EXAMINATION NO. 1- SOLUTIONS

$($ Average $=60$, High $=88$, Low $=46)$

Problem 1-(25 points)

Six versions of a source follower are shown below. Assume that $K_{N}^{\prime}=2 K_{P}^{\prime}, \lambda_{P}=2 \lambda_{N}$, all W/L ratios of all devices are equal, and that all bias currents in each device are equal. Neglect bulk effects in this problem and assume no external load resistor. Identify which circuit or circuits have the following characteristics: (a.) highest small-signal voltage gain, (b.) lowest small-signal voltage gain, (c.) the highest output resistance, (d.) the lowest output resistance, (e.) the highest $v_{\text {out }}(\max)$ and (f.) the lowest $v_{\text {out }}(\max)$.
 where G_{L} is the load conductance. Therefore we get:

Circuit	1	2	3	4	5	6
$\frac{v_{\text {out }}}{v_{\text {in }}}$	$\frac{g_{m N}}{g_{m N}+g_{m N}}$	$\frac{g_{m P}}{g_{m P}+g_{m P}}$	$\frac{g_{m N}}{g_{m N}+g_{m P}}$	$\frac{g_{m P}}{g_{m P}+g_{m N}}$	$\frac{g_{m N}}{g_{m N}+g_{d s N}+g_{d s P}}$	$\frac{g_{m P}}{g_{m P}+g_{d s N}+g_{d s P}}$

But gm_{m}			dsN $=0$	dsP, th		
Circuit	1	2	3	4	5	6
$\frac{\mathrm{v}_{\text {out }}}{\mathrm{v}_{\text {in }}}$	$\frac{1}{2}$	$\frac{1}{2}$	0.5858	0.4142	$\frac{\mathrm{gmP}^{\text {m }}}{} \frac{\mathrm{gmP}^{+}\left(\mathrm{gdsP}_{\text {d }}+\mathrm{g}_{\mathrm{dsN}}\right) / \sqrt{2}}{}$	$\frac{g_{m P}}{g_{m P}+g_{d s P}+g_{d s N}}$

Thus, circuit 5 has the highest gain and circuit 4 the lowest gain
(c.) and (d.) - Output resistance.

The denominators of the first table show the following:
Ckt. 6 has the highest output resistance and Ckt. 1 the lowest output resistance.
(e.) Assuming no current has to be provided by the output, circuits 2,4 , and 6 can pull the output to $V_{\text {DD. }} \therefore$ Circuits 2, 4 and 6 have the highest output swing.
(f.) Assuming no current has to be provided by the output, circuits 1, 3, and 5 can pull the output to ground. \therefore Circuits 1, 3 and 5 have lowest output swing.

Summary

(a.) Ckt. 5 has the highest voltage gain
(d.) Ckt. 1 has the lowest output resistance
(b.) Ckt. 4 has the lowest voltage gain
(e.) Ckts. 2,4 and 6 have the highest output
(c.) Ckt. 6 has the highest output resistance
(f.) Ckts. 1,3 and 5 have the lowest output

Problem 2-(25 points)

An output stage using both MOSFETs and a BJT is shown. Assume the transistor parameters are K_{N}, $=110 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T}=0.7 \mathrm{~V}$, and $\lambda_{N}=0.04 \mathrm{~V}^{-1}$ for the NMOS; $K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T}=-0.7 \mathrm{~V}$, and $\lambda_{P}=$ $0.05 \mathrm{~V}^{-1}$ for the PMOS and $\beta_{F}=100, V_{t}=0.025 \mathrm{~V}$, and $I_{s}=10 \mathrm{fA}$ for the NPN BJT. (a.) If $v_{i n}$ can vary between $\pm 2 \mathrm{~V}$, what is the maximum positive and negative value of $i_{\text {out }}$ when $R_{L}=0 \Omega$? (b.) If $v_{\text {in }}$ can vary between $\pm 2 \mathrm{~V}$, what is the maximum and minimum output voltage when $R_{L}=100 \Omega$?

Solution

(a.) The maximum $i_{\text {out }}$ occurs when $v_{\text {in }}=-2 \mathrm{~V}$. All of the $100 \mu \mathrm{~A}$ through M 4 is base current giving a maximum $i_{\text {out }}=(1+\beta) 100 \mu \mathrm{~A}=10.1 \mathrm{~mA} \quad \rightarrow \quad i_{\text {out }}(\max)=\underline{\underline{10.1 \mathrm{~mA}}}$

The maximum $-i_{\text {out }}$ occurs when $v_{\text {in }}=+3 \mathrm{~V}$. Since $V_{D S}=2 \mathrm{~V}$ and $V_{G S}-V_{T}=3.3 \mathrm{~V}$, M2 is in the triode region. Under these conditions, we assume M1 absorbs all of the $100 \mu \mathrm{~A}$ of M4 and therefore the BJT is off and maximum $-i_{\text {out }}$ is,

$$
\begin{aligned}
& -i_{\text {out }}(\max)=\frac{K_{N}{ }^{\prime} W}{L}\left[\left(V_{G S 2}-V_{T}\right) v_{D S}-0.5 v_{D S}^{2}\right]=110 \cdot 10\left[3.3 \cdot 2-0.5(2)^{2}\right]=5.06 \mathrm{~mA} \\
\therefore & -i_{\text {out }}(\max)=-5.06 \mathrm{~mA}
\end{aligned}
$$

(b.) There are 2 possible answers for the maximum $v_{\text {out }}$. The current limited max. $v_{\text {out }}$ is

$$
\text { Max. } v_{\text {out }}=i_{\text {out }}(\max) R_{L}=10.1 \mathrm{~mA} \cdot 0.1 \mathrm{k} \Omega=1.01 \mathrm{~V}
$$

The voltage limited $v_{\text {out }}(\max)$ is,

$$
\begin{aligned}
\text { Max. } v_{\text {out }} & =2 \mathrm{~V}-V_{S D 4}(\mathrm{sat})-V_{B E 1}(10.1 \mathrm{~mA})=2-\sqrt{\frac{2 \cdot 100}{50 \cdot 10}}-0.025 \ln \left(\frac{10 \mathrm{~mA}}{10 \mathrm{fA}}\right) \\
& =2-0.6325-0.6908=0.6768 \mathrm{~V} \quad \therefore \text { Max. } v_{\text {out }}=\underline{\underline{0.6768 \mathrm{~V}}}
\end{aligned}
$$

For the maximum $-v_{\text {out }}$ we see that the $V_{G S 2}=4 \mathrm{~V}$ which strongly suggests that M 2 will be in the triode region. Equating the current in the 100Ω resistor with that in M2 gives,

$$
\begin{array}{ll}
& \frac{2-v_{D S}}{100}=\frac{K_{N}{ }^{\prime} W}{L}\left[\left(V_{\left.\left.G S 2^{-}-V_{T}\right) v_{D S}-0.5 v_{D S}^{2}\right]}\right.\right. \\
\quad 0.02-0.01 v_{D S}=1.1 \times 10^{-3}\left[3.3 v_{D S}-0.5 v_{D S}^{2}\right] \rightarrow v_{D S}^{2}-24.782 v_{D S}+36.36=0 \\
\therefore \quad & v_{D S}=+12.391 \pm 10.8247 \rightarrow v_{D S}=1.5662 \mathrm{~V} \\
\therefore \quad & \text { Max. }-v_{\text {out }}=-2 \mathrm{~V}+1.5662 \mathrm{~V}=\underline{\underline{-0.4338 \mathrm{~V}}}
\end{array}
$$

The current through M2 under this condition is $\frac{110 \cdot 10}{2 \cdot 1}(1.5662 \mathrm{~V})^{2}=1.349 \mathrm{~mA}$
It can be shown that if M2 remains saturated that Max. $-v_{\text {out }}=I \cdot 100 \Omega=-0.1815 \mathrm{~V}$
So our assumption that M2 was in the triode region is valid.

Problem 3-(25 points)

Find the midband voltage gain and the -3 dB frequency in Hertz for the circuit shown.

Solution

The midband gain is given as,

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\left(\frac{10 \mathrm{k} \Omega}{100}\right)\left(\frac{10 \mathrm{k} \Omega}{11 \mathrm{k} \Omega}\right)=-\underline{\underline{-90.91 \mathrm{~V} / \mathrm{V}}}
$$

To find the -3 dB frequency requires finding the 3 open-circuit time constants.
$R_{C 10}$:

$$
R_{C 10}=1 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega=0.9091 \mathrm{k} \Omega \quad \rightarrow \quad R_{C 10} C_{1}=0.9091 \cdot 10 \mathrm{~ns}=9.09 \mathrm{~ns}
$$

$R_{C 20}$:

$$
\begin{aligned}
& v_{t}=i_{t} R_{C 10}+R_{3}\left(i_{t}+0.01 V_{1}\right) \\
& \quad=i_{t}\left(R_{C 10}+R_{3}+0.01 R_{C 10} R_{3}\right) \\
& \therefore R_{C 20}=R_{C 10}+R_{3}+0.01 R_{C 10} R_{3} \\
& \quad=0.9091+10(1+0.01 \cdot 909.1) \mathrm{k} \Omega=101.82 \mathrm{k} \Omega \\
& R_{C 20} C_{2}=101.82 \cdot 1 \mathrm{~ns}=101.82 \mathrm{~ns}
\end{aligned}
$$

$R_{C 30}$:

$$
R_{C 30}=10 \mathrm{k} \Omega \quad \rightarrow \quad R_{C 30} C_{3}=10 \cdot 10 \mathrm{~ns}=100 \mathrm{~ns}
$$

$\Sigma T_{0}=(9.091+101.82+100) \mathrm{ns}=210.91 \mathrm{~ns} \quad \rightarrow \omega_{-3 \mathrm{~dB}}=\frac{1}{\Sigma T_{0}}=4.74 \times 10^{6} \mathrm{rad} / \mathrm{s}$
$f_{-3 \mathrm{~dB}}=\frac{4.74 \times 10^{6}}{2 \pi}=\underline{\underline{754.6 \mathrm{kHz}}}$

Problem 4-(25 points)

Find the midband voltage gain and the exact value of the two poles of the voltage transfer function for the circuit shown. Assume that $R_{I}=1 \mathrm{k} \Omega, R_{L}=10 \mathrm{~K} \Omega, g_{m}=1 \mathrm{mS}, C_{g s}=5 \mathrm{pF}$ and $C_{g d}=1 \mathrm{pF}$. Ignore $r_{d s}$.

Solution

The best approach to this problem is a direct analysis.
Small-signal model:

$V_{\text {out }}=g_{m} Z_{L} V_{s} \quad$ where $\quad Z_{L}=\frac{1}{s R_{L} C_{g d}+1} \quad$ and $\quad \frac{V_{i n}-V_{s}}{R_{I}}=g_{m} V_{s}+s C_{g s} V_{s}$
Solving for V_{s} from the second equation gives,

$$
V_{s}=\frac{V_{i n}}{1+g_{m} R_{I}+s C_{g s} R_{I}}
$$

Substituting V_{S} in the first equation gives,

$$
\begin{aligned}
& \left.\begin{array}{rl}
V_{\text {out }}= & g_{m} Z_{L} \frac{V_{\text {in }}}{1+g_{m} R_{I}+s C_{g s} R_{I}} \rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=g_{m}\left(\frac{1}{s R_{L} C_{g d}+1}\right.
\end{array}\right)\left(\frac{1}{1+g_{m} R_{I}+s C_{g s} R_{I}}\right) \\
& \\
& =\left(\frac{g_{m} R_{L}}{1+g_{m} R_{I}}\right)\left(\frac{1}{s R_{L} C_{g d}+1}\right)\left(\frac{1}{\frac{s C_{g d} R_{I}}{1+g_{m} R_{I}}+1}\right)=\mathrm{MBG}\left(\frac{1}{1-\frac{s}{p_{1}}}\right)\left(\frac{1}{1-\frac{s}{p_{2}}}\right) \\
& \therefore \mathrm{MBG}=\left(\frac{g_{m} R_{L}}{1+g_{m} R_{I}}\right)=\left(\frac{1 \cdot 10}{1+1 \cdot 1}\right)=\underline{\underline{5 \mathrm{~V} / \mathrm{V}}} \\
& p_{1}=-\frac{1}{R_{L} C_{g d}}=-\frac{1}{10 \cdot 1 \mathrm{~ns}}=-\underline{-10^{8} \mathrm{rad} / \mathrm{s}} \text { and } p_{2}=-\frac{1+g_{m} R_{I}}{R_{I} C_{g s}}=-\frac{1+1}{1 \cdot 5 \mathrm{~ns}}=\underline{\underline{-4 \times 10^{8} \mathrm{rad} / \mathrm{s}}}
\end{aligned}
$$

