAX_HASHES;i++) {
 194 ClientData * current;
 195 current = hashTable[i];
 196 while (current != NULL) {
 197 ClientData * temp;
 198 temp = current;
 199 current = current->next;
 200 free(temp);
 201 }
 202 hashTable[i] = NULL;
 203 }
 204 }
 205
 206 /* adds a ClientData structure to the hashTable */
 207 /* returns 0 if failed */
 208 int addHashTable(ClientData * new) {
 209 int i;
 210 if (numClients == MAX_CLIENTS) {
 211 return 0;
 212 }
 213 i = HASH(new->addr[5]);
 214 /* add to front of linked list */
 215 new->next = hashTable[i];
 216 new->previous = NULL;
 217 /* if list already existed, manipulate previous of head node */
 218 if (hashTable[i]) {
 219 hashTable[i]->previous = new;
 220 }
 221 /* finally make hash table point to new guy */
 222 hashTable[i] = new;
 223 numClients++;
 224 return 1;
 225 }
 226
 227 /* removes a ClientData entry from the hashTable */
 228 void removeHashTable(ClientData * toRemove) {
 229 /* if previous is null, that means toRemove is the head of the list, need to
manipulate hashTable[i] */
 230 if (toRemove->previous == NULL) {
 231 hashTable[HASH(toRemove->addr[5])] = toRemove->next;
 232 }
 233 /* if toRemove->next is not null, need to manipulate the ->previous of ->next
*/
 234 if (toRemove->next != NULL) {
 235 toRemove->next->previous = toRemove->previous;
 236 }
 237 /* all pointers manipulated, free the node */
 238 free(toRemove);
 239 numClients--;
 240 }
 241
 242 /* returns the ClientData entry in hashTable corresponding to the mac addr passed
in */
 243 /* NULL if not found */
 244 ClientData* getHashTable(u8 * addr) {
 245 int i;
 246 ClientData * current;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 194

 247 i = HASH(addr[5]);
 248 current = hashTable[i];
 249 while (current != NULL) {
 250 if (memcmp(current->addr, addr, ETH_ALEN) == 0) {
 251 break;
 252 }
 253 current = current->next;
 254 }
 255 return current;
 256 }
 257
 258 /* sets up standard interface parameters on wlan0ap interface */
 259 static int hostapd_set_iface_flags(hostapd *hapd, int dev_up)
 260 {
 261 struct ifreq ifr;
 262
 263 if (hapd->ioctl_sock < 0)
 264 return -1;
 265
 266 memset(&ifr, 0, sizeof(ifr));
 267 snprintf(ifr.ifr_name, IFNAMSIZ, "%sap", hapd->iface);
 268
 269 if (ioctl(hapd->ioctl_sock, SIOCGIFFLAGS, &ifr) != 0) {
 270 perror("ioctl[SIOCGIFFLAGS]");
 271 return -1;
 272 }
 273
 274 if (dev_up)
 275 ifr.ifr_flags |= IFF_UP;
 276 else
 277 ifr.ifr_flags &= ~IFF_UP;
 278
 279
 280 if (ioctl(hapd->ioctl_sock, SIOCSIFFLAGS, &ifr) != 0) {
 281 perror("ioctl[SIOCSIFFLAGS]");
 282 return -1;
 283 }
 284
 285 if (dev_up) {
 286 memset(&ifr, 0, sizeof(ifr));
 287 snprintf(ifr.ifr_name, IFNAMSIZ, "%sap", hapd->iface);
 288 ifr.ifr_mtu = HOSTAPD_MTU;
 289 if (ioctl(hapd->ioctl_sock, SIOCSIFMTU, &ifr) != 0) {
 290 perror("ioctl[SIOCSIFMTU]");
 291 #ifdef DEBUG_IDS
 292 printf("Setting MTU failed - trying to survive with "
 293 "current value\n");
 294 #endif
 295 }
 296 }
 297
 298 return 0;
 299 }
 300
 301 /* used to set retry limit to 0 in RF Monitor mode
 302 * so that driver doesn't go crazy retransmitting in monitor mode
 303 * because the ACKs don't come back */
 304 void set_retry_limit(hostapd * hapd, int limit) {
 305 struct iwreq iwr; /* structure used for passing parameters to ioctl */
 306 memset(&iwr, 0, sizeof(iwr)); /* zero out the struc */
 307 strncpy(iwr.ifr_name, hapd->iface, IFNAMSIZ); /* set the interface name in the
struct */
 308 iwr.u.retry.flags = IW_RETRY_LIMIT; /* specify that we're setting the retry

ECE 4006 Wireless Intrusion Detection and Response Group 2

 195

limit */
 309 iwr.u.retry.value = limit;
 310 iwr.u.retry.disabled = 0;
 311 /* send out the ioctl using the SIOCSIWRETRY flag */
 312 if (ioctl(hapd->ioctl_sock , SIOCSIWRETRY, &iwr) < 0) {
 313 perror("ioctl[SIOCSIWRETRY]");
 314 #ifdef DEBUG_IDS
 315 printf("Failed to set retry limit to 0\n");
 316 #endif
 317 }
 318 }
 319
 320 /*
 321 * changes current channel to i
 322 */
 323 void set_channel(hostapd * hapd, char i) {
 324 struct iwreq iwr; /* struc used to pass parameters to ioctl */
 325 memset(&iwr, 0, sizeof(iwr)); /* init the struc */
 326 strncpy(iwr.ifr_name, hapd->iface, IFNAMSIZ); /* set iface name, this is
requred */
 327 /* wireless ioctl takes the frequency in float style, i.e. mantissa and
exponent
 328 * if the values are integers, 1, 2, ..., 11, it treats it is a channel
 329 * number instead of a frequency and does the translation.
 330 * we choose to just pass the ioctl channel numbers */
 331
 332 iwr.u.freq.m = (long) i; /* set the channel */
 333 iwr.u.freq.e = 0; /* zero exponent */
 334
 335 /* send out the ioctl using the SIOCSIWFREQ flag */
 336 if (ioctl(hapd->ioctl_sock , SIOCSIWFREQ, &iwr) < 0) {
 337 perror("ioctl[SIOCSIWFREQ]");
 338 #ifdef DEBUG_IDS
 339 printf("Failed to set frequency\n");
 340 #endif
 341 }
 342 }
 343
 344 /* changes operation mode using ioctls */
 345 #define MODE_MANAGED 2
 346 #define MODE_MONITOR 6
 347 #define MODE_MASTER 3
 348 void set_mode(hostapd * hapd, int mode) {
 349 struct iwreq iwr; /* structure used for passing args to ioctl */
 350 memset(&iwr, 0, sizeof(iwr)); /* init */
 351 strncpy(iwr.ifr_name, hapd->iface, IFNAMSIZ); /* set iface name */
 352 iwr.u.mode = (u32) mode; /* fill in the mode in the struc */
 353
 354 /* send out the ioctl using SIOCSIWMODE flag */
 355 if (ioctl(hapd->ioctl_sock , SIOCSIWMODE, &iwr) < 0) {
 356 perror("ioctl[SIOCSIWMODE]");
 357 #ifdef DEBUG_IDS
 358 printf("Failed to switch mode to %d\n", mode);
 359 #endif
 360 }
 361 }
 362
 363 /* prints out IDS system usage */
 364 static void usage(void)
 365 {
 366 fprintf(stderr,
 367 "ECE4006 Group2 Intrusion Detection System\n"
 368 "usage: ids [-P<AP address>] [-c<AP channel>] <wlan#>\n");

ECE 4006 Wireless Intrusion Detection and Response Group 2

 196

 369 exit(1);
 370 }
 371
 372 /* converts binary mac address into readable string */
 373 const char *mac2str(unsigned char *addr)
 374 {
 375 static char buf[20];
 376 snprintf(buf, sizeof(buf), "%02x:%02x:%02x:%02x:%02x:%02x",
 377 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
 378 return buf;
 379 }
 380
 381 /* converts hex ascii into a hex number, only provides a lower nibble */
 382 u8 asc2hex(unsigned char c) {
 383 u8 a;
 384 if ((a = (c - 0x30)) > 9) return (c - 0x57);
 385 else return a;
 386 }
 387
 388 /* converts two consecutive hex ascii into a byte */
 389 u8 asc2byte(unsigned char * s) {
 390 return ((asc2hex(s[0]) << 4) | asc2hex(s[1]));
 391 }
 392
 393 /* converts a string representation of mac addr (00:01:02:03:04:05) to
 394 * bytes */
 395 u8 * str2mac(unsigned char *addr, u8 * dest) {
 396 dest[0] = asc2byte(addr);
 397 dest[1] = asc2byte(addr+3);
 398 dest[2] = asc2byte(addr+6);
 399 dest[3] = asc2byte(addr+9);
 400 dest[4] = asc2byte(addr+12);
 401 dest[5] = asc2byte(addr+15);
 402 return dest;
 403 }
 404
 405 /* takes in a pointer to tagged parameter and returns ssid (tag index 0) if
found, otherwise null, length of tag is return through input parameter ssid_len, leave
it null when calling if don't want the length */
 406 /* tag_len is how many bytes of tags I need to check */
 407 char * extract_tag_ssid(char * p, int * ssid_len, int tag_len) {
 408 int len;
 409 len = 0;
 410 do {
 411 /* check tag */
 412 if (*p == 0) {
 413 /* found the ssid */
 414 *ssid_len = *(p+1);
 415 return p+2;
 416 }
 417 /* otherwise, advance p to next tag */
 418 len += *(p+1);
 419 p = p + *(p+1) + 2;
 420 } while (len < tag_len);
 421 return NULL;
 422 }
 423
 424 /* sends a probe response based on parameters passed in */
 425 void send_response(hostapd * hapd, char * dest, char * bssid, char * ssid, char
ssid_len, char temp_channel) {
 426 struct ieee80211_mgmt * mgmt = (struct ieee80211_mgmt *) sbuf;
 427 char extra_len;
 428 char * p;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 197

 429 /* zero fill buffer first */
 430 memset(sbuf, 0, sizeof(sbuf));
 431 /* management type */
 432 mgmt->frame_control = IEEE80211_FC(WLAN_FC_TYPE_MGMT,
 433 WLAN_FC_STYPE_PROBE_RESP);
 434 memcpy(mgmt->da, dest, ETH_ALEN);
 435 /* fill in addr */
 436 memcpy(mgmt->sa, bssid, ETH_ALEN);
 437 memcpy(mgmt->bssid, bssid, ETH_ALEN);
 438 /* fill in AP info */
 439 mgmt->u.beacon.beacon_int = 0x0064;
 440 mgmt->u.beacon.capab_info = 0x0011;/* WEP enabled, station is AP */
 441 extra_len = sizeof(mgmt->u.probe_resp);
 442
 443 p = (char *) mgmt->u.probe_resp.variable;
 444 /* fill in ssid tagged parameter */
 445 *p++ = WLAN_EID_SSID;
 446 *p++ = ssid_len;
 447 memcpy(p, ssid, ssid_len);
 448 extra_len += ssid_len + 2;
 449 p += ssid_len;
 450 /* fill in supported rates tagged parameter */
 451 *p++ = WLAN_EID_SUPP_RATES;
 452 *p++ = 4; /* len */
 453 *p++ = 0x82; /* 1 Mbps, base set */
 454 *p++ = 0x84; /* 2 Mbps, base set */
 455 *p++ = 0x0b; /* 5.5 Mbps */
 456 *p++ = 0x16; /* 11 Mbps */
 457 extra_len += 6;
 458
 459 /* current channel */
 460 *p++ = WLAN_EID_DS_PARAMS;
 461 *p++ = 1; /* len */
 462 *p++ = temp_channel;
 463
 464 extra_len += 3;
 465
 466 /* channel hop to newly selected channel only if different*/
 467 if (temp_channel != hop_channel)
 468 set_channel(hapd, temp_channel);
 469
 470 /* send it out */
 471 if (send(hapd->sock, mgmt, IEEE80211_HDRLEN + extra_len,
 472 0) < 0)
 473 perror("Unable to send response");
 474 #ifdef DEBUG_IDS
 475 printf("Sent response: %s\n", ssid);
 476 #endif
 477
 478 /* switch back to AP's current hop channel */
 479 if (temp_channel != hop_channel)
 480 set_channel(hapd, channel);
 481 }
 482
 483 /* sends a RTS packet to dest */
 484 void send_rts(hostapd * hapd, char * dest) {
 485 struct ieee80211_mgmt * mgmt = (struct ieee80211_mgmt *) sbuf;
 486 struct iwreq iwr;
 487 memset(&iwr, 0, sizeof(iwr));
 488 strncpy(iwr.ifr_name, hapd->iface, IFNAMSIZ);
 489
 490 /* first set rts threshold to 0 bytes */
 491 /* so that driver will transmit out RTS before the next packet */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 198

 492 iwr.u.rts.value = 0;
 493 iwr.u.rts.fixed = 1;
 494 iwr.u.rts.disabled = 0;
 495 if (ioctl(hapd->ioctl_sock , SIOCSIWRTS, &iwr) < 0) {
 496 perror("ioctl[SIOCSIWRTS]");
 497 }
 498
 499 /* send out a bogus packet */
 500 memset(sbuf, 0, sizeof(sbuf));
 501 mgmt->frame_control = IEEE80211_FC(WLAN_FC_TYPE_MGMT,
 502 WLAN_FC_STYPE_PROBE_RESP);
 503 // memset(mgmt->da, 0xff, ETH_ALEN);
 504 memcpy(mgmt->da, dest, ETH_ALEN);
 505 memcpy(mgmt->bssid, hapd->own_addr, ETH_ALEN);
 506 memcpy(mgmt->sa, hapd->own_addr, ETH_ALEN);
 507 if (send(hapd->sock, mgmt, IEEE80211_HDRLEN,
 508 0) < 0)
 509 perror("Unable to send bogus packet");
 510
 511 /* turn off RTS threshold */
 512 iwr.u.rts.disabled = 1;
 513 iwr.u.rts.value = -1;
 514 if (ioctl(hapd->ioctl_sock , SIOCSIWRTS, &iwr) < 0) {
 515 perror("ioctl[SIOCSIWRTS]");
 516 }
 517
 518 }
 519
 520 /* generates random byte from time */
 521 u8 my_random() {
 522 struct timeval now;
 523 gettimeofday(&now, NULL);
 524 return now.tv_usec & 0xff;
 525 }
 526
 527 /* generates a pseudo random channel */
 528 char rand_channel() {
 529 return (my_random() % 11) + 1;
 530 }
 531
 532 /* sends an encrypted data frame out */
 533 void send_encrypted(hostapd * hapd) {
 534 /* mask packet scratchpad into an ieee80211_data type */
 535 struct ieee80211_data * data = (struct ieee80211_data *) sbuf;
 536 /* seed is declared static and incremented every time we enter here
 537 * just to use a non repeating number */
 538 static u8 seed;
 539 seed++;
 540 /* clear out buffer */
 541 memset(sbuf, 0, sizeof(sbuf));
 542 /* fill in frame_control */
 543 data->frame_control = 0x4208; /* DATA type, WEP enabled */
 544 /* specify addresses */
 545 /* we have defaulted to ff:ff:ff:ff:ff:ff for the destination address
 546 * so we can pick it up easier on ethereal. And hopefully actual
 547 * valid clients don't pick up this packet */
 548 memset(data->da, 0xff, ETH_ALEN);
 549 /* fill in the bssid and source address as the BSSID of the valid
 550 * network so that Airsnort puts this packet together with the other
 551 * packets from the valid network */
 552 memcpy(data->bssid, apaddr, ETH_ALEN);
 553 memcpy(data->sa, apaddr, ETH_ALEN);
 554 /* generate random IV flag that is "weak" */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 199

 555 data->iv[0] = (my_random() % 13) + 3;
 556 data->iv[1] = 0xff;
 557 data->iv[2] = seed;
 558 data->key = 0;
 559 /* fill in one byte random data */
 560 data->data = my_random();
 561 /* send it out */
 562 if (send(hapd->sock, data, sizeof(struct ieee80211_data),
 563 0) < 0)
 564 perror("Unable to send bogus packet");
 565 }
 566
 567 /* Loads the list of fake APs from file */
 568 int loadFakes() {
 569 int total, i;
 570 char buf[16];
 571 /* Get total number of entries */
 572 if(getAttribute(FAKE_AP_FILE, "TOTAL", buf) != 0) {
 573 return 1;
 574 }
 575 total = atoi(buf);
 576 for(i = 0; i < total; i++) {
 577 char mac[18], ssid[ETH_ALEN+1];
 578 /* Read in the MAC */
 579 sprintf(buf, "MAC%d", i);
 580 if(getAttribute(FAKE_AP_FILE, buf, mac) != 0) {
 581 return 1;
 582 }
 583 /* Read in the SSID */
 584 sprintf(buf, "SSID%d", i);
 585 if(getAttribute(FAKE_AP_FILE, buf, ssid) != 0) {
 586 return 1;
 587 }
 588 /* Set the entry */
 589 bogusAp[i].state = 1;
 590 str2mac(mac, bogusAp[i].addr);
 591 memcpy(bogusAp[i].ssid, ssid, strlen(ssid));
 592 bogusAp[i].ssid_len = strlen(ssid);
 593 }
 594 /* Clear rest of table */
 595 for(; i < MAX_BOGUS_AP; i++) {
 596 bogusAp[i].state = 0;
 597 }
 598 return 0;
 599 }
 600
 601 /* handles IPC message passing between client and server */
 602 void handle_IPC(hostapd * hapd) {
 603 char * p_ipc;
 604 int i;
 605 u8 macaddr[6];
 606 ClientData * current;
 607 /* buffers for IPC */
 608 char msg[MSG_SIZE];
 609 char data[SHM_SIZE];
 610 int len;
 611
 612 p_ipc = data;
 613 len = 0;
 614 /* check for new IPC messages from client */
 615 getrequest(msg);
 616 if (msg[0] != 0) {
 617 switch(msg[0]) {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 200

 618 case '0':
 619 /* client requested for probe request table */
 620 #ifdef DEBUG_IDS
 621 printf("Sending probe reques table to client \n");
 622 #endif
 623 /* traverse through hash table and fill data with response */
 624 /* TODO : need to implement check if exceed shared memory buffer, define
handshaking protocol to send multiple pages */
 625 for (i=0;i < MAX_HASHES; i++) {
 626 ClientData * current;
 627 current = hashTable[i];
 628 while (current != NULL && (len < (SHM_SIZE-40))) {
 629 int retval;
 630 /* format:
 631 MACADDR|time first spotted|time last request|total
requests|status|auth_state */
 632 if ((retval = sprintf(p_ipc, "%s|%d|%d|%d|%02x|%d\n",
 633 mac2str(current->addr),
 634 current->first_sampled,
 635 current->last_sampled,
 636 current->total_count,
 637 current->status,
 638 current->auth_state)) <= 0) {
 639 #ifdef DEBUG_IDS
 640 printf("Error filling ipc buffer\n");
 641 #endif
 642 break;
 643 }
 644 /* advance IPC pointer */
 645 len += retval;
 646 current = current->next;
 647 p_ipc = data + len;
 648 }
 649 }
 650 *p_ipc = '\0'; /* cap the packet */
 651 break;
 652 case '1':
 653 /* remove a particular MAC address from the tables
 654 * format: 1XX:XX:XX:XX:XX:XX
 655 * where XX:XX:XX:XX:XX:XX is the mac address
 656 */
 657 str2mac(msg+1, macaddr);
 658 #ifdef DEBUG_IDS
 659 printf("Requesting erase of %s\n", mac2str(macaddr));
 660 #endif
 661 if ((current = getHashTable(macaddr)) == NULL) {
 662 strcpy(data, "ERR");
 663 } else {
 664 removeHashTable(current);
 665 strcpy(data, "DONE");
 666 }
 667 break;
 668 case '2':
 669 /* remove all entries from tables */
 670 initHashTable();
 671 strcpy(data, "DONE");
 672 break;
 673 case '3':
 674 /* add a bogus AP entry to table
 675 * format: 3xx:xx:xx:xx:xx:xx|ssid\0*/
 676 for (i=0;i < MAX_BOGUS_AP;i++) {
 677 if (bogusAp[i].state == 0) {
 678 char len;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 201

 679 str2mac(msg+1, bogusAp[i].addr);
 680 len = strchr(msg+1, '\0') - msg - 19;
 681 memcpy(bogusAp[i].ssid, msg + 19, len);
 682 bogusAp[i].ssid_len = len;
 683 bogusAp[i].state = 1;
 684 strcpy(data, "DONE");
 685 break;
 686 }
 687 }
 688 if (i == MAX_BOGUS_AP) {
 689 strcpy(data, "ERR");
 690 }
 691 break;
 692 case '4':
 693 /* get table of bogus AP */
 694 /* format:
 695 * MACADDR|ssid */
 696 for (i=0;i < MAX_BOGUS_AP;i++) {
 697 /* if valid bogusAP */
 698 if (bogusAp[i].state) {
 699 sprintf(p_ipc, "%s|", mac2str(bogusAp[i].addr));
 700 memcpy(p_ipc+18, bogusAp[i].ssid, bogusAp[i].ssid_len);
 701 len += bogusAp[i].ssid_len + 18;
 702 p_ipc = data + len;
 703 *p_ipc++ = '\n';
 704 len++;
 705 }
 706 }
 707 *p_ipc = '\0'; /* cap it off */
 708 break;
 709 case '5':
 710 /* remove an entry from fake AP table
 711 * format: 5XX:XX:XX:XX:XX:XX
 712 * where XX:XX:XX:XX:XX:XX is the mac address
 713 */
 714 str2mac(msg+1, macaddr);
 715 #ifdef DEBUG_IDS
 716 printf("Requesting fake AP erase of %s\n", mac2str(macaddr));
 717 #endif
 718 len = 0; /* used to indicate whether any work done */
 719 /* get macaddr from ascii to hex */
 720 for (i=0;i < MAX_BOGUS_AP;i++) {
 721 /* check if mac addr matches */
 722 if (bogusAp[i].state == 1 &&
 723 memcmp(bogusAp[i].addr, macaddr, ETH_ALEN) == 0) {
 724 bogusAp[i].state = 0; /* indicate erased */
 725 len++; /* indicate that something was deleted */
 726 }
 727 }
 728 /* if we didn't find it, return error */
 729 if (len == 0) {
 730 strcpy(data, "ERR");
 731 } else {
 732 strcpy(data, "DONE");
 733 }
 734 break;
 735 case '6':
 736 /* remove all fake AP entries */
 737 for (i=0;i < MAX_BOGUS_AP;i++) {
 738 bogusAp[i].state = 0;
 739 }
 740 strcpy(data, "DONE");
 741 break;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 202

 742 case '7':
 743 /* return wireless settings */
 744 /* format:BSSID\nchannel\0 */
 745 sprintf(data, "%s\n%d", mac2str(apaddr), channel);
 746 break;
 747 case '8':
 748 /* set bssid */
 749 str2mac(msg+1, apaddr);
 750 strcpy(data, "DONE");
 751 break;
 752 case '9':
 753 /* set channel */
 754 i = atoi(msg+1);
 755 if (i > 0 && i < 12) {
 756 if (i != channel) {
 757 channel = i;
 758 /* if not in hopping mode, hop_channel needs to mirrow channel */
 759 if (!enable_hop)
 760 hop_channel = channel;
 761 set_channel(hapd, channel);
 762 }
 763 strcpy(data, "DONE");
 764 } else {
 765 strcpy(data, "ERR");
 766 }
 767 break;
 768 case 'A':
 769 /* get channel hopping status */
 770 strcpy(data, enable_hop?"Y":"N");
 771 break;
 772 case 'B':
 773 /* get fake probe status */
 774 strcpy(data, enable_fake_ap?"Y":"N");
 775 break;
 776 case 'C':
 777 /* get fake WEP status */
 778 strcpy(data, enable_bogus_wep?"Y":"N");
 779 break;
 780 case 'D':
 781 /* set channel hopping status */
 782 if(msg[1] != '0') {
 783 enable_hop = 1;
 784 } else if (msg[1] != '1') {
 785 enable_hop = 0;
 786 /* return back to main channel */
 787 set_channel(hapd, channel);
 788 /* set hop_channel to main channel */
 789 hop_channel = channel;
 790 } else {
 791 strcpy(data, "ERR");
 792 break;
 793 }
 794 strcpy(data, "DONE");
 795 break;
 796 case 'E':
 797 /* set fake probe status */
 798 if(msg[1] != '0') {
 799 enable_fake_ap = 1;
 800 } else if (msg[1] != '1') {
 801 enable_fake_ap = 0;
 802 } else {
 803 strcpy(data, "ERR");
 804 break;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 203

 805 }
 806 strcpy(data, "DONE");
 807 break;
 808 case 'F':
 809 /* set fake WEP status */
 810 if(msg[1] != '0') {
 811 enable_bogus_wep = -1;
 812 } else if (msg[1] != '1') {
 813 enable_bogus_wep = 0;
 814 } else {
 815 strcpy(data, "ERR");
 816 break;
 817 }
 818 strcpy(data, "DONE");
 819 break;
 820 case 'G':
 821 /* save fake AP table */
 822 break;
 823 case 'H':
 824 /* load fake AP table */
 825 if(loadFakes()) {
 826 strcpy(data, "ERR");
 827 } else {
 828 strcpy(data, "DONE");
 829 }
 830 break;
 831 case 'I':
 832 /* set the probe request threshold for netstumbler detection */
 833 detect_thresh = atoi(msg + 1);
 834 strcpy(data, "DONE");
 835 break;
 836 case 'J':
 837 /* get threshold for netstumbler detection */
 838 sprintf(data, "%d", detect_thresh);
 839 break;
 840 case 'O':
 841 /* set DOS behavior when netstumbler detected */
 842 if(msg[1] != '0') {
 843 enable_dos = 1;
 844 } else if (msg[1] != '1') {
 845 enable_dos = 0;
 846 } else {
 847 strcpy(data, "ERR");
 848 break;
 849 }
 850 strcpy(data, "DONE");
 851 break;
 852 case 'P':
 853 /* get DoS status */
 854 strcpy(data, enable_dos?"Y":"N");
 855 break;
 856 default:
 857 strcpy(data, "ACK");
 858 break;
 859 }
 860 sendinfo(data, msg);
 861 }
 862
 863 }
 864
 865 /* handles the bulk of netstumbler detection
 866 * returns pointer to client in table */
 867 ClientData * handle_detection(struct hfa384x_rx_frame * frm) {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 204

 868 struct timeval now;
 869 ClientData * current;
 870 gettimeofday(&now, NULL);
 871 #ifdef DEBUG_IDS
 872 printf("Probe Request from:%s", mac2str(frm->addr2));
 873 printf("\n");
 874 #endif
 875 /* check whether new probe request mac address is present in tables */
 876 current = getHashTable(frm->addr2);
 877 if (current != NULL) {
 878 /* entry was already present */
 879 current->total_count++;
 880 current->last_sampled = now.tv_sec;
 881 /* check whether entry is active scan or normal */
 882 if (current->status & CLIENT_STATUS_ACTIVE) {
 883 /* was active, should be doing some countermeasures here */
 884 #ifdef DEBUG_IDS
 885 printf("Netstumbler %s probe request\n", mac2str(frm->addr2));
 886 #endif
 887 } else {
 888 /* not active */
 889 current->current_count++;
 890 /* check whether exceeds scanning threshold */
 891 if ((now.tv_sec - current->active_eval_start) < 10) {
 892 if (current->current_count > detect_thresh) {
 893 #ifdef DEBUG_IDS
 894 printf("Net stumbler alert:%s\n", mac2str(frm->addr2));
 895 #endif
 896 /* indicate in data structure that is active */
 897 current->status |= CLIENT_STATUS_ACTIVE;
 898 }
 899 } else {
 900 /* wasn't a netstumbler in ten seconds, reset active_eval_start and
current_count */
 901 current->active_eval_start = now.tv_sec;
 902 current->current_count = 0;
 903 }
 904 }
 905 } else {
 906 /* new client detected, add him/her to the records */
 907 if (numClients == MAX_CLIENTS) {
 908 #ifdef DEBUG_IDS
 909 printf("Tables full\n");
 910 #endif
 911 } else {
 912 if ((current = malloc(sizeof(ClientData))) == NULL) {
 913 #ifdef DEBUG_IDS
 914 printf("Malloc failed\n");
 915 #endif
 916 return NULL;
 917 }
 918 /* new entry, initialize default values and current times */
 919 memcpy(current->addr, frm->addr2, ETH_ALEN);
 920 current->status = 0;
 921 current->auth_state = 0;
 922 current->last_sampled = now.tv_sec;
 923 current->first_sampled = now.tv_sec;
 924 current->active_eval_start = now.tv_sec;
 925 current->total_count = 1;
 926 current->current_count = 1;
 927 /* add new client to hash table */
 928 if (addHashTable(current) == 0) {
 929 #ifdef DEBUG_IDS

ECE 4006 Wireless Intrusion Detection and Response Group 2

 205

 930 printf("failed to add to hash table\n");
 931 #endif
 932 }
 933 }
 934 }
 935 return current;
 936 }
 937
 938 /* switchboard function for 802.11 packets. All packets pass through here
 939 * the program deciphers the type by looking at the frame control
 940 * then calls the appropriate handlers
 941 * this was modified from wlansniff.c distributed in the hostap package
 942 */
 943 void handle_wlansniffrm(int s, unsigned char *buf, int len, int prism_header,
hostapd * hapd)
 944 {
 945 /* allocate a hfa384x type struct
 946 * the wireless card communicates with us using this frame
 947 * its basically 802.11 with extra headers in front and
 948 * RF statistics (signal strength, SNR etc.
 949 */
 950 struct hfa384x_rx_frame frmbuf, *frm;
 951 int left, hdrlen;
 952 unsigned char *pos;
 953 unsigned int fc;
 954 int i;
 955
 956 left = len;
 957 pos = buf;
 958
 959 if (prism_header) {
 960 struct linux_wlan_ng_prism_hdr *hdr;
 961 if (len < sizeof(*hdr)) {
 962 #ifdef DEBUG_IDS
 963 printf("Short wlansniffrm (len=%i)!\n", len);
 964 #endif
 965 return;
 966 }
 967
 968 /* initialize data structure */
 969 memset(&frmbuf, 0, sizeof(frmbuf));
 970 hdr = (struct linux_wlan_ng_prism_hdr *) buf;
 971 pos += sizeof(struct linux_wlan_ng_prism_hdr);
 972 frm = (struct hfa384x_rx_frame *) (pos - 14);
 973 memcpy(&frmbuf.frame_control, &frm->frame_control, 24);
 974 /* copy wireless and RF statistics over */
 975 frmbuf.time = host_to_le32(hdr->mactime.data);
 976 frmbuf.signal = hdr->signal.data;
 977 frmbuf.silence = hdr->noise.data;
 978 frmbuf.rate = hdr->rate.data * 5;
 979 frm = &frmbuf;
 980 left -= sizeof(struct linux_wlan_ng_prism_hdr);
 981 } else {
 982 frm = (struct hfa384x_rx_frame *) (buf - 14);
 983 }
 984
 985 fc = le_to_host16(frm->frame_control);
 986 hdrlen = 24;
 987 /* do some header length tweaking if we received DATA and CTRL frames
 988 * this code was introduced in wlansniff.c */
 989 switch (WLAN_FC_GET_TYPE(fc)) {
 990 case WLAN_FC_TYPE_DATA:
 991 if ((fc & WLAN_FC_FROMDS) && (fc & WLAN_FC_TODS))

ECE 4006 Wireless Intrusion Detection and Response Group 2

 206

 992 hdrlen = 30; /* Addr4 */
 993 break;
 994 case WLAN_FC_TYPE_CTRL:
 995 switch (WLAN_FC_GET_STYPE(fc)) {
 996 case WLAN_FC_STYPE_CTS:
 997 case WLAN_FC_STYPE_ACK:
 998 hdrlen = 10;
 999 break;
1000 default:
1001 hdrlen = 16;
1002 break;
1003 }
1004 break;
1005 }
1006
1007 if (left < hdrlen) {
1008 #ifdef DEBUG_IDS
1009 printf("Too short packed (left=%d < hdrlen=%d)\n",
1010 left, hdrlen);
1011 #endif
1012 return;
1013 }
1014
1015 left -= hdrlen;
1016 pos += hdrlen;
1017
1018 /* if not management type, just return */
1019 /* we are only interested in management frames */
1020 if (WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_MGMT) {
1021 return;
1022 }
1023
1024 /* check whether I received a probe request */
1025 switch(WLAN_FC_GET_STYPE(fc)) {
1026 case WLAN_FC_STYPE_PROBE_REQ:
1027 {
1028 ClientData * current;
1029 /* call handle_detection who will look up the database and identify
1030 * whether this client is a netstumbler */
1031 if ((current = handle_detection(frm)) != NULL) {
1032 /* check whether this option is enabled */
1033 if (enable_fake_ap) {
1034 /* if this client is an established netstumbler,
1035 * we want to send him fake probe response for the actual
1036 * AP but at different channels */
1037 /* do some randomization (1/4 chance, so fake AP responses still go out */
1038 if ((current->status & CLIENT_STATUS_ACTIVE) &&
1039 ((my_random() & 0x11) == 0x01)) {
1040 /* send out the response */
1041 if (enable_dos) {
1042 /* if we are in DOS mode, send out malformed probe response
1043 * causing 'certain' cards to hang */
1044 send_response(hapd, current->addr, apaddr, "", 0, hop_channel);
1045 } else {
1046 /* send a plain probe response, with ssid field not filled in
1047 * so as not to reveal the network's SSID. This response
1048 * still pops up in Netstumbler at the same entry as the
1049 * actual network */
1050 send_response(hapd, current->addr, apaddr, " ", 1, hop_channel);
1051 }
1052 } else {
1053 /* generate probe response for one of the AP's in the table
1054 * goes through the list in round robin fashion

ECE 4006 Wireless Intrusion Detection and Response Group 2

 207

1055 */
1056 if (curBogusAp >= MAX_BOGUS_AP)
1057 curBogusAp = 0;
1058
1059 /* advance to valid entry */
1060 while (bogusAp[curBogusAp].state == 0 && curBogusAp < MAX_BOGUS_AP) {
1061 curBogusAp++;
1062 }
1063 i = curBogusAp;
1064 /* if entry is valid */
1065 if (i < MAX_BOGUS_AP) {
1066 /* send out the bogus response */
1067 send_response(hapd, frm->addr2, bogusAp[i].addr, bogusAp[i].ssid,
bogusAp[i].ssid_len, hop_channel);
1068 }
1069 curBogusAp++;
1070 }
1071 } /* if (enable_fake_ap); */
1072 }
1073 }
1074 break;
1075
1076 /* the code from here onwards handles the state machine that detects
1077 * clients authenticating with the access point and automatically
1078 * removes the client from the Netstumbler list */
1079
1080 case WLAN_FC_STYPE_ASSOC_RESP:
1081 #ifdef DEBUG_IDS
1082 printf("Association Response\n");
1083 #endif
1084 {
1085 ClientData * current;
1086 /* check whether MAC address of response to is in tables */
1087 /* and source address is our apaddr */
1088 if (((current = getHashTable(frm->addr1)) != NULL) &&
1089 (memcmp(frm->addr2, apaddr, ETH_ALEN) == 0)) {
1090 /* client went through whole state machine, set mode
1091 as associated, and remove from active list if present */
1092 current->auth_state = AUTH_STATE_ASSOCIATED;
1093 current->status &= ~CLIENT_STATUS_ACTIVE;
1094 #ifdef DEBUG_IDS
1095 printf("Fully associated %s\n", mac2str(frm->addr1));
1096 #endif
1097 }
1098 }
1099 break;
1100 case WLAN_FC_STYPE_ASSOC_REQ:
1101 #ifdef DEBUG_IDS
1102 printf("Association Request\n");
1103 #endif
1104 {
1105 ClientData * current;
1106 /* check whether MAC address of requester is in tables
1107 and destination matches access point addr */
1108 if (((current = getHashTable(frm->addr2)) != NULL) &&
1109 (memcmp(frm->addr1, apaddr, ETH_ALEN) == 0)) {
1110 /* one last step to check whether state is correct */
1111 if (current->auth_state == AUTH_STATE_AUTH_RECEIVED) {
1112 current->auth_state = AUTH_STATE_ASSOCIATION_REQ;
1113 #ifdef DEBUG_IDS
1114 printf("%s is now in assoc req state\n", mac2str(frm->addr2));
1115 #endif
1116 } else {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 208

1117 /* requested association without authentication request */
1118 /* downgrade to NOAUTH */
1119 current->auth_state = AUTH_STATE_NOAUTH;
1120 }
1121 } else {
1122 current->auth_state = AUTH_STATE_NOAUTH;
1123 }
1124 }
1125 break;
1126 case WLAN_FC_STYPE_AUTH:
1127 {
1128 ClientData * current;
1129 struct ieee80211_mgmt * mgmt = (struct ieee80211_mgmt *) (pos-24);
1130 /* check whether open system */
1131 #ifdef DEBUG_IDS
1132 printf("Authentication\n");
1133 #endif
1134 if (mgmt->u.auth.auth_alg == WLAN_AUTH_OPEN) {
1135 /* check authentication sequence */
1136 #ifdef DEBUG_IDS
1137 printf("Auth Trans %d\n", mgmt->u.auth.auth_transaction);
1138 #endif
1139 if (mgmt->u.auth.auth_transaction == 0x0001) {
1140 /* authentication request, client to AP */
1141 /* check whether source addr is present in probe tables */
1142 if ((current = getHashTable(frm->addr2)) != NULL) {
1143 /* set the new state */
1144 current->auth_state = AUTH_STATE_OPEN_AUTH_SENT;
1145 #ifdef DEBUG_IDS
1146 printf("Authentication Sent\n");
1147 #endif
1148 }
1149 } else if (mgmt->u.auth.auth_transaction == 0x0002) {
1150 /* authentication response, AP to client */
1151 /* check whether source address is our own AP */
1152 #ifdef DEBUG_IDS
1153 printf("apaddr: %s\n", mac2str(frm->addr2));
1154 #endif
1155 if (memcmp(frm->addr2, apaddr, ETH_ALEN) == 0) {
1156 /* check whether destination address is in probe tables */
1157 if ((current = getHashTable(frm->addr1)) != NULL) {
1158 /* check whether current state is AUTH_STATE_OPEN_AUTH_SENT */
1159 /* check whether status was successful */
1160 if (current->auth_state == AUTH_STATE_OPEN_AUTH_SENT &&
1161 mgmt->u.auth.status_code == WLAN_STATUS_SUCCESS) {
1162 /* upgrade state to next one */
1163 current->auth_state = AUTH_STATE_AUTH_RECEIVED;
1164 #ifdef DEBUG_IDS
1165 printf("Authentication received\n");
1166 #endif
1167 } else {
1168 /* back to noauth */
1169 current->auth_state = AUTH_STATE_NOAUTH;
1170 }
1171 }
1172 }
1173 }
1174 }
1175 }
1176 break;
1177 }
1178 }
1179

ECE 4006 Wireless Intrusion Detection and Response Group 2

 209

1180 /* uses the config library to read file specified settings using
1181 * getAttribute and sets the flags in the IDS */
1182
1183 void setToggles() {
1184 char value[8];
1185 if(getAttribute(IDS_CFG_FILE, "THRESH", value)) {
1186 detect_thresh = DEFAULT_DETECT_THRESH;
1187 } else {
1188 detect_thresh = atoi(value);
1189 }
1190 if(getAttribute(IDS_CFG_FILE, "HOPPING", value)) {
1191 enable_hop = 0;
1192 } else {
1193 enable_hop = (value[0] == '0')?0:1;
1194 }
1195 if(getAttribute(IDS_CFG_FILE, "FAKEWEP", value)) {
1196 enable_bogus_wep = 0;
1197 } else {
1198 enable_bogus_wep = (value[0] == '0')?0:1;
1199 }
1200 if(getAttribute(IDS_CFG_FILE, "FAKEAP", value)) {
1201 enable_fake_ap = 0;
1202 } else {
1203 enable_fake_ap = (value[0] == '0')?0:1;
1204 }
1205 if(getAttribute(IDS_CFG_FILE, "DOS", value)) {
1206 enable_dos = 0;
1207 } else {
1208 enable_dos = (value[0] == '0')?0:1;
1209 }
1210 }
1211
1212 int main(int argc, char *argv[])
1213 {
1214 hostapd hapd;
1215 u32 last_hop = 0;
1216 u32 last_fake_data = 0;
1217 int ret = 0, c;
1218 struct ifreq ifr;
1219 struct sockaddr_ll addr;
1220 char *iface = NULL;
1221 char rcv_buf[3000];
1222
1223 int rcv_s, rcv_arptype;
1224 struct ifreq rcv_ifr;
1225 struct sockaddr_ll rcv_addr;
1226
1227 /* read in IDS behavioral settings from file */
1228 setToggles();
1229
1230 /* read in list of Fake APs */
1231 loadFakes();
1232
1233 /* initialize hapd structure, hapd stores settings specific to the AP */
1234 memset(&hapd, 0, sizeof(hapd));
1235 /* initialize fields in hapd */
1236 hapd.auth_serv_sock = hapd.sock = hapd.ioctl_sock = -1;
1237 hapd.ssid_len = 5;
1238 strncpy(hapd.ssid, "test", sizeof(hapd.ssid) - 1);
1239 memset(apaddr, 0x00, ETH_ALEN);
1240
1241
1242 for (;;) {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 210

1243 c = getopt(argc, argv, "hP:c:S:");
1244 if (c < 0)
1245 break;
1246
1247 switch (c) {
1248 case 'h':
1249 #ifdef DEBUG_IDS
1250 printf("Requesting help\n");
1251 #endif
1252 usage();
1253 break;
1254 case 'P':
1255 /* specifies MAC addr of the real access point on network */
1256 if (strlen(optarg) != 17) {
1257 printf("Invalid MAC addr\n");
1258 usage();
1259 }
1260 str2mac(optarg, apaddr);
1261 printf("Parsed AP addr: %s\n", mac2str(apaddr));
1262 break;
1263 case 'c':
1264 /* specifies channel that AP dwells on */
1265 channel = atoi(optarg);
1266 hop_channel = channel;
1267 if (channel == 0 || channel > 11) {
1268 printf("Channel out of range\n");
1269 usage();
1270 }
1271 break;
1272 case 'S':
1273 hapd.ssid_len = strlen(optarg) + 1;
1274 if (hapd.ssid_len + 1 > sizeof(hapd.ssid) ||
1275 hapd.ssid_len < 1) {
1276 printf("Invalid SSID '%s'\n", optarg);
1277 usage();
1278 }
1279 memcpy(hapd.ssid, optarg, hapd.ssid_len);
1280 break;
1281 default:
1282 #ifdef DEBUG_IDS
1283 printf("Parsed default opt %c\n", c);
1284 #endif
1285 usage();
1286 break;
1287 }
1288 }
1289
1290 if (optind + 1 != argc) {
1291 #ifdef DEBUG_IDS
1292 printf("Option index does not match\n");
1293 #endif
1294 usage();
1295 }
1296 iface = argv[optind];
1297 #ifdef DEBUG_IDS
1298 printf("Listening on %s\n", iface);
1299 #endif
1300
1301 /* check whether channel valid */
1302 if (channel == 0) {
1303 channel = 1;
1304 hop_channel = 1;
1305 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 211

1306
1307 snprintf(hapd.iface, sizeof(hapd.iface), "%s", iface);
1308 hapd.sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
1309 if (hapd.sock < 0) {
1310 perror("socket[PF_PACKET,SOCK_RAW]");
1311 ret = 1;
1312 goto out;
1313 }
1314
1315 hapd.ioctl_sock = socket(PF_INET, SOCK_DGRAM, 0);
1316 if (hapd.ioctl_sock < 0) {
1317 perror("socket[PF_INET,SOCK_DGRAM]");
1318 ret = 1;
1319 goto out;
1320 }
1321
1322 memset(&ifr, 0, sizeof(ifr));
1323 snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%sap", iface);
1324 if (ioctl(hapd.sock, SIOCGIFINDEX, &ifr) != 0) {
1325 perror("ioctl(SIOCGIFINDEX)");
1326 ret = 1;
1327 goto out;
1328 }
1329
1330 if (hostapd_set_iface_flags(&hapd, 1)) {
1331 ret = 1;
1332 goto out;
1333 }
1334
1335 memset(&addr, 0, sizeof(addr));
1336 addr.sll_family = AF_PACKET;
1337 addr.sll_ifindex = ifr.ifr_ifindex;
1338 if (hapd.debug >= HOSTAPD_DEBUG_MINIMAL) {
1339 #ifdef DEBUG_IDS
1340 printf("Opening raw packet socket for ifindex %d\n",
1341 addr.sll_ifindex);
1342 #endif
1343 }
1344
1345 if (bind(hapd.sock, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
1346 perror("bind");
1347 ret = 1;
1348 goto out;
1349 }
1350
1351 memset(&ifr, 0, sizeof(ifr));
1352 snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s", iface);
1353 if (ioctl(hapd.sock, SIOCGIFHWADDR, &ifr) != 0) {
1354 perror("ioctl(SIOCGIFHWADDR)");
1355 ret = 1;
1356 goto out;
1357 }
1358
1359 memcpy(hapd.own_addr, ifr.ifr_hwaddr.sa_data, ETH_ALEN);
1360 #ifdef DEBUG_IDS
1361 printf("Using interface %sap with hwaddr " MACSTR " and ssid '%s'\n",
1362 iface, MAC2STR(hapd.own_addr), hapd.ssid);
1363 #endif
1364
1365 /* configure wireless card for monitor operation */
1366
1367 /* uses wireless extension to make retr 0 */
1368 /* needs to be zero because can't listen for ACK while in RFMON */

ECE 4006 Wireless Intrusion Detection and Response Group 2

 212

1369
1370 set_retry_limit(&hapd, 0);
1371
1372 /* change to RF mon mode */
1373 set_mode(&hapd, MODE_MONITOR);
1374
1375 /* change channel to default AP channel */
1376 set_channel(&hapd, channel);
1377
1378 /* set up sniffer iface */
1379
1380 rcv_s = socket(PF_INET, SOCK_DGRAM, 0);
1381 if (rcv_s < 0) {
1382 perror("socket[PF_INET,SOCK_DGRAM]");
1383 exit(-1);
1384 }
1385 memset(&rcv_ifr, 0, sizeof(rcv_ifr));
1386 snprintf(rcv_ifr.ifr_name, sizeof(rcv_ifr.ifr_name), "%s", iface);
1387 if (ioctl(rcv_s, SIOCGIFHWADDR, &rcv_ifr) != 0) {
1388 perror("ioctl(SIOCGIFHWADDR)");
1389 close(rcv_s);
1390 exit(-1);
1391 }
1392 rcv_arptype = rcv_ifr.ifr_hwaddr.sa_family;
1393
1394 if (ioctl(rcv_s, SIOCGIFINDEX, &rcv_ifr) != 0) {
1395 perror("ioctl(SIOCGIFINDEX)");
1396 close(rcv_s);
1397 exit(-1);
1398 }
1399 close(rcv_s);
1400
1401 if (rcv_arptype != ARPHRD_IEEE80211 && rcv_arptype != ARPHRD_IEEE80211_PRISM) {
1402 fprintf(stderr, "Unsupported arptype 0x%04x\n", rcv_arptype);
1403 exit(-1);
1404 }
1405
1406 rcv_s = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
1407 if (rcv_s < 0) {
1408 perror("socket[PF_PACKET,SOCK_RAW]");
1409 exit(-1);
1410 }
1411
1412 memset(&rcv_addr, 0, sizeof(rcv_addr));
1413 rcv_addr.sll_family = AF_PACKET;
1414 rcv_addr.sll_ifindex = rcv_ifr.ifr_ifindex;
1415 #ifdef DEBUG_IDS
1416 printf("Opening raw packet socket for ifindex %d\n", rcv_addr.sll_ifindex);
1417 #endif
1418 if (bind(rcv_s, (struct sockaddr *) &rcv_addr, sizeof(rcv_addr)) < 0) {
1419 perror("bind");
1420 close(rcv_s);
1421 exit(-1);
1422 }
1423
1424
1425
1426
1427 /* LOOK-HERE */
1428
1429 /*hostapd_deauth_all_stas(&hapd);*/
1430 initHashTable();
1431

ECE 4006 Wireless Intrusion Detection and Response Group 2

 213

1432 /* change socket type to non-blockign */
1433 fcntl(rcv_s, F_SETFL, O_NONBLOCK);
1434
1435 /* set up IPC */
1436 initializeserver("/etc", "/var");
1437
1438 if (daemon(0,1) < 0) perror("daemon");
1439
1440 {
1441 /* Set the pid as an temp file for the client to monitor */
1442 pid_t pid;
1443 FILE *idspidfile;
1444 pid = getpid();
1445 if((idspidfile = fopen(IDS_PID_TMP, "w")) != NULL) {
1446 fprintf(idspidfile, "%d", pid);
1447 fclose(idspidfile);
1448 }
1449 }
1450
1451 for (;;) {
1452 int len;
1453 struct timeval now;
1454 len = recvfrom(rcv_s, rcv_buf, sizeof(rcv_buf), 0, NULL, NULL);
1455 if (len < 0) {
1456 if (errno != EAGAIN) {
1457 #ifdef DEBUG_IDS
1458 printf("Error: recvfrom, %d", errno);
1459 #endif
1460 close(rcv_s);
1461 exit(-1);
1462 } else {
1463 handle_IPC(&hapd);
1464
1465 gettimeofday(&now, NULL);
1466 /* check whether its time to transmit out another bogus data */
1467 if (enable_bogus_wep) {
1468 if ((now.tv_sec - last_fake_data) > 10) {
1469 /* only transmit if hop_channel is main channel */
1470 if (hop_channel == channel) {
1471 send_encrypted(&hapd);
1472 last_fake_data = now.tv_sec;
1473 #ifdef DEBUG_IDS
1474 printf("Sent fake encrypted\n");
1475 #endif
1476 }
1477 }
1478 }
1479
1480 /* check if its time to hop channels */
1481 if ((enable_hop) && (now.tv_sec - last_hop) > 1) {
1482 last_hop = now.tv_sec;
1483 hop_channel++;
1484 if (hop_channel > 11) hop_channel = 1;
1485 #ifdef DEBUG_IDS
1486 printf("HOP %d\n", hop_channel);
1487 #endif
1488 set_channel(&hapd, hop_channel);
1489 }
1490 }
1491 } else {
1492 /* interprete packet just received */
1493 handle_wlansniffrm(rcv_s, rcv_buf, len,
1494 rcv_arptype == ARPHRD_IEEE80211_PRISM ? 1 : 0,

ECE 4006 Wireless Intrusion Detection and Response Group 2

 214

1495 &hapd);
1496 }
1497 }
1498
1499
1500 out:
1501 (void) hostapd_set_iface_flags(&hapd, 0);
1502
1503 if (hapd.sock >= 0)
1504 close(hapd.sock);
1505 if (hapd.ioctl_sock >= 0)
1506 close(hapd.ioctl_sock);
1507 if (hapd.auth_serv_sock >= 0)
1508 close(hapd.auth_serv_sock);
1509 if (hapd.auth_server_shared_secret)
1510 free(hapd.auth_server_shared_secret);
1511 if (hapd.dump_log_name)
1512 free(hapd.dump_log_name);
1513 free(hapd.default_wep_key);
1514
1515 return ret;
1516 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 215

client2.c

ECE 4006 Wireless Intrusion Detection and Response Group 2

 216

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4 #include <sys/time.h>
 5 #include <sys/types.h>
 6 #include <sys/wait.h>
 7 #include <unistd.h>
 8 #include <time.h>
 9 #include <ctype.h>
 10 #include "ipc.h"
 11 #include "ids.h"
 12 #include "config.h"
 13
 14 #define LINE_BUF_SIZE 1024
 15 #define TEMP_BUF_SIZE 256
 16 #define SSI_TAG_SIZE 2
 17 #define MAX_MULTI_LINE 8
 18 #define MAX_SSID_LEN 10
 19
 20 /* program and data directory */
 21 #define HOME_DIR "/etc/www/cgi-bin"
 22 /* wired interface config file */
 23 #define IP_CFG_FILE "/etc/rw/interfaces/eth0"
 24 /* wired interface config script */
 25 #define IP_COMMIT_SH "commitip.sh"
 26 /* IDS pid file */
 27 #define IDS_PID_TMP "/tmp/ids.pid"
 28 /* IDS start/stop script */
 29 #define IDS_TOGGLE_SH "toggleids.sh"
 30 /* wireless interface config file */
 31 #define WIRELESS_CFG_FILE "/etc/rw/interfaces/wlan0"
 32 /* wireless interface config script */
 33 #define WIRELESS_COMMIT_SH "commitwl.sh"
 34 #define IDS_CFG_FILE "/etc/rw/ids"
 35 /* IDS config script */
 36 #define IDS_COMMIT_SH "commitids.sh"
 37 /* fake AP list for saving/loading */
 38 #define FAKE_AP_FILE "/etc/rw/fakeap"
 39 /* fake AP list script */
 40 #define FAKEAP_COMMIT_SH "commitfake.sh"
 41 /* HTTPD config file */
 42 #define HTTPD_CFG_FILE "/etc/rw/httpd.conf"
 43 /* HTTPD config script */
 44 #define HTTPD_COMMIT_SH "commithttpd.sh"
 45 /* Declarations for config file manipulation */
 46 #ifndef CFG_MAX_LINES
 47 #define CFG_MAX_LINES 16
 48 #endif
 49 #ifndef CFG_LINE_LEN
 50 #define CFG_LINE_LEN 64
 51 #endif
 52
 53
 54 /* create multi-purpose buffers that are used to pass values between SSI and
 55 * program executing */
 56 char ac_buf[TEMP_BUF_SIZE]; /* Action buffer */
 57 char rs_buf[TEMP_BUF_SIZE]; /* Result buffer */
 58 /* buffers for forming IPC packets and data interchange */
 59 char msg[MSG_SIZE];
 60 char data[SHM_SIZE];
 61 /* strings for authentication states */
 62 /* Refer to ids.h for details */
 63 const char *AUTHSTATES[] = {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 217

 64 "No authentication",
 65 "Open authentication sent",
 66 "Shared authentication sent",
 67 "Shared authentication challenge received",
 68 "Shared authentication challenge response sent",
 69 "Authentication received",
 70 "Association requested",
 71 "Associated"
 72 };
 73
 74 /*
 75 * Converts a single character from hex to decimal
 76 * Return: decimal value
 77 */
 78 int hex2dec(char c) {
 79 if((c >= '0') && (c <= '9'))
 80 return c - '0';
 81 if((c >= 'a') && (c <= 'z'))
 82 return c - 'a' + 10;
 83 if((c >= 'A') && (c <= 'Z'))
 84 return c - 'A' + 10;
 85 return 0;
 86 }
 87
 88 /*
 89 * Converts a pair of characters from hexadecimal to decimal
 90 * Return: decimal value
 91 */
 92 char asc2byte(unsigned char * s) {
 93 return ((hex2dec(s[0]) << 4) | hex2dec(s[1]));
 94 }
 95
 96 /*
 97 * Hashes an SSI tag.
 98 * Has values are used in the switch statements since
 99 * C switch statements do not support strings.
 100 * Return: Hash
 101 */
 102 int parseSSIcmd(char* ssi) {
 103 /* here we combine the 2 characters of the
 104 * SSI tag into a single integer. The process
 105 * is endian-independent. */
 106 return ssi[1] * 256 + ssi[2];
 107 }
 108
 109 /*
 110 * Extracts SSI tags from a given line
 111 * The buffer holds the string up to the SSI tag
 112 * while lineptr points to the next character
 113 * after the tag.
 114 * Return: 0 if no tag found, -1 if a tag is found
 115 */
 116 int getSSItag(char** lineptr, char* buffer) {
 117 int ssistart;
 118 char *start;
 119 char *line = *lineptr;
 120 char *bufferend = strlen(buffer) + buffer;
 121
 122 /* Locate start of SSI */
 123 if((start = strchr(line, '$')) == NULL) {
 124 strcpy(bufferend, line);
 125 *lineptr = index(line, '\0');
 126 return 0;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 218

 127 }
 128 ssistart = start - line;
 129
 130 /* Copy up to SSI */
 131 memcpy(bufferend, line, ssistart);
 132 bufferend[ssistart] = '\0';
 133
 134 /* Set end of SSI */
 135 *lineptr = start + SSI_TAG_SIZE + 1; /* plus the $ */
 136 return -1;
 137 }
 138
 139 /*
 140 * Determines if the IDS is running.
 141 * The IDS writes out its pid to /tmp/ids.pid.
 142 * This function checks if that pid is still running
 143 * by looking for it in /proc. There is a chance
 144 * that another program has assumed the pid of the
 145 * IDS, but it is unlikely.
 146 * Return: -1 if not running, 0 if running
 147 */
 148 int getIDSrunning() {
 149 FILE *idspidfile;
 150 char idspid[6];
 151 char idspiddir[16];
 152 char curwd[32];
 153
 154 /* Locate the /tmp/ids.pid file */
 155 if((idspidfile = fopen(IDS_PID_TMP, "r")) != NULL) {
 156 /* read the ids pid from it */
 157 fscanf(idspidfile, "%s", idspid);
 158 fclose(idspidfile);
 159 /* attempt to locate the ids process under /proc */
 160 strcpy(idspiddir, "/proc/");
 161 strcat(idspiddir, idspid);
 162 getcwd(curwd, 32);
 163 if(chdir(idspiddir) == 0) {
 164 return -1;
 165 }
 166 /* switch back to the original directory */
 167 chdir(HOME_DIR);
 168 }
 169 return 0;
 170 }
 171
 172 /*
 173 * Wrapper for requestinfo that checks if the IDS is
 174 * running before proceeding.
 175 * NOTE: The IDS check function changes the current
 176 * directory and thus this function is incompatible with
 177 * opening of SHTML files. It cannot be called from doAction()
 178 */
 179 void requestinfox(char *msg, char *data) {
 180 if(getIDSrunning()) {
 181 requestinfo(msg, data);
 182 }
 183 }
 184
 185 /*
 186 * Handles a line containing standard (non-table) tags
 187 */
 188 void parseLine(char* line) {
 189 char buffer[LINE_BUF_SIZE];

ECE 4006 Wireless Intrusion Detection and Response Group 2

 219

 190
 191 /* Initialize the buffer */
 192 memset(buffer, 0, sizeof(buffer));
 193
 194 while(-1) {
 195 char ssi[SSI_TAG_SIZE + 2]; /* plus the $ and the \0 */
 196
 197 /* get SSI tag */
 198
 199 if(!getSSItag(&line, buffer)) {
 200 printf("%s", buffer);
 201 return;
 202 }
 203
 204 memcpy(ssi, line - (SSI_TAG_SIZE + 1), SSI_TAG_SIZE + 1);
 205 ssi[SSI_TAG_SIZE + 1] = '\0'; /* plus the $ */
 206
 207 /* Initialize the IPC buffers */
 208 memset(msg, 0, MSG_SIZE);
 209 memset(data, 0, SHM_SIZE);
 210
 211 /* Fill in SSI */
 212 switch(parseSSIcmd(ssi)) {
 213 case 21577:
 214 /* TI: time */
 215 {
 216 time_t temp;
 217 struct tm *t;
 218 time(&temp);
 219 t = localtime(&temp);
 220 strftime(buffer + strlen(buffer), 10, "%T", t);
 221 break;
 222 }
 223 case 17473:
 224 /* DA: date */
 225 {
 226 time_t temp;
 227 struct tm *t;
 228 time(&temp);
 229 t = localtime(&temp);
 230 strftime(buffer + strlen(buffer), 10, "%D", t);
 231 break;
 232 }
 233 case 18768:
 234 /* IP: IP */
 235 {
 236 char ip[16];
 237
 238 if(getAttribute(IP_CFG_FILE, "IP", ip) == 0) {
 239 strcat(buffer, ip);
 240 break;
 241 }
 242 strcat(buffer, "ERROR: Could not open or read configuration file");
 243 }
 244 break;
 245 case 18756:
 246 /* ID: ssid */
 247 break;
 248 case 21587:
 249 /* TS: timestamp */
 250 {
 251 time_t t;
 252 time(&t);

ECE 4006 Wireless Intrusion Detection and Response Group 2

 220

 253 strcat(buffer, ctime(&t));
 254 }
 255 break;
 256 case 16707:
 257 /* AC: action */
 258 strcat(buffer, ac_buf);
 259 break;
 260 case 21075:
 261 /* RS: result */
 262 strcat(buffer, rs_buf);
 263 break;
 264 case 16979:
 265 /* BS: BSSID */
 266 /* get wireless configuration */
 267 msg[0] = '7';
 268 requestinfox(msg, data);
 269 memcpy(buffer + strlen(buffer), data, 17);
 270 *(buffer + strlen(buffer) + 17) = 0;
 271 break;
 272 case 19779:
 273 /* MC: main AP channel */
 274 /* get wireless configuration */
 275 msg[0] = '7';
 276 requestinfox(msg, data);
 277 strcat(buffer, data + 18);
 278 break;
 279 case 21332:
 280 /* ST: status of IDS (running or stopped) */
 281 if(getIDSrunning()) {
 282 strcat(buffer, "STARTED");
 283 } else {
 284 strcat(buffer, "STOPPED");
 285 }
 286 break;
 287 case 17736:
 288 /* EH: channel hopping status */
 289 msg[0]='A';
 290 requestinfox(msg, data);
 291 strcat(buffer, data);
 292 break;
 293 case 17744:
 294 /* EP: fake probe response status */
 295 msg[0]='B';
 296 requestinfox(msg, data);
 297 strcat(buffer, data);
 298 break;
 299 case 17751:
 300 /* EW: fake WEP status */
 301 msg[0]='C';
 302 requestinfox(msg, data);
 303 strcat(buffer, data);
 304 break;
 305 case 17732:
 306 /* ED: DOS status */
 307 msg[0]='P';
 308 requestinfox(msg, data);
 309 strcat(buffer, data);
 310 break;
 311 case 21576:
 312 /* TH: Netstumbler threshold */
 313 msg[0]='J';
 314 requestinfox(msg, data);
 315 strcat(buffer, data);

ECE 4006 Wireless Intrusion Detection and Response Group 2

 221

 316 break;
 317 default:
 318 strcat(buffer, ssi);
 319 break;
 320 }
 321 }
 322 printf("%s", buffer);
 323 }
 324
 325 /*
 326 * Parses table row definitions for the probe request table
 327 */
 328 void parseLoggedLine(char* line, char* data) {
 329 char *cur;
 330
 331 /* Split the list data at each new line */
 332 cur = strtok(data, "\n");
 333
 334 while(cur != NULL) {
 335 char *curline = line;
 336 /* we need a larger buffer to store the table */
 337 char buffer[MAX_MULTI_LINE * LINE_BUF_SIZE];
 338
 339 /* initialize the buffer */
 340 memset(buffer, 0, sizeof(buffer));
 341
 342 while(-1) {
 343 char ssi[SSI_TAG_SIZE + 2]; /* plus the $ and the \0 */
 344 time_t first, last;
 345 char mac[18];
 346 char *temp;
 347 int total, state;
 348 char *status;
 349
 350 /* get SSI tag */
 351 if(!getSSItag(&curline, buffer)) {
 352 break;
 353 }
 354
 355 /* parse variables at each "|" */
 356 temp = cur;
 357 memcpy(mac, temp, 17);
 358 mac[17] = '\0';
 359 temp += 18;
 360 first = (time_t)atoi(temp);
 361 temp = strchr(temp, '|') + 1;
 362 last = (time_t)atoi(temp);
 363 temp = strchr(temp, '|') + 1;
 364 total = atoi(temp);
 365 temp = strchr(temp, '|') + 1;
 366 status = temp;
 367 temp = strchr(temp, '|') + 1;
 368 state = atoi(temp);
 369
 370 memcpy(ssi, curline - (SSI_TAG_SIZE + 1), SSI_TAG_SIZE + 1);
 371 ssi[SSI_TAG_SIZE + 1] = '\0'; /* plus the $ */
 372
 373 /* Fill in SSI */
 374 switch(parseSSIcmd(ssi)) {
 375 case 19777:
 376 /* MA: MAC */
 377 strcat(buffer, mac);
 378 break;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 222

 379 case 17993:
 380 /* FI: first seen */
 381 strcat(buffer, ctime(&first));
 382 break;
 383 case 19521:
 384 /* LA: last seen */
 385 strcat(buffer, ctime(&last));
 386 break;
 387 case 21583:
 388 /* TO: total */
 389 sprintf(&buffer[strlen(buffer)], "%d", total);
 390 break;
 391 case 20051:
 392 /* NS: netstumbler */
 393 sprintf(&buffer[strlen(buffer)], "%s", (asc2byte(status) &
CLIENT_STATUS_ACTIVE) ? "Y" : "N");
 394 break;
 395 case 16725:
 396 /* AU: auth */
 397 strcat(buffer, AUTHSTATES[state]);
 398 break;
 399 default:
 400 strcat(buffer, ssi);
 401 break;
 402 }
 403 }
 404 cur = strtok(NULL, "\n");
 405 printf("%s", buffer);
 406 }
 407 }
 408
 409 /*
 410 * Parses table row definitions for the fake AP table
 411 */
 412 void parseFakeLoggedLine(char* line, char* data) {
 413 char *cur;
 414
 415 /* Split the list data at each new line */
 416 cur = strtok(data, "\n");
 417
 418 while(cur != NULL) {
 419 char *curline = line;
 420 /* we need a larger buffer to store the table */
 421 char buffer[MAX_MULTI_LINE * LINE_BUF_SIZE];
 422 memset(buffer, 0, sizeof(buffer));
 423
 424 while(-1) {
 425 char ssi[SSI_TAG_SIZE + 2]; /* plus the $ and the \0 */
 426 char mac[18];
 427 char ssid[MAX_SSID_LEN+1];
 428
 429 /* get SSI tag */
 430 if(!getSSItag(&curline, buffer)) {
 431 break;
 432 }
 433
 434 /* parse variables */
 435 memcpy(mac, cur, 17);
 436 mac[17] = '\0';
 437 strncpy(ssid, cur+18, MAX_SSID_LEN+1);
 438 /* cap the string */
 439 ssid[MAX_SSID_LEN] = '\0';
 440

ECE 4006 Wireless Intrusion Detection and Response Group 2

 223

 441 memcpy(ssi, curline - (SSI_TAG_SIZE + 1), SSI_TAG_SIZE + 1);
 442 ssi[SSI_TAG_SIZE + 1] = '\0'; /* plus the $ */
 443
 444 /* Fill in SSI */
 445 switch(parseSSIcmd(ssi)) {
 446 case 19777:
 447 /* MA: Mac address */
 448 strcat(buffer, mac);
 449 break;
 450 case 18756:
 451 /* ID: SSID */
 452 strcat(buffer, ssid);
 453 break;
 454 default:
 455 strcat(buffer, ssi);
 456 break;
 457 }
 458 }
 459 cur = strtok(NULL, "\n");
 460 printf("%s", buffer);
 461 }
 462 }
 463
 464
 465 /*
 466 * Determine if the line is a start of table
 467 * Return: -1 if not a table, non-negative representing type of table
 468 */
 469 int isTable(char *line) {
 470 char buffer[LINE_BUF_SIZE];
 471 char ssi[SSI_TAG_SIZE + 2]; /* plus the $ and the \0 */
 472
 473 memset(buffer, 0, sizeof(buffer));
 474
 475 if(!getSSItag(&line, buffer)) {
 476 return -1;
 477 }
 478
 479 memcpy(ssi, line - (SSI_TAG_SIZE + 1), SSI_TAG_SIZE + 1);
 480 ssi[SSI_TAG_SIZE + 1] = '\0'; /* plus the $ */
 481
 482 switch(parseSSIcmd(ssi)) {
 483 case 21580:
 484 /* TL: Table of logged MACs */
 485 return 0;
 486 case 21590:
 487 /* TV: Table of valid MACs */
 488 return 1;
 489 case 21574:
 490 /* TF: Table of fake APs */
 491 return 2;
 492 default:
 493 return -1;
 494 }
 495 }
 496
 497 /*
 498 * Writes out the password and username for the webserver
 499 * Return: 0 if success, -1 if failure
 500 */
 501 int writeHTTPDconf(char const* user, char const* pass) {
 502 FILE* file;
 503 char lines[CFG_MAX_LINES][CFG_LINE_LEN];

ECE 4006 Wireless Intrusion Detection and Response Group 2

 224

 504 int count = 0, i;
 505 int set = 0;
 506
 507 /* Open the httpd.conf file */
 508 if((file = fopen(HTTPD_CFG_FILE, "r")) == NULL) {
 509 return -1;
 510 }
 511 /* Initialize the buffer */
 512 memset(lines, 0, CFG_MAX_LINES * CFG_LINE_LEN);
 513 /* Read the file into memory */
 514 while(!feof(file)) {
 515 fgets(lines[count++], CFG_LINE_LEN, file);
 516 }
 517 /* Close the file */
 518 fclose(file);
 519 /* Search for the "/:" that indicates the username and password */
 520 for(i = 0; i < count; i++) {
 521 if(strncmp(lines[i], "/:", 2) == 0) {
 522 sprintf(lines[i], "/:%s:%s\n", user, pass);
 523 set = -1;
 524 break;
 525 }
 526 }
 527 /* If username and password config settings not detected, append it */
 528 if(!set) {
 529 sprintf(lines[count++], "/:%s:%s\n", user, pass);
 530 }
 531 /* Open the httpd.conf file for writing */
 532 if((file = fopen(HTTPD_CFG_FILE, "w")) == NULL) {
 533 return -1;
 534 }
 535 /* Write out the buffer */
 536 for(i = 0; i < count; i++) {
 537 fprintf(file, lines[i]);
 538 }
 539 /* close the file */
 540 fclose(file);
 541 return 0;
 542 }
 543
 544 /*
 545 * Choose what action to perform base on command
 546 * Sets ac_buf and rs_buf to the action performed and
 547 * the result of the action respectively
 548 *
 549 * Return: 0 in all cases
 550 */
 551 int doAction(char *command) {
 552 char *buffer;
 553
 554 if((command != NULL)) {
 555 /* Initialize the IPC buffers */
 556 memset(msg, 0, MSG_SIZE);
 557 memset(data, 0, SHM_SIZE);
 558
 559 switch(atoi(command)) {
 560 case 1:
 561 /* remove a single entry from table */
 562 if ((buffer = getenv("CGI_macaddr")) == NULL) {
 563 printf("Invalid request");
 564 return 0;
 565 }
 566 sprintf(ac_buf, "Removing %s
", buffer);

ECE 4006 Wireless Intrusion Detection and Response Group 2

 225

 567 msg[0] = '1';
 568 memcpy(msg+1, buffer, 17);
 569 requestinfo(msg, data);
 570 if (strncmp(data, "DONE", 4) == 0) {
 571 strcpy(rs_buf, "Success");
 572 } else {
 573 strcpy(rs_buf, "Failure");
 574 }
 575 break;
 576 case 2:
 577 /* remove a single fake AP entry from table */
 578 if ((buffer = getenv("CGI_macaddr")) == NULL) {
 579 printf("Invalid request");
 580 return 0;
 581 }
 582 sprintf(ac_buf, "Removing fake AP %s
", buffer);
 583 msg[0] = '5';
 584 memcpy(msg+1, buffer, 17);
 585 requestinfo(msg, data);
 586 if (strncmp(data, "DONE", 4) == 0) {
 587 strcpy(rs_buf, "Success");
 588 } else {
 589 strcpy(rs_buf, "Failure");
 590 }
 591 printf("%s:%s\n", ac_buf, rs_buf);
 592 break;
 593 case 3:
 594 /* add a fake AP */
 595 if ((buffer = getenv("CGI_macaddr")) == NULL) {
 596 printf("Invalid request");
 597 return 0;
 598 }
 599 sprintf(ac_buf, "Adding %s
", buffer);
 600 msg[0] = '3';
 601 memcpy(msg+1, buffer, 17);
 602 msg[18] = '|';
 603 if ((buffer = getenv("CGI_ssid")) == NULL) {
 604 printf("Invalid request");
 605 return 0;
 606 }
 607 strcpy(msg+19, buffer);
 608 requestinfo(msg, data);
 609 if (strncmp(data, "DONE", 4) == 0) {
 610 strcpy(rs_buf, "Success");
 611 } else {
 612 strcpy(rs_buf, "Table Full");
 613 }
 614 break;
 615 case 4:
 616 /* set time */
 617 {
 618 struct tm *t;
 619 time_t temp;
 620 char *cur;
 621 struct timeval tv;
 622 if((buffer = getenv("CGI_time")) != NULL) {
 623 time(&temp);
 624 t = localtime(&temp);
 625 t->tm_hour = atoi(buffer);
 626 if((cur = strchr(buffer, ':')) == NULL)
 627 break;
 628 if(++cur == '\0')
 629 break;

ECE 4006 Wireless Intrusion Detection and Response Group 2

 226

 630 t->tm_min = atoi(cur);
 631 if((cur = strchr(cur, ':')) == NULL)
 632 break;
 633 if(++cur == '\0')
 634 break;
 635 t->tm_sec = atoi(cur);
 636 temp = mktime(t);
 637 tv.tv_sec = temp;
 638 tv.tv_usec = 0;
 639 settimeofday(&tv, NULL);
 640 sprintf(ac_buf, "Setting time: HR: %d MIN: %d SEC: %d", t->tm_hour, t-
>tm_min, t->tm_sec);
 641 }
 642 break;
 643 }
 644 case 5:
 645 /* set date */
 646 {
 647 struct tm *t;
 648 time_t temp;
 649 char *cur;
 650 int year;
 651 struct timeval tv;
 652 if((buffer = getenv("CGI_date")) != NULL) {
 653 time(&temp);
 654 t = localtime(&temp);
 655 t->tm_mon = atoi(buffer) - 1;
 656 if((cur = strchr(buffer, '/')) == NULL)
 657 break;
 658 if(++cur == '\0')
 659 break;
 660 t->tm_mday = atoi(cur);
 661 if((cur = strchr(cur, '/')) == NULL)
 662 break;
 663 if(++cur == '\0')
 664 break;
 665 year = atoi(cur);
 666 if(year >= 100)
 667 t->tm_year = year - 1900;
 668 else if(year < 70)
 669 t->tm_year = year + 100;
 670 else
 671 t->tm_year = year;
 672 temp = mktime(t);
 673 tv.tv_sec = temp;
 674 tv.tv_usec = 0;
 675 settimeofday(&tv, NULL);
 676 sprintf(ac_buf, "Setting date: YEAR: %d MONTH: %d DAY: %d", t->tm_year, t-
>tm_mon, t->tm_mday);
 677 }
 678 }
 679 break;
 680 case 6:
 681 /* set wired IP */
 682 {
 683 char *ip;
 684 char actualIP[16];
 685 int segment[4];
 686 int i;
 687
 688 if((ip = getenv("CGI_ip")) != NULL) {
 689 /* Read IP provided by user */
 690 if(sscanf(ip, "%d.%d.%d.%d", &segment[0], &segment[1], &segment[2],

ECE 4006 Wireless Intrusion Detection and Response Group 2

 227

&segment[3]) < 4) {
 691 strcpy(rs_buf, "ERROR: Invalid IP ");
 692 strcat(rs_buf, ip);
 693 return 0;
 694 }
 695 /* Simple error checking */
 696 for(i = 0; i < 4; i++) {
 697 if(segment[i] > 255)
 698 segment[i] = 255;
 699 if(segment[i] < 0)
 700 segment[i] = 0;
 701 }
 702 /* Create out final IP */
 703 sprintf(actualIP, "%d.%d.%d.%d", segment[0], segment[1], segment[2],
segment[3]);
 704 sprintf(ac_buf, "Setting IP to %s", actualIP);
 705 /* Write out IP */
 706 if(setAttribute(IP_CFG_FILE, "IP", actualIP) != 0) {
 707 strcpy(rs_buf, "ERROR: Could not open configuration file");
 708 return 0;
 709 }
 710 /* Commit changes */
 711 if(runScript(IP_COMMIT_SH)) {
 712 strcpy(rs_buf, "ERROR: Could not commit changes");
 713 return 0;
 714 } else {
 715 strcpy(rs_buf, "Success");
 716 }
 717 }
 718 }
 719 break;
 720 case 7:
 721 /* remove all probe request logs */
 722 sprintf(ac_buf, "Removing all logs
");
 723 msg[0]='2';
 724 requestinfo(msg, data);
 725 if (strncmp(data, "DONE", 4) == 0) {
 726 sprintf(rs_buf, "Success");
 727 } else {
 728 sprintf(rs_buf, "Failure");
 729 }
 730
 731 break;
 732 case 8:
 733 /* set bssid */
 734 if ((buffer = getenv("CGI_bssid")) == NULL) {
 735 printf("Invalid request");
 736 return 0;
 737 }
 738 sprintf(ac_buf, "Setting BSSID to %s
", buffer);
 739 msg[0] = '8';
 740 memcpy(msg+1, buffer, 17);
 741 requestinfo(msg, data);
 742 if (strncmp(data, "DONE", 4) == 0) {
 743 if(!setAttribute(WIRELESS_CFG_FILE, "APADDR", buffer)) {
 744 {
 745 /* Commit changes */
 746 if(runScript(WIRELESS_COMMIT_SH)) {
 747 strcpy(rs_buf, "ERROR: Could not commit changes");
 748 return 0;
 749 } else {
 750 strcpy(rs_buf, "Success");
 751 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 228

 752 }
 753 } else {
 754 strcpy(rs_buf, "Failure");
 755 }
 756 } else {
 757 strcpy(rs_buf, "Failure");
 758 }
 759 break;
 760 case 9:
 761 /* set main channel */
 762 if ((buffer = getenv("CGI_channel")) == NULL) {
 763 printf("Invalid request");
 764 return 0;
 765 }
 766 sprintf(ac_buf, "Setting channel to %s
", buffer);
 767 msg[0] = '9';
 768 memcpy(msg+1, buffer, 3);
 769 requestinfo(msg, data);
 770 if (strncmp(data, "DONE", 4) == 0) {
 771 if(!setAttribute(WIRELESS_CFG_FILE, "DSCHAN", buffer)) {
 772 {
 773 /* Commit changes */
 774 if(runScript(WIRELESS_COMMIT_SH)) {
 775 strcpy(rs_buf, "ERROR: Could not commit changes");
 776 return 0;
 777 } else {
 778 strcpy(rs_buf, "Success");
 779 }
 780 }
 781 } else {
 782 strcpy(rs_buf, "Failure");
 783 }
 784 } else {
 785 strcpy(rs_buf, "Failure");
 786 }
 787 break;
 788 case 10:
 789 /* start/stop IDS */
 790 {
 791 /* it's easier to do this as a script */
 792 /* so we are going to fork and do it */
 793 if(runScript(IDS_TOGGLE_SH)) {
 794 strcpy(rs_buf, "ERROR: Could start/stop IDS");
 795 return 0;
 796 } else {
 797 strcpy(rs_buf, "SUCCCESS");
 798 }
 799 }
 800 break;
 801 case 11:
 802 {
 803 char buf[2];
 804 buf[1] = '\0';
 805 strcpy(ac_buf, "Setting options");
 806 /* Toggle channel hopping */
 807 if((buffer = getenv("CGI_checkval")) == NULL) {
 808 printf("Invalid request");
 809 return 0;
 810 }
 811 msg[0] = 'D';
 812 msg[1] = buffer[0];
 813 requestinfo(msg, data);
 814 if(strcmp(data, "DONE") == 0) {

ECE 4006 Wireless Intrusion Detection and Response Group 2

 229

 815 buf[0] = buffer[0];
 816 if(setAttribute(IDS_CFG_FILE, "HOPPING", buf)) {
 817 strcpy(rs_buf, "Failure");
 818 break;
 819 }
 820 } else {
 821 strcpy(rs_buf, "Failure");
 822 break;
 823 }
 824 /* Toggle fake AP */
 825 msg[0] = 'E';
 826 msg[1] = buffer[1];
 827 requestinfo(msg, data);
 828 if(strcmp(data, "DONE") == 0) {
 829 buf[0] = buffer[1];
 830 if(setAttribute(IDS_CFG_FILE, "FAKEAP", buf)) {
 831 strcpy(rs_buf, "Failure");
 832 break;
 833 }
 834 } else {
 835 strcpy(rs_buf, "Failure");
 836 break;
 837 }
 838 /* Toggle bogus WEP */
 839 msg[0] = 'F';
 840 msg[1] = buffer[2];
 841 requestinfo(msg, data);
 842 if(strcmp(data, "DONE") == 0) {
 843 buf[0] = buffer[2];
 844 if(setAttribute(IDS_CFG_FILE, "FAKEWEP", buf)) {
 845 strcpy(rs_buf, "Failure");
 846 break;
 847 }
 848 } else {
 849 strcpy(rs_buf, "Failure");
 850 break;
 851 }
 852 /* Toggle 802.11b DOS */
 853 msg[0] = 'O';
 854 msg[1] = buffer[3];
 855 requestinfo(msg, data);
 856 if(strcmp(data, "DONE") == 0) {
 857 buf[0] = buffer[3];
 858 if(setAttribute(IDS_CFG_FILE, "DOS", buf)) {
 859 strcpy(rs_buf, "Failure");
 860 break;
 861 }
 862 } else {
 863 strcpy(rs_buf, "Failure");
 864 break;
 865 }
 866 /* set netstumbler detection threshold */
 867 if((buffer = getenv("CGI_threshold")) == NULL) {
 868 printf("Invalid request");
 869 return 0;
 870 }
 871 memset(msg, 0, sizeof(msg));
 872 msg[0]='I';
 873 strncat(msg + 1, buffer, 5);
 874 requestinfo(msg, data);
 875 if(strncmp(data, "DONE", 4) == 0) {
 876 if(setAttribute(IDS_CFG_FILE, "THRESH", buffer)) {
 877 strcpy(rs_buf, "Failure");

ECE 4006 Wireless Intrusion Detection and Response Group 2

 230

 878 break;
 879 }
 880 } else {
 881 strcpy(rs_buf, "Failure");
 882 }
 883 /* Commit changes */
 884 if(runScript(IDS_COMMIT_SH)) {
 885 strcpy(rs_buf, "ERROR: Could not commit changes");
 886 return 0;
 887 } else {
 888 strcpy(rs_buf, "Success");
 889 }
 890 }
 891 break;
 892 case 12:
 893 /* Save Fake AP table */
 894 strcpy(ac_buf, "Saving fake AP list");
 895 {
 896 int i = 0;
 897 char *cur;
 898 char buf[16];
 899
 900 /* Get the table */
 901 msg[0] = '4';
 902 requestinfo(msg, data);
 903 /* for each line in the table */
 904 cur = strtok(data, "\n");
 905 while(cur != NULL) {
 906 char mac[18], ssid[MAX_SSID_LEN+1];
 907 /* parse variables */
 908 memcpy(mac, cur, 17);
 909 mac[17] = '\0';
 910 strncpy(ssid, cur+18, MAX_SSID_LEN+1);
 911 /* cap the string */
 912 ssid[MAX_SSID_LEN] = '\0';
 913 /* Write out the MAC */
 914 sprintf(buf, "MAC%d", i);
 915 if(setAttribute(FAKE_AP_FILE, buf, mac) != 0) {
 916 strcpy(rs_buf, "ERROR: Unable to write list");
 917 return 0;
 918 }
 919 /* Write out the SSID */
 920 sprintf(buf, "SSID%d", i);
 921 if(setAttribute(FAKE_AP_FILE, buf, ssid) != 0) {
 922 strcpy(rs_buf, "ERROR: Unable to write list");
 923 return 0;
 924 }
 925 cur = strtok(NULL, "\n");
 926 i++;
 927 }
 928 sprintf(buf, "%d", i);
 929 if(setAttribute(FAKE_AP_FILE, "TOTAL", buf) != 0) {
 930 strcpy(rs_buf, "ERROR: Unable to write list");
 931 break;
 932 }
 933 /* Commit the data */
 934 if(runScript(FAKEAP_COMMIT_SH)) {
 935 strcpy(rs_buf, "ERROR: Could not commit changes");
 936 return 0;
 937 } else {
 938 sprintf(rs_buf, "Success. Wrote %d entries.", i);
 939 }
 940 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 231

 941 break;
 942 case 13:
 943 /* Load fake AP table */
 944 strcpy(ac_buf, "Loading fake AP list");
 945 msg[0]='H';
 946 requestinfo(msg, data);
 947 if (strncmp(data, "DONE", 4) == 0) {
 948 strcpy(rs_buf, "Success");
 949 } else {
 950 strcpy(rs_buf, "Failure");
 951 }
 952 break;
 953 case 14:
 954 /* set httpd username and password */
 955 {
 956 char *user, *pass;
 957 strcpy(ac_buf, "Setting web interface username and password");
 958 if(((user = getenv("CGI_username")) == NULL) || (strlen(user) == 0)) {
 959 printf("Invalid request");
 960 return 0;
 961 }
 962 if(((pass = getenv("CGI_password")) == NULL) || (strlen(pass) == 0)) {
 963 printf("Invalid request");
 964 return 0;
 965 }
 966 if(writeHTTPDconf(user, pass)) {
 967 strcpy(rs_buf, "ERROR: Could not write to httpd.conf");
 968 } else {
 969 if(runScript(HTTPD_COMMIT_SH)) {
 970 strcpy(rs_buf, "ERROR: Could not commit changes");
 971 return 0;
 972 } else {
 973 sprintf(rs_buf, "Success");
 974 }
 975 }
 976 }
 977 break;
 978 case 15:
 979 /* remove all Fake AP entries */
 980 sprintf(ac_buf, "Removing all fake AP
");
 981 msg[0]='6';
 982 requestinfo(msg, data);
 983 if (strncmp(data, "DONE", 4) == 0) {
 984 strcpy(rs_buf, "Success");
 985 } else {
 986 strcpy(rs_buf, "Failure");
 987 }
 988 break;
 989 default:
 990 break;
 991 }
 992 }
 993 return 0;
 994 }
 995
 996 /*
 997 * Opens and reads the SHTML file.
 998 * Calls helper functions for parsing tables and individual tags.
 999 * Return: -1 if failure, 0 if success
1000 */
1001 int parseSHTML(char *shtml) {
1002 FILE* file;
1003 char line[LINE_BUF_SIZE];

ECE 4006 Wireless Intrusion Detection and Response Group 2

 232

1004 int tableMode;
1005
1006 if((file = fopen(shtml, "r")) == NULL) {
1007 printf("CGI ERROR - cannot open input file:%s\n", shtml);
1008 return -1;
1009 }
1010 while(!feof(file)) {
1011 if(fgets(line, LINE_BUF_SIZE, file) == NULL) {
1012 break;
1013 }
1014 /* check whether line has any table tags */
1015 if((tableMode = isTable(line)) < 0)
1016 /* no table tags found, treat as normal line */
1017 parseLine(line);
1018 else {
1019 char buffer[MAX_MULTI_LINE * LINE_BUF_SIZE];
1020 char ssi[SSI_TAG_SIZE + 2];
1021 memset(buffer, 0, sizeof(buffer));
1022
1023 /* get multi-line format string */
1024 do {
1025 char* temp1;
1026 char temp2[LINE_BUF_SIZE];
1027 ssi[1] = '\0'; ssi[2] = '\0';
1028 /* Read a line */
1029 if(fgets(line, LINE_BUF_SIZE, file) == NULL) {
1030 break;
1031 }
1032 temp1 = line;
1033 if(getSSItag(&temp1, temp2)) {
1034 memcpy(ssi, temp1 - (SSI_TAG_SIZE + 1), SSI_TAG_SIZE + 1);
1035 ssi[SSI_TAG_SIZE + 1] = '\0'; /* plus the $ */
1036 }
1037 if(parseSSIcmd(ssi) != 17748)
1038 strcat(buffer, line);
1039 /* stop when we see the $ET tag */
1040 } while(parseSSIcmd(ssi) != 17748); /* ET: End table */
1041
1042 // fprintf(stderr, "%s\n", buffer);
1043
1044 switch(tableMode) {
1045 case 0:
1046 /* Logged MACs */
1047 /* get data */
1048 msg[0] = '0';
1049 requestinfox(msg, data);
1050 /* parse it */
1051 parseLoggedLine(buffer, data);
1052 break;
1053 case 1:
1054 /* Valid MACs */
1055 break;
1056 case 2:
1057 /* Fake APs */
1058 /* get data */
1059 msg[0] = '4';
1060 requestinfox(msg, data);
1061 /* parse it */
1062 parseFakeLoggedLine(buffer, data);
1063 break;
1064 default:
1065 break;
1066 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 233

1067 }
1068 }
1069 fclose(file);
1070 return 0;
1071 }
1072
1073 int main(int argc, char *argv[]) {
1074 char *shtml, *command;
1075
1076 initializeclient("/etc", "/var");
1077
1078 /* Initialize the common buffers */
1079 memset(ac_buf, 0, TEMP_BUF_SIZE);
1080 memset(rs_buf, 0, TEMP_BUF_SIZE);
1081
1082 printf("Content-type: text/html\n\n");
1083
1084 /* Handle any commands */
1085 command = getenv("CGI_command");
1086 if(doAction(command))
1087 return -1;
1088 /* Begin reading the SHTML file */
1089 shtml = getenv("CGI_file");
1090 if(parseSHTML(shtml))
1091 return -1;
1092
1093 deinitialize();
1094 return 0;
1095 }

ECE 4006 Wireless Intrusion Detection and Response Group 2

 234

Makefile

ECE 4006 Wireless Intrusion Detection and Response Group 2

 235

 1 # Toplevel Makefile for OpenAP kernel linux kernel and filesystem
 2 #
 3 # Copyright (C) 2001-2002 Instant802 Networks Inc.
 4 #
 5 # Quickstart to build a new flash image:
 6 #
 7 # $ make tools
 8 # $ su
 9 # Password:
 10 # # make install
 11 # # exit
 12 # $ make bootstrap
 13 #
 14 # After a while you should have 2 files flash and flash.md5.
 15 #
 16 # This distribution includes tools used to build the target filesystem as well
 17 # as sources for the target filesystem itself. The tools need only be built
 18 # once (unless you change them, but you probably won't need to) and from that
 19 # point on you can leave them alone. The target (Access Point) is has an i386
 20 # processor and we don't include a cross-compiler. If your host (machine you
 21 # develop on) doesn't have an i386 processor you need to first build a
 22 # cross-compiler and edit the uclibc and kernel configuration appropriately.
 23 #
 24 # The first step to getting Linux running on your AP is to boot off an SRAM
 25 # card, details in the html documentation. The sram target creates this image.
 26 #
 27 #
 28
 29 TOPDIR := $(shell pwd)
 30 KERNEL_DIR := $(TOPDIR)/linux
 31
 32 IMAGE_DIR := $(TOPDIR)/Image_final
 33
 34 UCLIBC_PREFIX=/usr/i386-linux-uclibc/bin
 35 CC=$(UCLIBC_PREFIX)/gcc
 36 AR=$(UCLIBC_PREFIX)/ar
 37 LD=$(UCLIBC_PREFIX)/ld
 38 STRIP=$(UCLIBC_PREFIX)/strip
 39 MKNOD=/bin/mknod
 40 INSTALL=/usr/bin/install
 41 STRIPFLAGS="--remove-section=.comment --remove-section=.note"
 42 CFLAGS =-Wall -Wstrict-prototypes
 43
 44
 45 #
 46 # When creating an sram image you must specify the size of the cardi (in
megabytes).
 47 #
 48
 49 SRAM_SIZE=2
 50
 51 default:
 52 @echo
 53 @echo "Makefile for OpenAP tools, kernel and flash image."
 54 @echo
 55 @echo "targets - "
 56 @echo " tools : build uclibc and assorted tools"
 57 @echo " install : install uclibc toolchain (must be root)"
 58 @echo " bootstrap : configure and build kernel, then flash"
 59 @echo " sram : make sram image"
 60 @echo
 61 @echo "Please see Makefile for details."
 62 @echo

ECE 4006 Wireless Intrusion Detection and Response Group 2

 236

 63
 64 tools: check
 65 $(MAKE) -C uclibc KERNEL_SOURCE=$(KERNEL_DIR)
 66 $(MAKE) -C misc
 67 $(MAKE) CC=gcc -C $(KERNEL_DIR)/scripts/cramfs/
 68
 69 install:
 70 if ! $(MAKE) -C uclibc PREFIX=/ install ; then \
 71 echo ; \
 72 echo "Are you root?" ; \
 73 echo ; \
 74 fi
 75
 76 bootstrap: config kernel flash
 77
 78 config: config_kernel config_pcmcia
 79
 80 config_kernel:
 81 cp misc/kernel_config $(KERNEL_DIR)/.config
 82 $(MAKE) -C $(KERNEL_DIR) oldconfig
 83 $(MAKE) -C $(KERNEL_DIR) dep
 84
 85 sram:
 86 $(MAKE) -C alios clean
 87 $(MAKE) -C alios SFLAGS=-DCARD_BOOT CONFIGURATION_1=0x1Fc000
 88 cp misc/kernel_config.flasher linux/.config
 89 $(MAKE) -C $(KERNEL_DIR) oldconfig
 90 $(MAKE) -C $(KERNEL_DIR) dep
 91 $(MAKE) config_pcmcia
 92 $(MAKE) image
 93 $(MAKE) -C linux bzImage
 94 ./misc/image_rdev $(KERNEL_DIR)/arch/i386/boot/bzImage 31 1
 95 echo "`date "+%Y%m%d.%T"` `whoami` `hostname` " \
 96 > $(IMAGE_DIR)/etc/i802_version
 97 rm -rf `find $(IMAGE_DIR)/* -name *CVS*`
 98 cp flash $(IMAGE_DIR)/flash
 99 ./misc/build_flash.pl 2097152 sram # 2 * 1024 * 1024
100
101
102
103 PCMCIA_DIR := $(TOPDIR)/pcmcia-cs
104 PRISM_DIR := $(TOPDIR)/hostap
105 config_pcmcia:
106 if [! -L $(PCMCIA_DIR)/PCMCIA-HOWTO] ; then \
107 ln -s doc/PCMCIA-HOWTO $(PCMCIA_DIR)/PCMCIA-HOWTO ; \
108 ln -s ../pcmcia/config.h $(PCMCIA_DIR)/include/linux/compile.h ; \
109 ln -s ../pcmcia/config.h $(PCMCIA_DIR)/include/linux/config.h ; \
110 ln -s ../pcmcia/config.h $(PCMCIA_DIR)/include/linux/version.h ; \
111 ln -s ../asm $(PCMCIA_DIR)/include/static/asm ; \
112 ln -s ../linux $(PCMCIA_DIR)/include/static/linux ; \
113 ln -s ../../pcmcia/ciscode.h
$(PCMCIA_DIR)/include/static/pcmcia/ciscode.h ; \
114 ln -s $(PRISM_DIR)/*.mk $(PCMCIA_DIR)/ 1>/dev/null 2>/dev/null ; \
115 ln -s $(PRISM_DIR)/driver/modules/hostap*.[ch] \
116 $(PCMCIA_DIR)/modules/ 1>/dev/null 2>/dev/null ; \
117 fi
118
119 cd $(PCMCIA_DIR) ; \
120 $(PCMCIA_DIR)/Configure -n --kernel=$(KERNEL_DIR) \
121 --target=$(IMAGE_DIR) --ucc=$(CC) --trust \
122 --nocardbus --nopnp --noapm --srctree ;
123
124 check:

ECE 4006 Wireless Intrusion Detection and Response Group 2

 237

125 if [! -u $(MKNOD)] ; then \
126 echo "Only root can make special device files. To allow a normal
user"; \
127 echo "to create special device files please do, as root:" ; \
128 echo "chmod +s $(MKNOD)" ; \
129 echo ; \
130 echo ; \
131 /bin/false ; \
132 fi
133
134 kernel:
135 $(MAKE) -C linux bzImage
136 ./misc/image_rdev $(KERNEL_DIR)/arch/i386/boot/bzImage 31 0
137
138
139 clean_image:
140 rm -rf $(IMAGE_DIR)/*
141 mkdir -p $(IMAGE_DIR)
142
143 install_static:
144 mkdir -p $(IMAGE_DIR)/
145 cp -a Image_static/* $(IMAGE_DIR)/
146 rm -rf `find $(IMAGE_DIR)/* -name *CVS*`
147 rm -rf `find $(IMAGE_DIR)/* -name CVS_placeholder`
148 chmod +x $(IMAGE_DIR)/etc/init.d/*
149
150 UCLIBC_VER=0.9.8
151 LIBS=ld-uClibc.so* libc.so* libresolv.so* libm.so*\
152 ld-uClibc-$(UCLIBC_VER).so \
153 libuClibc-$(UCLIBC_VER).so \
154 libresolv-$(UCLIBC_VER).so \
155 libm-$(UCLIBC_VER).so \
156
157 image: clean_image install_static subdirs install_subdirs
158
159 mkdir -p $(IMAGE_DIR)/dev/
160 $(MKNOD) $(IMAGE_DIR)/dev/console c 5 1
161 $(MKNOD) $(IMAGE_DIR)/dev/initctl p
162 $(MKNOD) $(IMAGE_DIR)/dev/kmem c 1 2
163 $(MKNOD) $(IMAGE_DIR)/dev/loop0 b 7 0
164 $(MKNOD) $(IMAGE_DIR)/dev/loop1 b 7 1
165 $(MKNOD) $(IMAGE_DIR)/dev/mem c 1 1
166 $(MKNOD) $(IMAGE_DIR)/dev/null c 1 3
167 $(MKNOD) $(IMAGE_DIR)/dev/port c 1 4
168 $(MKNOD) $(IMAGE_DIR)/dev/ptmx c 5 2
169 ln -s ram0 $(IMAGE_DIR)/dev/ram
170 $(MKNOD) $(IMAGE_DIR)/dev/ram0 b 1 0
171 ln -s ram0 $(IMAGE_DIR)/dev/ramdisk
172 $(MKNOD) $(IMAGE_DIR)/dev/random c 1 8
173 ln -s ../proc/self/fd/2 $(IMAGE_DIR)/dev/stderr
174 ln -s ../proc/self/fd/0 $(IMAGE_DIR)/dev/stdin
175 ln -s ../proc/self/fd/1 $(IMAGE_DIR)/dev/stdout
176 $(MKNOD) $(IMAGE_DIR)/dev/tty c 5 0
177 $(MKNOD) $(IMAGE_DIR)/dev/tty0 c 4 0
178 $(MKNOD) $(IMAGE_DIR)/dev/ttyS0 c 4 64
179 $(MKNOD) $(IMAGE_DIR)/dev/urandom c 1 9
180 $(MKNOD) $(IMAGE_DIR)/dev/zero c 1 5
181 $(MKNOD) $(IMAGE_DIR)/dev/watchdog c 10 130
182
183 $(MKNOD) $(IMAGE_DIR)/dev/mtd0 c 90 0
184 $(MKNOD) $(IMAGE_DIR)/dev/mtdblock0 b 31 0
185
186 # tty/pty's used by telnetd

ECE 4006 Wireless Intrusion Detection and Response Group 2

 238

187 let i=0; \
188 while [$$i -lt 4] ; do\
189 $(MKNOD) $(IMAGE_DIR)/dev/ptyp$$i c 2 $$i ;\
190 $(MKNOD) $(IMAGE_DIR)/dev/ttyp$$i c 3 $$i ;\
191 let i=$$i+1;\
192 done
193
194 -@chmod a+r $(IMAGE_DIR)/dev 1>/dev/null 2>/dev/null
195
196 # set a link from /etc/mtab to /proc/mtab
197 ln -s ../proc/mounts $(IMAGE_DIR)/etc/mtab
198
199 # link /tmp to /var/tmp so we don't have to mount another ramfs
200 ln -s /var/tmp $(IMAGE_DIR)/tmp
201 # link /etc/var to /var/etc/var so we don't have to mount another ramfs
202 ln -s /var/etc/rw $(IMAGE_DIR)/etc/rw
203 ln -s /var/etc/rw/resolv.conf $(IMAGE_DIR)/etc/resolv.conf
204
205 # set the runlevels
206
207 # init 1 - nothing running mode (upgrades)
208 mkdir -p $(IMAGE_DIR)/etc/rc1.d
209 # ln -s ../init.d/tcpip $(IMAGE_DIR)/etc/rc1.d/K50tcpip
210 # ln -s ../init.d/bridge $(IMAGE_DIR)/etc/rc1.d/K60bridge
211 ln -s ../init.d/wireless $(IMAGE_DIR)/etc/rc1.d/K70wireless
212 ln -s ../init.d/configfs $(IMAGE_DIR)/etc/rc1.d/K80configfs
213
214 # init 3 - normal run mode
215 mkdir -p $(IMAGE_DIR)/etc/rc3.d
216 ln -s ../init.d/configfs $(IMAGE_DIR)/etc/rc3.d/S10configfs
217 ln -s ../init.d/wireless $(IMAGE_DIR)/etc/rc3.d/S20wireless
218 # ln -s ../init.d/bridge $(IMAGE_DIR)/etc/rc3.d/S30bridge
219 # ln -s ../init.d/tcpip $(IMAGE_DIR)/etc/rc3.d/S40tcpip
220
221 ln -s /var/syslogd.socket $(IMAGE_DIR)/dev/log
222
223 # install uclibc
224
225 mkdir -p $(IMAGE_DIR)/usr/i386-linux-uclibc/lib
226 mkdir -p $(IMAGE_DIR)/lib
227 for lib in $(LIBS) ; do \
228 cp -a /usr/i386-linux-uclibc/lib/$$lib $(IMAGE_DIR)/usr/i386-linux-
uclibc/lib ; \
229 done
230 ln -s /usr/i386-linux-uclibc/lib/ld-uClibc.so.0 $(IMAGE_DIR)/lib/ld-
uClibc.so.0
231
232 # install antinetstumbler specifics
233 ln -s ../init.d/wired $(IMAGE_DIR)/etc/rc3.d/S20wired
234 ln -s ../init.d/wired $(IMAGE_DIR)/etc/rc1.d/K70wired
235 ln -s ../init.d/telnetd $(IMAGE_DIR)/etc/rc3.d/S60telnetd
236 ln -s ../init.d/telnetd $(IMAGE_DIR)/etc/rc1.d/K30telnetd
237 ln -s ../init.d/httpd $(IMAGE_DIR)/etc/rc3.d/S70httpd
238 ln -s ../init.d/httpd $(IMAGE_DIR)/etc/rc1.d/K30httpd
239 ln -s ../init.d/ids $(IMAGE_DIR)/etc/rc3.d/S80ids
240 ln -s ../init.d/ids $(IMAGE_DIR)/etc/rc1.d/K10ids
241
242 ln -s /usr/bin/client $(IMAGE_DIR)/etc/www/cgi-bin/client
243 ln -s /etc/rw/httpd.conf $(IMAGE_DIR)/etc/httpd.conf
244
245 flash: image
246 echo "`date "+%Y%m%d.%T"` `whoami` `hostname` " \
247 > $(IMAGE_DIR)/etc/i802_version

ECE 4006 Wireless Intrusion Detection and Response Group 2

 239

248 rm -rf `find $(IMAGE_DIR)/* -name *CVS*`
249 ./misc/build_flash.pl 1048576 flash # 1024 * 1024
250 md5sum flash > flash.md5
251 # copy to mini_httpd
252 /bin/cp flash* ~/mini_httpd-1.17beta1
253
254
255 ###
256
257 SUBDIRS=erase wireless_tools alios pcmcia-cs busybox misc ids # udhcp bridge-utils
258
259 subdirs:
260 for dir in $(SUBDIRS) ; do \
261 if ! $(MAKE) -C $$dir \
262 KERNEL_DIR=$(KERNEL_DIR) \
263 CC=$(CC) \
264 ; then \
265 exit 1; \
266 fi \
267 done
268
269 install_subdirs: subdirs
270 for dir in $(SUBDIRS) ; do \
271 if ! $(MAKE) -C $$dir install \
272 INSTALL=install \
273 IMAGE_DIR=$(IMAGE_DIR) \
274 STRIP=$(STRIP) \
275 STRIPFLAGS=$(STRIPFLAGS) ; then \
276 exit 1 ; \
277 fi \
278 done
279
280 clean: clean_image
281 for dir in $(SUBDIRS) ; do \
282 $(MAKE) -C $$dir clean; \
283 done
284 $(RM) flash flash.md5
285
286 .PHONY : uclibc version $(SUBDIRS)

ECE 4006 Wireless Intrusion Detection and Response Group 2

 240

Makefile

ECE 4006 Wireless Intrusion Detection and Response Group 2

 241

 1 # Edit this path to match with your system (it should point to the root
 2 # directory of the Linux kernel source). hostapd uses it only to get matching
 3 # version of linux/wireless.h so that ioctls match with the kernel driver.
 4 KERNEL_PATH=../linux
 5
 6 CC=/usr/i386-linux-uclibc/bin/gcc
 7 #CC=gcc
 8
 9 ifndef CFLAGS
10 # define HOSTAPD_DUMP_STATE to include SIGUSR1 handler for dumping state to
11 # a file (undefine it, if you want to save in binary size)
12
13 # define WORDS_BIGENDIAN if you are building for big endian system
14 # (e.g., PowerPC)
15
16 CFLAGS = -O2 -Wall -g -I$(KERNEL_PATH)/include -DHOSTAPD_DUMP_STATE
17 endif
18
19 OBJS = ids.o common.o ipc.o config.o
20
21 all: ids client
22
23 ids: $(OBJS)
24 $(CC) -o ids $(CFLAGS) $(OBJS)
25
26 config.o : config.c config.h
27 ${CC} ${CFLAGS} -c config.c
28
29 ipc.o : ipc.c ipc.h
30 ${CC} ${CFLAGS} -c ipc.c
31
32 ioct.o : ioctl.c
33
34 client.o : client.c
35
36 client : client2.o ipc.o config.o
37 $(CC) -o client $(CFLAGS) ipc.o client2.o config.o
38
39 client2.o : client2.c
40 ${CC} ${CFLAGS} -c client2.c
41
42 ioctl: ioctl.o common.o
43 $(CC) -o ioctl $(CFLAGS) ioctl.o common.o
44
45 listen: listen.o common.o
46 $(CC) -o listen $(CFLAGS) listen.o common.o
47
48 listen.o: listen.c
49
50 ids.o: ids.c hostap_wlan.h ap.h hostapd.h common.h
51 common.o: common.c common.h
52
53 clean:
54 rm -f core *.o hostapd
55
56 install: ids client
57 install -d $(IMAGE_DIR)/usr/bin
58 install ids $(IMAGE_DIR)/usr/bin
59 install client $(IMAGE_DIR)/usr/bin
60 install mac.shtml $(IMAGE_DIR)/etc/www/cgi-bin
61 install result.shtml $(IMAGE_DIR)/etc/www/cgi-bin
62 install fake.shtml $(IMAGE_DIR)/etc/www/cgi-bin
63 install addfake.shtml $(IMAGE_DIR)/etc/www/cgi-bin

ECE 4006 Wireless Intrusion Detection and Response Group 2

 242

64 install index.html $(IMAGE_DIR)/etc/www
65 install datetime.shtml $(IMAGE_DIR)/etc/www/cgi-bin
66 install wiredcfg.shtml $(IMAGE_DIR)/etc/www/cgi-bin
67 install wiredresult.shtml $(IMAGE_DIR)/etc/www/cgi-bin
68 install status.shtml $(IMAGE_DIR)/etc/www/cgi-bin
69 install menu.html $(IMAGE_DIR)/etc/www
70 install ans.png $(IMAGE_DIR)/etc/www
71 install wireless.shtml $(IMAGE_DIR)/etc/www/cgi-bin
72 install commitip.sh $(IMAGE_DIR)/etc/www/cgi-bin
73 install commitfake.sh $(IMAGE_DIR)/etc/www/cgi-bin
74 install commitwl.sh $(IMAGE_DIR)/etc/www/cgi-bin
75 install commitids.sh $(IMAGE_DIR)/etc/www/cgi-bin
76 install toggleids.sh $(IMAGE_DIR)/etc/www/cgi-bin
77 install options.shtml $(IMAGE_DIR)/etc/www/cgi-bin
78 install httpd.shtml $(IMAGE_DIR)/etc/www/cgi-bin
79 install commithttpd.sh $(IMAGE_DIR)/etc/www/cgi-bin

ECE 4006 Wireless Intrusion Detection and Response Group 2

 243

index.html

ECE 4006 Wireless Intrusion Detection and Response Group 2

 244

1 <HTML>
2 <FRAMESET COLS="180,*">
3 <FRAME SRC="menu.html">
4 <FRAME SRC="cgi-bin/client?file=status.shtml" NAME=main>
5 </FRAMESET>
6 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 245

menu.html

ECE 4006 Wireless Intrusion Detection and Response Group 2

 246

 1 <HTML><BODY>
 2 <P></P>
 3 <P>IDS status</P>
 4 <P>Set Date &
Time</P>
 5 <P>Configure Wired
Interface</P>
 6 <P>View Probe Request
Table</P>
 7 <P>View Fake AP
Table</P>
 8 <P>Add Fake AP</P>
 9 <P>Wireless
Settings<P>
10 <P>Miscellaneous
Options<P>
11 <P>Web UI Options<P>
12 </BODY> </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 247

addfake.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 248

 1 <HTML><BODY>
 2 Add New Fake AP<P>
 3 <FORM name=fr action=client>
 4 <INPUT TYPE=hidden NAME=command value=3>
 5 <INPUT TYPE=hidden NAME=file VALUE=result.shtml>
 6 MAC Address: <INPUT MAXLENGTH=17 NAME=macaddr></INPUT>

 7 SSID: <INPUT NAME=ssid MAXLENGTH=10></INPUT>

 8 <INPUT TYPE=submit>
 9 </FORM>
 $TS </BODY>
10 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 249

datetime.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 250

 1 <HTML>
 2 <HEAD>
 3 <SCRIPT>
 4 function settime()
 5 {
 6 document.fr.command.value=4;
 7 document.fr.submit();
 8 }
 9 function setdate()
10 {
11 document.fr.command.value=5;
12 document.fr.submit();
13 }
14 </SCRIPT>
15 </HEAD>
16 <BODY>
17 Time Configuration
18 <FORM ACTION="client" NAME="fr" METHOD="post">
19 <INPUT TYPE="hidden" NAME="command">
20 <INPUT TYPE="hidden" NAME="file" VALUE="datetime.shtml">
21 <TABLE>
22 <TR><TD>Current Time:</TD><TD>$TI</TD></TR>
23 <TR><TD>New Time: (HH:MM:SS)</TD><TD><INPUT TYPE="text" NAME="time"
value="$TI"></TD>
24 <TD><INPUT TYPE="button" onClick="settime()" value="Set Time"></TD></TR>
25 <TR><TD>Current Date:</TD><TD>$DA</TD></TR>
26 <TR><TD>New Date: (MM/DD/YY)</TD><TD><INPUT TYPE="text" NAME="date"
value="$DA"></TD>
27 <TD><INPUT TYPE="button" onClick="setdate()" value="Set Date"></TD></TR>
28 </TABLE>
29 </FORM>
30 $TS
31 </BODY>
32 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 251

fake.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 252

 1 <HTML><BODY>
 2 Fake AP Table
 3 <SCRIPT>
 4 function del(a) {
 5 document.fr.command.value=2;
 6 document.fr.macaddr.value=a;
 7 document.fr.submit();
 8 }
 9 function delAll() {
10 document.fr.command.value=15;
11 document.fr.submit();
12 }
13 function saveAll() {
14 document.fr.command.value=12;
15 document.fr.submit();
16 }
17 function loadAll() {
18 document.fr.command.value=13;
19 document.fr.submit();
20 }
21 </SCRIPT>
22 <FORM name=fr action=client>
23 <INPUT TYPE=hidden NAME=command>
24 <INPUT TYPE=hidden NAME=macaddr>
25 <INPUT TYPE=hidden NAME=file VALUE=result.shtml>
26 <TABLE BORDER=1>
27 <TR><TH>Action</TH><TH>MAC Address</TH><TH>SSID</TH></TR>
28 $TF
29 <TR><TD><INPUT TYPE=button onClick="del('$MA')"
value=Remove></TD><TD>$MA</TD><TD>$ID</TD></TR>
30 $ET
31 </TABLE>

32 <INPUT TYPE=button onClick="delAll()" value="Remove All"><INPUT TYPE="button"
onClick="saveAll()" VALUE="Save list"><INPUT TYPE="button" onClick="loadAll()"
VALUE="Load list"></FORM>
33 $TS</BODY>
34 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 253

httpd.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 254

 1 <HTML>
 2 <HEAD>
 3 </HEAD>
 4 <BODY>
 5 <H3>Web Interface Options</H3>
 6 <FORM ACTION="client" NAME="fr" METHOD="post">
 7 <INPUT TYPE="hidden" NAME="command" VALUE="14">
 8 <INPUT TYPE="hidden" NAME="file" VALUE="result.shtml">
 9 <TABLE>
10 <TR><TD>New username:</TD><TD><INPUT TYPE="text" NAME="username"></TD></TR>
11 <TR><TD>New password:</TD><TD><INPUT TYPE="password" NAME="password"></TD></TR>
12 </TABLE>
13 <INPUT TYPE="submit" VALUE="Set">

14 </FORM>
15 $TS
16 </BODY>
17 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 255

mac.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 256

 1 <HTML><BODY>
 2 Probe Request Table
 3 <SCRIPT>
 4 function del(a) {
 5 document.fr.command.value=1;
 6 document.fr.macaddr.value=a;
 7 document.fr.submit();
 8 }
 9 function delAll() {
10 document.fr.command.value=7;
11 document.fr.submit();
12 }</SCRIPT>
13 <FORM name=fr action=client>
14 <INPUT TYPE=hidden NAME=command>
15 <INPUT TYPE=hidden NAME=macaddr>
16 <INPUT TYPE=hidden NAME=file VALUE=result.shtml>
17 <TABLE BORDER=1>
18 <TR><TH>Action</TH><TH>MAC Address</TH><TH>First Transmission</TH><TH>Last
Transmission</TH><TH>Total Requests</TH><TH>Netstumbler</TH><TH>Auth State</TH></TR>
19 $TL
20 <TR><TD><INPUT TYPE=button onClick="del('$MA')" value=Remove></TD>
21 <TD>$MA</TD><TD>$FI</TD><TD>$LA</TD><TD>$TO</TD><TD>$NS</TD><TD>$AU</TD></TR>
22 $ET
23 </TABLE>

24 <INPUT TYPE=button onClick="delAll()" value="Remove All"></FORM>
<FONT
SIZE=0>$TS
25 </BODY> </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 257

options.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 258

 1 <HTML>
 2 <HEAD>
 3 <SCRIPT>
 4 function setchecks()
 5 {
 6 if('$EH'=='Y')
 7 {
 8 document.fr.hopping.checked=true;
 9 }
10 if('$EP'=='Y')
11 {
12 document.fr.fake.checked=true;
13 }
14 if('$EW'=='Y')
15 {
16 document.fr.wep.checked=true;
17 }
18 if('$ED'=='Y')
19 {
20 document.fr.dos.checked=true;
21 }
22 }
23 function setoptions()
24 {
25 if(document.fr.hopping.checked)
26 {
27 document.fr.checkval.value='1';
28 }
29 else
30 {
31 document.fr.checkval.value='0';
32 }
33 if(document.fr.fake.checked)
34 {
35 document.fr.checkval.value=document.fr.checkval.value+'1';
36 }
37 else
38 {
39 document.fr.checkval.value=document.fr.checkval.value+'0';
40 }
41 if(document.fr.wep.checked)
42 {
43 document.fr.checkval.value=document.fr.checkval.value+'1';
44 }
45 else
46 {
47 document.fr.checkval.value=document.fr.checkval.value+'0';
48 }
49 if(document.fr.dos.checked)
50 {
51 document.fr.checkval.value=document.fr.checkval.value+'1';
52 }
53 else
54 {
55 document.fr.checkval.value=document.fr.checkval.value+'0';
56 }
57 document.fr.submit();
58 }
59 </SCRIPT>
60 </HEAD>
61 <BODY onLoad="setchecks()">
62 <H3>Miscellaneous Options</H3>
63 <FORM ACTION="client" NAME="fr" METHOD="post">

ECE 4006 Wireless Intrusion Detection and Response Group 2

 259

64 <INPUT TYPE="hidden" NAME="command" VALUE="11">
65 <INPUT TYPE="hidden" NAME="file" VALUE="result.shtml">
66 <INPUT TYPE="hidden" NAME="checkval">
67 <TABLE>
68 <TR><TD><INPUT TYPE="checkbox" NAME="hopping">Enable channel hopping</TD></TR>
69 <TR><TD><INPUT TYPE="checkbox" NAME="fake">Enable fake probe responses</TD></TR>
70 <TR><TD><INPUT TYPE="checkbox" NAME="wep">Enable fake WEP</TD></TR>
71 <TR><TD><INPUT TYPE="checkbox" NAME="dos">Enable DOS</TD></TR>
72 </TABLE>
73 Detection threshold (requests per 10 seconds): <INPUT TYPE="text" NAME="threshold"
VALUE="$TH">

74 <INPUT TYPE="button" onClick="setoptions()" VALUE="Set">

75 </FORM>
76 $TS
77 </BODY>
78 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 260

result.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 261

1 <HTML><BODY>
2 Result of Action

3 Action: $AC

4 Result: $RS

5 $TS
6 </BODY>
7 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 262

status.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 263

 1 <HTML>
 2 <BODY>
 3 <H1>Anti-Netstumbler</H1>
 4 <P>IDS status: $ST</P>
 5 <P><FORM ACTION="client" METHOD="post">
 6 <INPUT TYPE="hidden" NAME="command" value="10">
 7 <INPUT TYPE="hidden" NAME="file" VALUE="status.shtml">
 8 <INPUT TYPE="submit" VALUE="Start/Stop IDS">
 9 </FORM></P>
10 </BODY>
11 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 264

wiredcfg.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 265

 1 <HTML>
 2 <HEAD>
 3 </HEAD>
 4 <BODY>
 5 Wired Ethernet Configuration
 6 <FORM ACTION="client" NAME="fr" METHOD="post">
 7 <INPUT TYPE="hidden" NAME="command" VALUE="6">
 8 <INPUT TYPE="hidden" NAME="file" VALUE="wiredresult.shtml">
 9 <TABLE>
10 <TR><TD>Current IP:</TD><TD>$IP</TD></TR>
11 <TR><TD>New IP:</TD><TD><INPUT TYPE="text" NAME="ip" value="$IP"></TD>
12 <TD><INPUT TYPE="submit" value="Set IP"></TD></TR>
13 </TABLE>
14 </FORM>
15 <P>Changing the IP address may disconnect this session!</P>
16 $TS
17 </BODY>
18 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 266

wiredresult.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 267

1 <HTML>
2 <BODY>
3 <P>Configuring Wired Interface</P>
4 <P>$AC</P>
5 <P>Status: $RS</P>
6 <P>Warning: Changing the IP address may disconnect this
7 session!</P>
8 </BODY>
9 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 268

wireless.shtml

ECE 4006 Wireless Intrusion Detection and Response Group 2

 269

 1 <HTML>
 2 <HEAD>
 3 <SCRIPT>
 4 function setbssid()
 5 {
 6 document.fr.command.value=8;
 7 document.fr.submit();
 8 }
 9 function setchannel()
10 {
11 document.fr.command.value=9;
12 document.fr.submit();
13 }
14 </SCRIPT>
15 </HEAD>
16 <BODY>
17 Wireless Configuration
18 <FORM ACTION="client" NAME="fr" METHOD="post">
19 <INPUT TYPE="hidden" NAME="command">
20 <INPUT TYPE="hidden" NAME="file" VALUE="result.shtml">
21 <TABLE>
22 <TR><TD>Current BSSID:</TD><TD>$BS</TD></TR>
23 <TR><TD>New BSSID:</TD><TD><INPUT TYPE="text" NAME="bssid" value="$BS"></TD>
24 <TD><INPUT TYPE="button" onClick="setbssid()" value="Set BSSID"></TD></TR>
25 <TR><TD>Current Main Channel:</TD><TD>$MC</TD></TR>
26 <TR><TD>New Channel:</TD><TD><INPUT TYPE="text" NAME="channel" value="$MC"></TD>
27 <TD><INPUT TYPE="button" onClick="setchannel()" value="Set Channel"></TD></TR>
28 </TABLE>
29 </FORM>
30 $TS
31 </BODY>
32 </HTML>

ECE 4006 Wireless Intrusion Detection and Response Group 2

 270

commitfake.sh

ECE 4006 Wireless Intrusion Detection and Response Group 2

 271

1 #!/bin/sh
2
3 /etc/init.d/configfs commit > /dev/null 2> /dev/null

ECE 4006 Wireless Intrusion Detection and Response Group 2

 272

commithttpd.sh

ECE 4006 Wireless Intrusion Detection and Response Group 2

 273

1 #!/bin/sh
2
3 /etc/init.d/configfs commit > /dev/null 2> /dev/null

ECE 4006 Wireless Intrusion Detection and Response Group 2

 274

commitids.sh

ECE 4006 Wireless Intrusion Detection and Response Group 2

 275

1 #!/bin/sh
2
3 /etc/init.d/configfs commit > /dev/null 2> /dev/null
4 . /etc/rw/ids

ECE 4006 Wireless Intrusion Detection and Response Group 2

 276

commitip.sh

ECE 4006 Wireless Intrusion Detection and Response Group 2

 277

1 #!/bin/sh
2
3 /etc/init.d/configfs commit > /dev/null 2> /dev/null
4 . /etc/rw/interfaces/eth0
5 ifconfig eth0 addr $IP

ECE 4006 Wireless Intrusion Detection and Response Group 2

 278

commitwl.sh

ECE 4006 Wireless Intrusion Detection and Response Group 2

 279

1 #!/bin/sh
2
3 /etc/init.d/configfs commit > /dev/null 2> /dev/null
4 . /etc/rw/interfaces/wlan0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 280

toggleids.sh

ECE 4006 Wireless Intrusion Detection and Response Group 2

 281

 1 #!/bin/sh
 2
 3 IDS_PID_TMP="/tmp/ids.pid"
 4 IDS_START="/etc/init.d/ids start"
 5 IDS_STOP="killall ids" # hacked. "ids stop" prints "Terminated"
 6
 7 # check if the ids is running
 8 if [-f $IDS_PID_TMP]
 9 then
10 IDS_PID=`cat $IDS_PID_TMP`
11 if [-d "/proc/$IDS_PID"]
12 then
13 $IDS_STOP > /dev/null 2> /dev/null
14 sleep 1
15 exit 0
16 fi
17 fi
18 # start if no pid
19 $IDS_START > /dev/null

ECE 4006 Wireless Intrusion Detection and Response Group 2

 282

httpd

ECE 4006 Wireless Intrusion Detection and Response Group 2

 283

 1 #!/bin/ash
 2
 3 NAME="httpd"
 4 WWWDIR="/etc/www"
 5
 6 case "$1" in
 7 start)
 8 echo -n "Starting $NAME: "
 9 #bring up webserver
10 cd $WWWDIR
11 /usr/bin/httpd
12 echo "Done."
13 ;;
14 stop)
15 echo -n "Stopping $NAME: "
16 # kill webserver
17 killall httpd
18 echo "Done."
19 ;;
20 restart)
21 /etc/init.d/$NAME stop
22 sleep 1
23 /etc/init.d/$NAME start
24 ;;
25 *)
26 echo "Usage: $0 {start|stop|restart}" >&2
27 exit 1
28 ;;
29 esac
30 exit 0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 284

ids

ECE 4006 Wireless Intrusion Detection and Response Group 2

 285

 1 #!/bin/ash
 2
 3 NAME="ids"
 4
 5 case "$1" in
 6 start)
 7 echo -n "Starting $NAME: "
 8 . /etc/rw/interfaces/wlan0
 9 # start ids
10 sleep 2
11 /usr/bin/ids -c $DSCHAN -S "" -P $APADDR wlan0
12 sleep 5
13 echo "Done."
14 ;;
15 stop)
16 echo -n "Stopping $NAME: "
17 # kill ids
18 killall ids > /dev/null
19 rm -f /tmp/ids.pid > /dev/null
20 echo "Done."
21 ;;
22 restart)
23 /etc/init.d/$NAME stop
24 sleep 1
25 /etc/init.d/$NAME start
26 ;;
27 *)
28 echo "Usage: $0 {start|stop|restart}" >&2
29 exit 1
30 ;;
31 esac
32 exit 0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 286

telnetd

ECE 4006 Wireless Intrusion Detection and Response Group 2

 287

 1 #!/bin/ash
 2
 3 NAME="telnetd"
 4
 5 case "$1" in
 6 start)
 7 echo -n "Starting $NAME: "
 8 #start telnet daemon
 9 telnetd
10 echo "Done."
11 ;;
12 stop)
13 echo -n "Stopping $NAME: "
14 # kill telnetd
15 killall telnetd
16 echo "Done."
17 ;;
18 restart)
19 /etc/init.d/$NAME stop
20 sleep 1
21 /etc/init.d/$NAME start
22 ;;
23 *)
24 echo "Usage: $0 {start|stop|restart}" >&2
25 exit 1
26 ;;
27 esac
28 exit 0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 288

wired

ECE 4006 Wireless Intrusion Detection and Response Group 2

 289

 1 #!/bin/ash
 2
 3 NAME="wired"
 4 IFACE="eth0"
 5 IP=192.168.0.1 # default IP
 6
 7 case "$1" in
 8 start)
 9 echo -n "Starting $NAME: "
10 # load configuration
11 . /etc/rw/interfaces/eth0
12 # configure wired ethernet port
13 ifconfig $IFACE up
14 ifconfig $IFACE addr $IP
15 echo "Done."
16 ;;
17 stop)
18 echo -n "Stopping $NAME: "
19 # close wired port
20 ifconfig $IFACE down
21 echo "Done."
22 ;;
23 restart)
24 /etc/init.d/$NAME stop
25 sleep 1
26 /etc/init.d/$NAME start
27 ;;
28 *)
29 echo "Usage: $0 {start|stop|restart}" >&2
30 exit 1
31 ;;
32 esac
33 exit 0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 290

wireless

ECE 4006 Wireless Intrusion Detection and Response Group 2

 291

 1 #! /bin/sh
 2
 3 NAME="wireless"
 4 IFACE="wlan0"
 5
 6 case "$1" in
 7 start)
 8 echo -n "Starting $NAME: "
 9 . /etc/rw/interfaces/$IFACE
10
11 /sbin/insmod pcmcia_core
12 /sbin/insmod i82365 ignore=1
13 /sbin/insmod ds
14 /sbin/insmod hostap_crypt
15 /sbin/insmod hostap
16 /sbin/insmod hostap_cs ignore_cis_vcc=1 essid=$SSID channel=$DSCHAN
17 # /sbin/insmod prism2 essid=$SSID channel=$DSCHAN
18 /sbin/cardmgr -o
19 # sleep 1
20 # /usr/bin/killall -9 cardmgr
21
22 WLANS=`ifconfig -a | cut -d ' ' -f 1 | grep wlan`
23 for i in $WLANS ; do
24 /sbin/ifconfig $i up
25 done
26
27 # FIX: this should somehow be moved int /etc/init.d/wired
28 HARDADDR=`/sbin/ifconfig wlan0 | sed -n 's/.*HWaddr\(.*\)/\1/p'`
29 if [-n "$HARDADDR"] ; then
30 # # subtract 1 from byte 1 FIXME this is a hack
31 # BYTE1=`echo $HARDADDR | sed -n 's/[^:]*:\([0-9A-F]*\).*/\1/p'`
32 # BYTE1=`expr $BYTE1 - 1`
33 # HARDADDR=`echo $HARDADDR | sed -e "s/\(:[0-9A-F]*\)/:$BYTE1/"`
34 /sbin/ifconfig eth0 hw ether $HARDADDR
35 fi
36
37 echo "Done."
38 ;;
39 stop)
40 echo -n "Stopping $NAME: "
41
42 # remove from bridge
43 WLANS=`brctl show | sed -n 's/.*\(wlan.*\).*/\1/p'`
44 for i in $WLANS ; do
45 /sbin/brctl delif br0 $i
46 done
47
48 # tear down
49 WLANS=`ifconfig | cut -d ' ' -f 1 | grep wlan`
50 for i in $WLANS ; do
51 /sbin/ifconfig $i down
52 done
53
54 # remove modules
55 /usr/bin/killall -9 cardmgr
56 # /sbin/rmmod prism2
57 /sbin/rmmod hostap_cs
58 /sbin/rmmod hostap
59 /sbin/rmmod hostap_crypt
60 /sbin/rmmod ds
61 /sbin/rmmod i82365
62 /sbin/rmmod pcmcia_core
63

ECE 4006 Wireless Intrusion Detection and Response Group 2

 292

64 echo "Done."
65 ;;
66 restart)
67 /etc/init.d/$NAME stop
68 sleep 1
69 /etc/init.d/$NAME start
70 ;;
71 *)
72 echo "Usage: $0 {start|stop|restart}" >&2
73 exit 1
74 ;;
75 esac
76
77 exit 0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 293

eth0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 294

1 # wired configuration
2
3 IP="192.168.0.200"

ECE 4006 Wireless Intrusion Detection and Response Group 2

 295

httpd.conf

ECE 4006 Wireless Intrusion Detection and Response Group 2

 296

1 ip:*
2 /:foo:bar

ECE 4006 Wireless Intrusion Detection and Response Group 2

 297

ids

ECE 4006 Wireless Intrusion Detection and Response Group 2

 298

1 # IDS configuration
2
3 HOPPING="0"
4 FAKEAP="0"
5 FAKEWEP="1"
6 DOS="0"
7 THRESH="30"

ECE 4006 Wireless Intrusion Detection and Response Group 2

 299

wlan0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 300

1 # wireless configuration
2
3 SSID="_"
4 DSCHAN="1"
5 APADDR="00:01:02:03:04:05"

ECE 4006 Wireless Intrusion Detection and Response Group 2

 301

Appendix B: Installation Tutorials

ECE 4006 Wireless Intrusion Detection and Response Group 2

 302

Linux Networking

Procedure by which PCMCIA cards are configured on Linux:

1) A card is inserted in empty PC Card socket, and cardmgr process is notified. Cardmgr
queries the card information structure (CIS) to determine the type of card inserted and
the resources it needs.

2) Cardmgr consults the card database stored in /etc/pcmcia/config to determine which card
was inserted. The card is identified by the CIS data and the class setting is set in the main
system configuration file.

3) Cardmgr allocates resources to the card.
4) Resources allocated by cardmgr are programmed into the PCMCIA controller.
5) Part of the configuration information obtained from the lookup in step 2 is loaded to use

the newly inserted card. Drivers for PCMCIA cards are implemented as kernel modules.
The driver is informed of resources allocated in step 4.Module stacking can be used to
load multiple modules.

PCMCIA Card Services Installation

The Card Services is documented in the PCMCIA-HOWTO. Both the software and
documentation are available at http://pcmcia-cs.sourceforge.net/. Unpacking and configuring of
the software is done with the command make config. After configuration, the installation can be
accomplished with make install.

Linux Network Setup

Follow the following steps to setup the network:
1. The first step was to setup Red Hat Linux 7.3 on the hard-drive:
Use custom installation.
In the Kernel Options install the following packages:

• Kernel Development
• Software Development
• Laptop Support
• Utilities

Check the ‘Select Individual Packages’ checkbox. Do not install TCP Dump and Ethereal. These
will be installed at a later stage as the installation version may be old.

2. Update Wireless Tools:
Go to http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
Download the wireless tools package: wireless_tools-25.tar.gz.

Next, download PCMCIA drivers from http://pcmcia-cs.source.forgenet/ftp/
Download pcmcia-cs-3.2.1.tar.gz

http://pcmcia-cs.sourceforge.net/
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://pcmcia-cs.source.forgenet/ftp/

ECE 4006 Wireless Intrusion Detection and Response Group 2

 303

3. Setup Kernel:

% cd /usr/src/linux-2.4
% make clean
% make mrproper
% make xconfig

In Networking Options,
Click on Network Device Support and enable PCMCIA Network Device Support.
Click on Networking Options and enable 802.1d Ethernet Bridging.
Click on SCSI Support and disable SCSI support.
Click on Network Device Support. Enable network device being used, enable Ethernet (10 or 100
Mbit). In our setup, we enabled EISA, VLB, PCI and onboard controllers as well as
EtherExpress Pro/100 Support.
Click on Wireless LAN (Non-Hamradio) and enable Wireless LAN (Non-Hamradio).

Under File Systems Options,
Enable EXT3 journaling file system support
Enable DOS FAT FS support
Enable MSDOS FS Support
Enable modularity compressed ROM file system support
Enable modularity RM file system support

Under General Setup,
Click on PCMCIA/CardBus Support and disable PCMCIA/Cardbus support.
PCMCIA will be configured at a later stage.

Exit xconfig.

In the linux-2.4 directory,
% make dep
% make bzImage
% make modules
% make modules_install

% cd arch/i386/boot
% cp bzImage /boot/exp/
% cd /etc
% pico grub.conf

Add title Experimental
root (hd0, 0)
kernel /exp ro root = /dev/hda2

System has to be rebooted for the changes to take effect.
% reboot

After reboot,

ECE 4006 Wireless Intrusion Detection and Response Group 2

 304

% pico Makefile

Add hostap path in file
PCMCIA_PATH = /root/pcmcia-cs-3.2.1
Exit the file.

% make pccard EXTRA_CFLAGS = “-DPPrism2_HOSTAPD –
DPRISM2_DOWNLOAD_SUPPORT”

PCMCIA Setup

% tar –xvzf pcmcia-cs-3.2.1.tar.gz
% cd /root/pcmcia-cs-3.2.1
% ./configure
Directory: /usr/src/linux-2.4
Don’t build trusting version utility. Accept defaults for the rest of the prompts.

% make all
% make install
% make install_pccard
% reboot

To check that hostap detected card properly,
% pico /var/log/messages

A dump of the file is shown below showing the successful detection of the linksys card.

Nov 16 12:17:26 localhost cardmgr[667]: socket 0: Linksys WPC11 Ver 3 11Mbps WLAN
Card
Nov 16 12:17:26 localhost autofs: automount startup succeeded
Nov 16 12:17:26 localhost cardmgr[667]: executing: 'modprobe hostap_cs'
Nov 16 12:17:26 localhost kernel: hostap_cs: hostap_cs.c 0.0.0 CVS (SSH
Communications Security Corp, Jouni Malinen)
Nov 16 12:17:26 localhost kernel: hostap_cs: (c) Jouni Malinen <jkmaline@cc.hut.fi>
Nov 16 12:17:26 localhost kernel: cs: IO port probe 0x0100-0x04ff: excluding 0x170-
0x177 0x370-0x37f 0x3c0-0x3e7 0x4d0-0x4d7
Nov 16 12:17:26 localhost kernel: cs: IO port probe 0x0178-0x036f: clean.
Nov 16 12:17:26 localhost kernel: cs: IO port probe 0x0380-0x03bf: clean.
Nov 16 12:17:26 localhost kernel: cs: IO port probe 0x03e8-0x04cf: clean.
Nov 16 12:17:26 localhost kernel: cs: IO port probe 0x04d8-0x04ff: clean.
Nov 16 12:17:26 localhost kernel: cs: IO port probe 0x0a00-0x0aff: clean.
Nov 16 12:17:26 localhost kernel: cs: IO port probe 0x0c00-0x0cff: clean.
Nov 16 12:17:26 localhost kernel: hostap_cs: index 0x01: Vcc 5.0, irq 3, io 0x0100-
0x013f
Nov 16 12:17:26 localhost kernel: hostap_cs: Registered netdevice wlan0
Nov 16 12:17:26 localhost kernel: hostap_cs: Registered netdevice wlan0ap for AP
management
Nov 16 12:16:57 localhost rc.sysinit: Mounting proc filesystem: succeeded
Nov 16 12:17:26 localhost kernel: wlan0: NIC: id=0x801b v1.0.0
Nov 16 12:16:57 localhost sysctl: net.ipv4.ip_forward = 0
Nov 16 12:17:26 localhost kernel: wlan0: PRI: id=0x15 v1.1.0

ECE 4006 Wireless Intrusion Detection and Response Group 2

 305

To check that it works, we connected to GTWireless in managed mode:

% iwconfig wlan0 mode changed
% iwconfig wlan0 essid GTWireless
% insmod hostap_crypt_wep
% iwconfig wlan0 key xxxxx
% iwconfig

It can be seen that the wireless card has associated with an access point:

The next step is to bring up the interface:
% ifconfig wlan0 up /* Bring up the interface */
% dhcpd wlan0 /* Make the interface get the ip address */

Check the internet connection through the browser. The network setup is complete.

Next, install the tools needed to analyze packet information.

Install TCPDump (not required for IDS – Intrusion Detection System)
Go to http://www.tcpdump.org

Nov 16 12:16:57 localhost sysctl: net.ipv4.conf.default.rp_filter = 1
Nov 16 12:17:26 localhost cardmgr[667]: executing: './network start wlan0'
Nov 16 12:17:26 localhost kernel: wlan0: STA: id=0x1f v1.4.2
Nov 16 12:17:26 localhost /etc/hotplug/net.agent: invoke ifup wlan0ap

Figure X. Dump showing successful detection of card

[root@localhost root]# iwconfig
lo no wireless extensions.

eth0 no wireless extensions.

Warning: Driver for device wlan0 recommend version 13 of Wireless
Extension,
but has been compiled with version 12, therefore some driver features
may not be available...

wlan0 IEEE 802.11-b Mode:Managed Frequency:2.462GHz
 Access Point: 00:60:1D:23:9F:51 Bit Rate:2Mb/s Tx-Power:-5
dBm
 Sensitivity=1/3
 Retry min limit:8 RTS thr:off Fragment thr:off
 Encryption key:3671-A113-A0 Encryption mode:restricted
 Power Management:off
 Link Quality:66/92 Signal level:-51 dBm Noise level:-98 dBm
 Rx invalid nwid:0 Rx invalid crypt:359 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:91 Missed beacon:0

wlan0ap no wireless extensions.

Figure X. Screen output showing successful connection

http://www.tcpdump.org

ECE 4006 Wireless Intrusion Detection and Response Group 2

 306

Libpcap and tcpdump are available for download on this website. Libpcap is the packet capture
library used by both tcpdump and ethereal.

Download and install Ethereal from http://www.ethereal.com

Intrusion Detection System (IDS) Installation & Setup

Download openap-custom.tar.gz
% tar xvzf openap-custom.tar.gz
% cd openap-custom
% chmod +s /bin/mknod

Download the linux kernel linux-2.4.17.tar.gz

% tar –xzf linux-2.4.17.tar.gz

Configure the kernel to work with openAP
% patch –p0 < ./misc/openap-linux-2.4.17.patch

http://www.ethereal.com

ECE 4006 Wireless Intrusion Detection and Response Group 2

 307

Setting up OpenAP

Precise instructions for setting up OpenAP can be found on the OpenAP website. The
following describes briefly what we did.

OpenAP has to be extracted from the archived file and a copy of the Linux 2.4.17 kernel
placed in the ./linux directory. The kernel also has to be patched with the command patch -p0
< ./misc/openap-linux-2.4.17.patch.

To prepare the development tools, it is necessary to make the targets tools and
install in that order. This would compile the uClibc tools and install them to the development
system.

Transferring the flash image to the SRAM card

To test the system, we used the default SRAM image provided with OpenAP. This
required no compilation. To write the image to the SRAM card, the development system must
have a PC Card slot and recent PCMCIA card services installed. Upon inserting the card, it
would be mounted at several locations. However, it is only necessary to copy the image to
/dev/mem0c0c. This is done using the command cat sram.img > /dev/mem0c0c.

Flashing the access point

As before, more detailed instructions on flashing the access point can be found on the
OpenAP website. The following is a brief description of what we did.

The access point was opened be removing four screws and the nut securing the antenna
connector. There is only one PC Card connector and it is occupied by the 802.11b interface card.
This has to be removed and replaced with the SRAM card. The card is held down by plastic and
metal clips that may have to be broken. Care should be taken to ensure the SRAM card is
inserted correctly since the connector is not keyed. At this point, it is useful, though not
necessary, to connect the access point to a terminal via the null-modem cable.

To get the access point to read the image off the SRAM card, it is necessary to power up
the access point with jumper JP2 shorted. JP2 is located near the LEDs. This would cause the
access point to boot from the card. The default image on the card is configured to automatically
load a new flash program into the access point flash memory. When LEDs 4 and 5 start flashing,
JP2 should be unshorted. When flashing is complete, the access point will reboot and the LEDs
will flash quickly and briefly. The process can also be monitored via the terminal.

Subsequent reflashing can be performed using instructions described later.

OpenAP Makefiles and Other Configuration

The following instructions are based on the assumption that the user is rooted in the
OpenAP directory (using chroot or other means).

ECE 4006 Wireless Intrusion Detection and Response Group 2

 308

Adding files to the flash image

There are two important directories used in generating the final flash image –
./Image_static and ./Image_final. Image_static contains non-compiled files while Image_final
contains a copy of the non-compiled files from Image_static and compiled files from various
locations. The makefile automatically clears out Image_final during a build and makes fresh
copies from the appropriate sources. Image_final is actually an exact replica of the filesystem at
boot. Obviously, Image_final would resemble the root directory of a Linux filesystem and would
have subdirectories like /usr, /bin, /dev, etc.

Generally, scripts and configuration files would be placed in Image_final. Symlinks may
also be placed here, but in most cases it is better to generate them in the makefile. Additional
programs that need to be compiled should be left in their respective directories. These directories
should be recorded in the primary OpenAP makefile. Each set of additional programs requires a
makefile of its own. These makefiles need to have a target called install that copies the programs
to the correct directory rooted in $IMAGE_STATIC. The preferred method is to use the
install command rather than to use cp.

Changing the kernel configuration

Even though the kernel is a standard kernel source provided by the user, the standard
kernel configuration tools cannot be used. The primary makefile overwrites these settings with
those stored in ./misc/kernel_config. Kernel configuration requires that the appropriate settings
be toggled in this file by commenting them out or removing the comment characters preceding
the appropriate line. For the IDS and CGI software, SYSVIPC needs to be enabled.

Modifying startup scripts and options

As with most standard Linux distributions, startup scripts are placed in /etc/init.d. These
are then symlinked to the appropriate runlevel with the appropriate name (more details on startup
scripts can be found in the References [21], [26]). The scripts themselves are placed in the
Image_static copy of the filesystem and are linked through commands in the makefile. Startup
scripts have to support an argument that is either “start”, “stop”, or “restart” as these are passed
by the operating system.

Configuration options are actually simplified scripts, lacking the usual header line and are
merely setting various environment variables. These are invoked by the startup scripts. For these
options to be modifiable, they have to be found in /etc/rw. /etc/rw is created automatically at boot
time from /etc/rw.default so the user should place the first-run settings in
./Image_static/etc/rw.default. Additionally, there is a subdirectory, /etc/rw/interfaces, that
contains the configuration options for the wired and wireless interfaces.

The re-writeable directory

Most of the filesystem is stored in read-only cramfs. Only two directories are mapped to
ramdisks – /tmp and /etc/rw. Of the two, only /etc/rw may be committed to the flash memory for
permanent storage. However, this does not happen automatically. The user must explicitly
invoke /etc/init.d/configfs commit. Ideally, this is done automatically by access

ECE 4006 Wireless Intrusion Detection and Response Group 2

 309

point software each time a configuration change is made and should be transparent to the end-
user.

Compiling the flash image

The main OpenAP makefile provides several targets. These targets are summarized in
Table 1.
Target Purpose
bootstrap Performs a complete compile of the tools, kernel, flash filesystem and flash image.

This is suitable for reflashing as described below.
sram Performs a complete compile of the tools, kernel, flash filesystem and flash image.

This is meant to be stored on an SRAM card for updating the initial flash image.
flash Performs a compilation of the flash filesystem (and required programs) and

produces a flash image suitable for reflashing as is with the bootstrap target.
Usually, make flash is sufficient.

Reflashing

Reflashing through OpenAP uses the reflash script. Since only /, /tmp, and /etc/rw are
writeable, reflashing must be performed from either of these directories (obviously, /tmp is
preferable).

Reflashing requires that the flash file and its associated MD5 checksum be placed on a
web server accessible by the OpenAP device. Specific instructions depend on the web server
used. We used mini_httpd 1.17 so the files went into mini_httpd’s starting directory and was
performed automatically by the Makefile.

When ready, reflash http://serveraddress/path/to/flash should be
run, where serveraddress is the IP address or domain name of the server and /path/to is
the path to the flash file on the server. First, several services would be automatically stopped to
release memory for the operation. Next, the files would be downloaded and then flashing would
commence. When done, the unit would reboot automatically. The process takes approximately
three minutes.

Since telnetd is one of the services stopped, it is not advisable to do the reflashing
through a telnet session since it would be impossible to monitor the process. Also, reflash
would often exit prematurely with errors and not reboot, but in such cases the flash has usually
been safely updated and a cold restart is possible. Finally, during flashing, there is frequently a
long list of MTD errors. It was observed that that these are harmless and do not indicate a critical
failure of any sort.

http://serveraddress/path/to/flash

ECE 4006 Wireless Intrusion Detection and Response Group 2

 310

Appendix C: Wireless Cards Supported by Host AP and OpenAP

ECE 4006 Wireless Intrusion Detection and Response Group 2

 311

Cards supported by Host AP:
1. Compaq WL100 11Mb/s WLAN Card
2. Compaq WL200
3. EMTAC A2424i 11Mbps WLAN Card
4. Linksys WPC11 11Mbps WLAN Card
5. Linksys WPC11 Ver 2.5 11Mbps WLAN Card
6. Linksys WPC11 Ver 3 11Mbps WLAN Card
7. D-Link DWL-650 11Mbps WLAN Card
8. D-Link DRC-650 11Mbps WLAN Card
9. ZoomAir 4100 11Mb/s WLAN Card
10. Addtron AWP-100 11Mbps WLAN Card
11. Samsung SWL2000-N 11Mb/s WLAN Card
12. SMC 2632W 11Mbps WLAN Card
13. BroMax Freeport 11Mbps WLAN Card
14. Z-Com XI300 11Mb/s WLAN Card
15. Zcomax XI-325H 200mW
16. 3Com AirConnect PCI 777A
17. U.S. Robotics IEEE 802.11b PC-CARD
18. Longshine LCR-8531 11Mbps WLAN PCMCIA CARD
19. Philips 802.11b WLAN PCMCIA
20. Proxim RangeLAN
21. Buffalo WLI-CF-S11G
22. Level-One WPC-0100
23. Senao SL-2011CD/SL-2011CDPLUS
24. Fulbond Airbond XI-300B

ECE 4006 Wireless Intrusion Detection and Response Group 2

 312

Appendix D: Network Performance with IDS

ECE 4006 Wireless Intrusion Detection and Response Group 2

 313

No IDS

The statistics on Generator : 13430 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes
 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 56.005228 secs
 - Total Xmitted Pk Size : 13752320 bytes
 - Total MBits per second : 1.964434
 - Average IA Time : 0.004170 secs
 - Average Xmitted Pk Size : 1024 bytes

Fake Probe Response, Channel Hop, Fake WEP

The statistics on Generator : 13562 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes
 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 57.659513 secs
 - Total Xmitted Pk Size : 13887488 bytes
 - Total MBits per second : 1.926827
 - Average IA Time : 0.004252 secs
 - Average Xmitted Pk Size : 1024 bytes

All IDS except DOS, Faster NetStumbler Scanning

The statistics on Generator : 10772 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes
 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 57.324568 secs
 - Total Xmitted Pk Size : 11030528 bytes
 - Total MBits per second : 1.539379
 - Average IA Time : 0.005322 secs
 - Average Xmitted Pk Size : 1024 bytes

All IDS except DOS, Medium scan speed

The statistics on Generator : 12054 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes
 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 57.541751 secs

ECE 4006 Wireless Intrusion Detection and Response Group 2

 314

 - Total Xmitted Pk Size : 12343296 bytes
 - Total MBits per second : 1.716082
 - Average IA Time : 0.004774 secs
 - Average Xmitted Pk Size : 1024 bytes

All IDS, except DOS, Slow Speed

The statistics on Generator : 11839 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes
 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 56.692534 secs
 - Total Xmitted Pk Size : 12123136 bytes
 - Total MBits per second : 1.710721
 - Average IA Time : 0.004789 secs
 - Average Xmitted Pk Size : 1024 bytes

No IDS, Faster

The statistics on Generator : 11905 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes
 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 57.671742 secs
 - Total Xmitted Pk Size : 12190720 bytes
 - Total MBits per second : 1.691049
 - Average IA Time : 0.004844 secs
 - Average Xmitted Pk Size : 1024 bytes

No IDS, Medium

The statistics on Generator : 11772 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes
 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 56.641735 secs
 - Total Xmitted Pk Size : 12054528 bytes
 - Total MBits per second : 1.702565
 - Average IA Time : 0.004812 secs
 - Average Xmitted Pk Size : 1024 bytes

No IDS, Slow Speed

The statistics on Generator : 12235 runs
 Inputted Value:
 - IA Time : 0.000000 secs
 - Pk Size Mean : 1024 bytes

ECE 4006 Wireless Intrusion Detection and Response Group 2

 315

 - Pk Size Variance : 0 bytes

 Actual Generator Output:
 - Total Time : 58.069059 secs
 - Total Xmitted Pk Size : 12528640 bytes
 - Total MBits per second : 1.726033
 - Average IA Time : 0.004746 secs
 - Average Xmitted Pk Size : 1024 bytes

ECE 4006 Wireless Intrusion Detection and Response Group 2

 316

Appendix E: Presentation Slides

Wireless Intrusion Detection
and Response

Nitin Namjoshi
Seng Oon Toh
Varun Kanotra

Yu-Xi Lim

ECE 4006D: Group 2

Objective and Introduction

Objectives

Detecting Wardrivers running
Netstumbler

Active countermeasures disable
intruders

Integration of intrusion detection with
access point

Introduction

Product consists of 3 modules:

Intrusion detection

Countermeasures

User Interface

Background

802.11b

Background – 802.11b

Industry standard by IEEE for WLANs.

2 types of networks: Ad Hoc & Infrastructure.

Radio based standard works on 2.4 GHz

Radio waves use FHSS or DSSS.

802.11 defines two forms of medium access:
Distributed Co- ordination Function (DCF) and
Point Co- ordination Function (PCF).

Background – 802.11b (contd)

MAC layer functions:

Scanning: Passive and Active Scanning.

Authentication: Open system
authentication is mandatory.

Association: Once authenticated, radio
NIC must associate with the AP before
sending data.

Background – 802.11b (contd)

WEP: Optional parameter. Wireless NIC
encrypts the header of each frame.

RTS/CTS: Optional parameter. Allows AP to
control use of the medium for stations
activating RTS/CTS.

Power Save Mode: Optional parameter. User
can turn PSM on/off. Enables NIC to
conserve battery power when no need to
send data.

Background – 802.11b (contd)

Fragmentation: Optional parameter.
Enables a station to divide data packets
into smaller frames. Done to avoid
retransmitting large frames in presence
of RF interference.

Background

WarDriving

Background - WarDriving

The benign act of locating and logging
onto wireless AP while in motion.

Requirements: Personal Computer,
WarDriving software, wireless 802.11
network card, a bicycle or car.

Background – WarDriving

It is legal as long as it is done within
limits.

Loopholes in an 802.11 network:
medium is air, encryption not as secure,
WEP can be easily cracked.

Not as secure as wired networks!

WarDriving activity in Silicon Valley, CA.

Background

NetStumbler

Background - Netstumbler

Most popular Windows tool available for
WarDriving.

Provides a good idea of where networks are
present.

NetStumbler can be used for the following
purposes:

Check corporate LAN for security vulnerability.

Check coverage of wireless LAN.

Statistical collection of data

Screenshot of NetStumbler showing fake AP.

Background - Netstumbler

Hardware/Software requirements:

Windows 98/2000/XP/CE.

802.11 compliant wireless card.

Closed source.

Uses hcf library provided by Lucent to
scanning for APs.

Background - Netstumbler

struct wi_scan_res {

u_int16_t wi_chan; /* dss channel */

u_int16_t wi_noise; /* average noise in the air */

u_int16_t wi_signal; /* signal strength */

u_int16_t wi_bssid[6]; /* mac address of the ap */

u_int16_t wi_interval; /* beacon transmit interval */

u_int16_t wi_capinfo; /* capability information (bits: 0-ess, 1-
ibss, 4-privacy [wep]) */

u_int16_t wi_ssid_len; /* ssid length */

u_int16_t wi_ssid[32]; /* ssid (ap name) */

};

Data structure used for exchange of AP
information.

Tasking and Timeline

Tasking

Two fairly independent parts of project
allowed division of work into two
groups

Intrusion Detection: Seng & Varun

Countermeasures: Yu-Xi & Nitin

Tasking Table

Port to APInterfacePort to APInterface

Counterme
asures

DetectionDetectionCounterme
asures

WebsiteWrite- UpSetupWrite- Up

Yu-XiVarunSengNitin

Timeline Table

Timeline

Initial classification of tasks does not
accurately describe our actual progress

We have been able to accomplish all
tasks on schedule and have completed
some ahead of time

Several tasks were started ahead of
schedule to work around bottlenecks
encountered

Competitors’ Products

Competitors’ Products

Only two major competitors
FakeAP

AirDefense

FakeAP
Open source software by Black Alchemy

Floods network with false AP beacon
packets

Makes it difficult to detect genuine AP

Competitors’ Products

AirDefense

Complete intrusion detection system

Sold separately from APs

System includes sensors and server

Monitors airwaves for suspicious activity
and reports to network administrator

Takes no counter action against intruders

Expensive to install

Tools

Host AP

Host AP

Open-source Linux drivers

Hardware requirements

Intersil PRISM 2/2.5 802.11b chipset

Software requirements

Linux

Wireless tools

PCMCIA- CS

Host AP

Supports several modes
Managed

Monitor

Master

Alternative – WLAN-NG
Modes

Development

Support

Host AP

Issues

Managed Mode

Monitor Mode

Channel overlap

Acknowledgements and retries

Monitoring all channels

Dropping packets

Tools

OpenAP

Open AP

Linux development tools for AP

Hardware requirements

Eumitcom WL1100SA- N board

>2MB SRAM card

Null- modem cable

Ethernet patch cable

PC Card reader

Open AP

Software requirements

Terminal

Telnet

Linux

Kernel source

Open AP

Tools provided

uClibc

BusyBox

Alios

PCMCIA-CS

Host AP drivers

Wireless tools for Linux

uDHCP

Erase

Open AP

Setup

Kernel

uClibc

Initial image

Customization

Kernel configuration

Image_static, Image_final

Startup scripts

Re-writeable directory

Open AP

Updating image

Make

Reflash

Tools

Wireless Tools

Wireless Tools

Linux wireless extension and wireless
tools is an open source project
sponsored by HP.

Tools: iwconfig, iwlist, iwspy, iwpriv

iwconfig

The main command line tool for
managing a WaveLAN wireless
interface.

If run without parameters, displays
extended information about the radio
interface.

iwconfig (contd)

% iwconfig wvlan0 essid NetworkName

Used to set the desired network name.
% iwconfig wvlan0 freq 2.432G

Used to set the operating frequency for the WLAN.

or

% iwconfig wvlan0 channel 4

Use the channel parameter with the desired channel
number, and the driver derives the frequency from
the channel number.

iwconfig (contd)

% iwconfig wvlan0 mode Ad-hoc

% iwconfig wvlan0 mode Managed

Used for setting the mode.
% iwconfig wvlan0 rate 11M

Used for setting the data rate.

% iwconfig wvlan0 key 01:23:45:67:89

Used to set WEP options.

iwlist, iwspy, iwpriv

iwlist: used for listing frequencies,
addresses, bit rates etc.

iwspy: generates link quality statistics
per node.

iwpriv: manipulates the wireless
extensions specific to a driver.

Our project used only iwconfig.

Wireless ioctl

System call in the UNIX OS, used for
performing a variety of control functions
on devices and streams.

Wireless features such as channel,
SSID, retry limits can be modified for
greater and better functionality.

Code available in:
/usr/include/linux/wireless.h

Wireless ioctl (contd)

1: void zero_retry_limit(hostapd * hapd) {

2: struct iwreq iwr;

3: memset(&iwr, 0, sizeof(iwr));

4: strncpy(iwr.ifr_name, hapd->iface, IFNAMSIZ);

5: iwr.u.retry.flags = IW_RETRY_LIMIT;

6: iwr.u.retry.value = 0;

7: iwr.u.retry.disabled = 0;

8: if (ioctl(hapd->ioctl_sock , SIOCSIWRETRY, &iwr) < 0) {

9: perror("ioctl[SIOCSIWRETRY]");

Code listing of function that zeroes wireless retry limits.

Implementation Details

NetStumbler Detection

Netstumbler Detection

Algorithm used for tracking probe requests from multiple clients, isolating NetStumblers,
updating internal data structures.

Netstumbler Detection (contd)

All packets pass through handle_wlansniffrm() where
packet headers are parsed to determine type of
packet.

The frame control field of received packet is
extracted by casting the received packet into a
hfa384x_rx_frame.

Other headers such as signal strength, SNR are
discarded.

Only payload of the MAC frame is considered

Netstumbler detection (contd)
1. /* if not management type, just return */
2. /* we are only interested in management frames */
3. if (WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_MGMT) {
4. return;
5. }
6. /* check whether I received a probe request */
7. switch(WLAN_FC_GET_STYPE(fc)) {
8. case WLAN_FC_STYPE_PROBE_REQ:
9. {

10. ClientData * current;
11. /* call handle_detection who will look up the database and identify
12. * whether this client is a netstumbler */
13. if ((current = handle_detection(frm)) != NULL) {
...break;

/* the code from here onwards handles the state machine that detectsclients authenticating with the
access point and automatically removes the client from the Netstumbler list */

case WLAN_FC_STYPE_ASSOC_RESP:
...break;
case WLAN_FC_STYPE_ASSOC_REQ:
...break;
case WLAN_FC_STYPE_AUTH:
… break; }

ClientData_t data structure

/* data structure for storing details of each client that sent probe requests */

typedef struct ClientData_t {
u8 addr[6]; /* mac addr of client */
u32 first_sampled; /* first time spotted client */
u32 last_sampled; /* last time probe request seen from client */
u32 active_eval_start; /* time where we are starting to evaluate

frequency of probes*/
int total_count; /* total number of probe requests */
int current_count; /* number of probe requests that are being

used for active scanning detection */
u8 status; /* status of client */
u8 auth_state; /* used to store state of client authentication

with access point*/
struct ClientData_t * next;
struct ClientData_t * previous;

} ClientData;

Netstumbler Detection Algorithm

handle_detection()

IDS first calls getHashTable() with the
MAC address

If entry not found, allocate new data
structure and initialize to new state.

Else update probe request count, and
timestamp.

handle_detection() (contd)

If evaluation time not > 10 sec, and #
of probe requests > threshold, the
CLIENT_STATUS_ACTIVE bit is set to
indicate NetStumbler.

Implementation Details

Countermeasures

Fake Probe Responses

Sent when probe request received from
established NetStumbler

List of active APs maintained rather
than generating random MAC addresses

Fake MAC addresses made to look
similar to existing network cards

NetStumbler sees number of
intermittently active APs

Fake Probe Responses

Periodically transmits fake probe
responses with the MAC address of the
active AP but on random channels

Valid clients aren’t affected as only a
NetStumbler will receive the packets

By transmitting probe responses on all
channels, it appears as if the APs exist
on all 11 channels simultaneously

What’s AirSnort

Capitalizes on WEP’s weak key
algorithm to decrypt WEP key

Guesses key with 5-10 million encrypted
packets

Runs on Linux

AirSnort Operation – classify()

1: // determine which key byte an iv is useful in resolving
2: int classify(unsigned char *p) {
3: unsigned char sum, k;
4: if (p[1] == 255 && p[0] > 2 && p[0] < 16) {
5: return p[0] - 3;
6: }
7: sum = p[0] + p[1];
8: if (sum == 1) {
9: if (p[2] <= 0x0A) {
10: return p[2] + 2;
11: }
12: else if (p[2] == 0xFF) {
13: return 0;
14: }
15: }
16: k = 0xFE - p[2];
17: if (sum == k && (p[2] >= 0xF2 && p[2] <= 0xFE && p[2] != 0xFD)) {
18: return k;
19: }
20: return -1;
21: }

AirSnort Spoofing

Periodic transmission of data packets

Packets contain recognized weak I.V.
flag

Bogus data payload

802.11b Data Packet Structure

struct ieee80211_data {
u16 frame_control;
u16 duration;
u8 da[6];
u8 bssid[6];
u8 sa[6];
u16 seq_ctrl;
u8 iv[3];
u8 key;
u8 data;

};

AirSnort Spoofing Operation

1: gettimeofday(&now, NULL);
2: /* check whether time to transmit out another bogus data */
3: if (enable_bogus_wep) {
4: if ((now.tv_sec - last_fake_data) > 10) {
5: /* only transmit if hop_channel is main channel */
6: if (hop_channel == channel) {
7: send_encrypted(&hapd);
8: last_fake_data = now.tv_sec;
9: #ifdef DEBUG_IDS
10: printf("Sent fake encrypted\n");
11: #endif
12: }
13: }
13: }

AirSnort Spoofing – send_encrypted()

1: /* sends an encrypted data frame out */
2: void send_encrypted(hostapd * hapd) {
3: struct ieee80211_data * data = (struct ieee80211_data *) sbuf;
4: static u8 seed;
5: seed++;
6: memset(sbuf, 0, sizeof(sbuf));
7: data->frame_control = 0x4208; /* DATA type, WEP enabled */
8: memset(data->da, 0xff, ETH_ALEN);
9: memcpy(data->bssid, apaddr, ETH_ALEN);

10: memcpy(data->sa, apaddr, ETH_ALEN);
11: data->iv[0] = (my_random() % 13) + 3;
12: data->iv[1] = 0xff;
13: data->iv[2] = seed;
14: data->key = 0;
15: data->data = my_random();
16: if (send(hapd->sock, data, sizeof(struct ieee80211_data), 0) < 0)
17: perror("Unable to send bogus packet");
18: }

Why does it work?

Each I.V. flag only logged once

More fake packets than real ones with
weak I.V. flag

WEP cracking terminated once first key
guessed

DoS – Null SSID

Probe response packet

Zero length SSID tagged parameter

Null tagged data

DoS Packet

Ethereal packet capture of DoS packet

DoS Effectiveness

Only works on clients in Active Scan
mode

Tested on Hermes and Prism chipsets

Results vary ranging from wireless
driver crashing to computer crashing

DoS Scheduling

1: if (enable_fake_ap) {
2: if ((current->status & CLIENT_STATUS_ACTIVE) &&
3: ((my_random() & 0x11) == 0x01)) {
4: /* send out the response */
5: if (enable_dos) {
6: send_response(hapd, current->addr,
7: apaddr, "", 0, hop_channel);
8: } else {
9: send_response(hapd, current->addr,
10: apaddr, " ", 1, hop_channel);
11: }

Implementation Details

User Interface

User Interface

UI not primary aim

Web-based

Alternatives

Serial

Telnet

Proprietary protocol

SNMP

User Interface

Demonstration

HTTPD in BusyBox and separate CGI program

SSI

Tags parsed by server

Table data

Forms

Get user input

Specific format

Implementation Details

Inter-Process Communications

Inter-Process Communication

IDS and CGI are separate programs

System V IPC

Shared memory

Message queues

Semaphores

Alternative

procfs

Inter-Process Communications

Encapsulated in specialized functions

initializeclient(), initializeserver()

requestinfo()

getrequest()

sendinfo()

deinitialize()

Inter-Process Communications

Messages

Single character messages

Delimited by “|” and CR

Testing

System Level Tests

Reliably starts up system after
powercycle

Configuration saved across powercycles

One week burn-in

Stability of user interface

System Level NetStumbler Detection
Tests

Y45520

Y33530

N23640

NetStumbler
Detected

Probes
Detected

APs
Detected

Speed
(MPH)

Network Throughput

Goal : Determine NetStumbler and IDS
presence on network throughput

Setup : TCP Generator, TCP Sink
between two computers at maximum
speed

Throughput with NetStumbler Present

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

No

NetStumbler

Fast Scan Medium Scan Slow Scan

Throughput with Netstumbler and IDS

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Fast Medium Slow

Netstumbler Scan Speed

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Enabled

Disabled

IDS

Improvements

Central Data Collection

Expand data logging limit of IDS by
sending data to central server

Central server consolidates data from all
nodes

Easier network auditing

Easier to detect trends

Firmware Level IDS

Implement IDS with modifications to
firmware for better speed and flexibility

Avoid complications of RF Monitor mode
transmission

Faster response time to probe requests

Multi-channel Receiver / Transmitter

Listen and transmit on all channels
simultaneously

Provides more complete intrusion
detection

Faster response

Using specialized hardware or multiple
access points

Log More Events

Authentication/Association

Per client transmission statistics

Integrate with other Ethernet based
intrusion detection

Product Economics

Marketing

Unique product with both intrusion
detection and countermeasures

Competitors include FakeAP and
AirDefense

FakeAP is ineffective w/o IDS and also
acts against valid clients

AirDefense system has to be installed
separately and is expensive

Marketing

AirDefense Costs:

10 device license - $19,900

100 device license - $79,900

AirDefense sensors sold at $300 each

Our product is a standalone AP capable
of intrusion detection & counteraction

Many APs may access a common DB

Marketing: Product Pricing

()

()
MarginRevenue

cardflash AP,ofCost

unitsof#

costtDevelopmenResearch,
ProductofCost

+
+

=

Approximate cost of AP with IDS: $550 with a
$200 revenue margin

Risks

Hardware compatibility with drivers

Limited memory space on AP – 4 MB

Algorithm to differentiate WarDriving
clients from legitimate clients

Countermeasures should not interfere
with normal network traffic

Porting of the IDS from Linux machines
to OpenAP

Risks

Lack of accessibility to the AP

Inability to override the firmware

Inability to transmit low level packets
and certain 802.11 packet fields

Inability to listen to all 11 channels
simultaneously

Risks

Data sharing and integrity issues

Lack of a working access point for a
duration of the semester

Problems with HostAP software took
away a means of countermeasures

Project Characteristics

Involved understanding of 802.11
wireless networks, networking hardware
and software

Achieved majority of the goals set out
at the inception of the project

IDS can successfully detect NetStumbler
and take countermeasures

Project Characteristics

NetStumbler is confused with large
number of fake APs and also made to
crash

Even passive intruders using
Kismet/AirSnort are confused

Little guidance required

Conclusion

Future Development

Accomplished most of the objectives

Suggestions for Future Development

Centralized Data Collection

Firmware Level Implementation

Multi- channel Receiver/Transmitter

Extended Network Logging

Summary

Objectives Vs Achievements

Comparison with competitors

Our product will breathe new life into
the security of 802.11b networks!

	Contents
	Executive Summary
	Introduction
	Background
	Timeline and Tasking
	Competitor Products
	Tools
	Implementation Details
	Product Testing
	Demonstration
	Product Economics
	Conclusion
	Credits
	Bibliography and References
	Appendix A: Source Code
	Appendix B: Installation Tutorials
	Appendix C: Wireless Cards Supported by Host AP and OpenAP
	Appendix D: Network Performance with IDS
	Appendix E: Presentation Slides

