## EXAMINATION NO. 1 - SOLUTIONS

(Average score $=60 / 100$ )

## Problem 1-( 25 points)

Find an algebraic expression for the voltage gain, $v_{\text {out }} / v_{\text {in }}$, and the output resistance, $R_{\text {out }}$, of the source follower shown in terms of the smallsignal model parameters, $g_{m}$ and $R_{L}$ (ignore $r_{d s}$ ). If the bias current is 1 mA find the numerical value of the voltage gain and the output resistance. Assume that $K_{N}{ }^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}$ $=0.7 \mathrm{~V}$, and $K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T P}=-0.7 \mathrm{~V}$.

## Solution

A small-signal model for this circuit is shown below neglecting $r_{d s}$ of the transistors.


Fig. S03E1S1


Summing currents at the output node gives,

$$
\begin{aligned}
& g_{m 1} v_{g s 1}=g_{m 3} v_{g s 3}+G_{L} v_{\text {out }} \\
& \text { Also, } v_{g s 3}=-g_{m 1} v_{g s 1}\left(1 / g_{m 2}\right) \\
& \therefore \quad g_{m 1} v_{g s 1}=g_{m 3}\left(-\frac{g_{m 1}}{g_{m 2}}\right) v_{g s 1}+G_{L} v_{\text {out }} \\
& \quad g_{m 1} v_{g s 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)=G_{L} v_{\text {out }} \rightarrow
\end{aligned}
$$

$g_{m 1}\left(v_{\text {out }}-v_{\text {in }}\right)\left(1+\frac{g_{m 3}}{g_{m 2}}\right)=G_{L} v_{\text {out }}$
$\therefore \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)}{g_{m 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)+G_{L}}$
Setting $v_{\text {in }}=0$ and applying $i_{t}$ and solving for $v_{\text {out }}$ and ignoring $R_{L}$ gives,

$$
\begin{aligned}
& i_{t}=g_{m 3} v_{g s 3}+g_{m 1} v_{\text {out }}=g_{m 3}\left(\frac{g_{m 1}}{g_{m 2}}\right) v_{\text {out }}+g_{m 1} v_{\text {out }} \\
\therefore & \frac{v_{\text {out }}}{i_{t}}=R_{\text {out }}=\frac{1}{g_{m 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)}
\end{aligned}
$$

Note that the 1 mA splits between $\mathrm{M} 1(\mathrm{M} 2)$ and M3 in a ratio of 1 to 100 . Therefore, $I_{D 1}=$ $I_{D 2}=9.9 \mu \mathrm{~A}$ and $I_{D 3}=990.1 \mu \mathrm{~A}$.
$\therefore g_{m 1}=\sqrt{2 \cdot 110 \cdot 100 \cdot 9.9}=466.71 \mu \mathrm{~S}, g_{m 2}=\sqrt{2 \cdot 50 \cdot 1 \cdot 9.9}=31.47 \mu \mathrm{~S}$
and $g_{m 3}=\sqrt{2 \cdot 110 \cdot 100 \cdot 990.1}=3146.7 \mu \mathrm{~S}$

$$
\begin{aligned}
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{466.71 \cdot 101}{466.71 \cdot 101+1 / 50}=\frac{47.137}{47.137+20}=\underline{\underline{0.702 \mathrm{~V} / \mathrm{V}}} \\
& R_{\text {out }}=\frac{1000}{47.137}=\underline{\underline{21.2 \Omega}}
\end{aligned}
$$

## Problem 2-(25 points)

Using the open-circuit and short-circuit time constant methods, find the two poles of the circuit shown below (assuming that the two poles are far apart from each other). $\beta_{0}=100$, $I_{C}=0.5 \mathrm{~mA}, f_{T}=1 \mathrm{GHz}, C_{\mu}=0.2 \mathrm{pF}, V_{T}=26 \mathrm{mV}$.


Solution
$r_{\pi}=\beta_{\sigma} / g_{m}=100 \times 26 / 0.5=5.2 \mathrm{k} \Omega$
$\tau_{T}=1 /\left(2 \pi f_{T}\right)=159 p s$
$C_{\pi}=g_{m} \tau_{T}-C_{\mu}=(0.5 / 26) \times 159 p F-0.2 p F=2.86 p F$
$R_{I}=R_{I} \| r_{\pi}=1.04 \mathrm{k} \Omega$
Open circuit time constant method:
$P_{I} \cong 1 / \Sigma \tau=\left[R_{I} C_{\pi}+\left(R_{I}+R_{L}+g_{m} R_{I} R_{L}\right) C_{\mu}\right]^{-1}=22.13 \times 10^{6} \mathrm{rad} / \mathrm{s}=3.52 \mathrm{MHz}$
Short circuit time constant method:
$P_{2} \cong \Sigma(1 / \tau)=\left[\left(R_{I}\left\|1 / g_{m}\right\| R_{L}\right) C_{\pi}\right]^{-1}+\left[R_{L} C_{\mu}\right]^{-1}=7.224 \times 10^{9} \mathrm{rad} / \mathrm{s}=1.15 \mathrm{GHz}$

## Problem 3-( 25 points)

a) For the emitter follower output stage shown below, find the value of $R_{I}$ for maximum efficiency and find the value of that efficiency. $V_{C C}=-V_{E E}=2.5 \mathrm{~V}, \quad V_{C E}(s a t)=0.2 \mathrm{~V}$, $R_{L}=10 \mathrm{k} \Omega, V_{B E}($ on $)=0.7 \mathrm{~V}$.
b) A load capacitor of 100 pF is attached to the output voltage. If the input voltage suddenly drops from 2.5 V to -2.5 V , explain what happens at the output and accurately sketch the output voltage as a function of time, specifying its initial and final values and times.

## Solution

The $I_{Q}$ for maximum efficiency is found as,

$$
\begin{aligned}
& I_{Q}=\left(\frac{V_{C C}-V_{C E}(\text { sat })}{R_{L}}\right)=230 \mu \mathrm{~A} \\
& R_{I}=\left(\frac{-V_{E E}-V_{B E}}{I_{Q}}\right)=7.826 \mathrm{k} \Omega \\
& P_{L}(\max )=\left(\frac{V_{C C}-V_{C E}(\text { sat })}{\sqrt{2}}\right)\left(\frac{I_{Q}}{\sqrt{2}}\right)=0.5(2.3 \mathrm{~V})(0.23 \mathrm{~mA})=0.2645 \mathrm{~mW} \\
& P_{\text {Supply }}=2 V_{C C} I^{I}=2(2.5)(0.23 \mathrm{~mA})=1.15 \mathrm{~mW} \\
& \eta=\frac{P_{L(\max )}}{P_{\text {sup } p l y}}=\frac{1}{4}\left(1-\frac{V_{C E(s a t)}}{V_{C C}}\right)=23 \%
\end{aligned}
$$

b) The output would slew under such condition. The current will be limited by the bias current:

Slew rate $=0.23 \mathrm{~mA} / 100 \mathrm{pF}=2.3 \mathrm{~V} / \mu \mathrm{s}$


## Problem 4-( 25 points)

Find the numerical values of all roots and the midband gain of the transfer function $v_{\text {out }} / v_{\text {in }}$ of the differential amplifier shown. Assume that $K_{N}{ }^{\prime}=$ $110 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=0.7 \mathrm{~V}$, and $\lambda_{N}=0.04 \mathrm{~V}^{-1}$. The values of $C_{g s}=0.2 \mathrm{pF}$ and $C_{g d}=20 \mathrm{fF}$.

## Solution

A small-signal model appropriate for this circuit is shown.


Fig. S03E1S4
Summing the currents at the output nodes gives,

$$
g_{m 1} v_{g s 1}+s C_{g d}\left(v_{\text {out }}-v_{\text {in }}\right)+\left(g_{d s 1}+G_{L}\right) v_{\text {out }}+s C_{L} v_{\text {out }}=0
$$

(Note: we are ignoring the fact that $v_{\text {out }}$ and $v_{\text {in }}$ should be divided by two since it makes no difference in the results and is easier to write.) Replacing $v_{g s 1}$ by $v_{i n}$ gives

$$
\begin{array}{ll} 
& -\left(g_{m 1}-s C_{g d}\right) v_{\text {in }}=\left[\left(g_{d s 1}+G_{L}\right)+s C_{L}+s C_{g d}\right] v_{\text {out }} \\
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-\left(g_{m 1}-s C_{g d}\right)}{s\left(C_{L}+C_{g d}\right)+\left(g_{d s 1}+G_{L}\right)}=\left(\frac{-g_{m 1}}{g_{d s 1}+G_{L}}\right)\left(\frac{1-\frac{s C_{g d}}{g_{m}}}{1+s \frac{C_{L}+C_{g d}}{g_{d s 1}+G_{L}}}\right) \\
\therefore \quad & \mathrm{MGB}=-g_{m 1}\left(r_{d s} \| R_{L}\right), \quad \text { Zero }=\frac{g_{m}}{C_{g d}} \quad \text { and } \quad \text { Pole }=-\frac{g_{d s}+G_{L}}{C_{g d}+C_{L}} \\
& g_{m}=\sqrt{2 \cdot 110 \cdot 100 \cdot 500}=3316.7 \mu \mathrm{~S} \quad \text { and } \quad r_{d s}=\frac{1}{\lambda I_{D}}=\frac{25}{500 \mu \mathrm{~A}}=50 \mathrm{k} \Omega \\
\therefore \quad & \text { MGB }=-3.3167 \mathrm{mS} \cdot(10 \mathrm{k} \Omega \| 50 \mathrm{k} \Omega)=\underline{\underline{-27.64 \mathrm{~V} / \mathrm{V}}} \\
& \text { Zero }=\frac{3.3167 \times 10^{-3}}{20 \times 10^{-15}}=\underline{\underline{1.658 \times 10^{11}}} \begin{array}{l}
\text { Pole }=\frac{-1}{1.02 \times 10^{-12}(10 \mathrm{k} \Omega \| 50 \mathrm{k} \Omega)}=\underline{\underline{-1.1176 \times 10^{8}} \mathrm{radians} / \mathrm{sec} .}
\end{array}
\end{array}
$$

