EXAMINATION NO. 2 - SOLUTIONS

(Average Score $=70 / 100$)

Problem 1-(25 points)

A CMOS op amp is shown. All W/L values of all transistors are $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$. Assume that $K_{N}{ }^{\prime}=$ $110 \mu \mathrm{~A} / \mathrm{V}^{2}, K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}$ $=0.7 \mathrm{~V}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{N}=$ $0.04 \mathrm{~V}^{-1}$, and $\lambda_{P}=0.05 \mathrm{~V}^{-1}$. Find the low frequency differential voltage gain, $v_{\text {out }} / v_{i n}$, the gainbandwidth, $G B$, the slew rate, $S R$, and the power dissipation, $P_{d i s s}$ if $V_{D D}=2 \mathrm{~V}$.

Solution

The small-signal voltage gain can be expressed as,

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=g_{m 1} R_{\text {out }}=g_{m 2} R_{\text {out }}^{*}
$$

All transistor W/Ls $\stackrel{\perp}{\rightleftharpoons}$
are $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$
Fig. S03E1P1
where $R_{\text {out }} \approx\left[g_{m 7} r_{d s 7}\left(r_{d s 4} \| r_{d s 8}\right)\right] \|\left[g_{m 6} r_{d s 6}\left(r_{d s 2} \| r_{d s 5}\right)\right]$
Evaluating the small signal parameters,

$$
\begin{aligned}
g_{m 1} & =g_{m 2}=\sqrt{2 \cdot 110 \cdot 10 \cdot 50}=331.7 \mu \mathrm{~S}, r_{d s 1}=r_{d s 2}=(25 / 50) \mathrm{M} \Omega=0.5 \mathrm{M} \Omega \\
g_{m 6} & =\sqrt{2 \cdot 50 \cdot 10 \cdot 100}=316.2 \mu \mathrm{~S}, r_{d s 6}=(20 / 100) \mathrm{M} \Omega=0.2 \mathrm{M} \Omega \\
r_{d s 5} & =(20 / 150) \mathrm{M} \Omega=0.133 \mathrm{M} \Omega, r_{d s 4}=(20 / 50) \mathrm{M} \Omega=0.4 \mathrm{M} \Omega \\
g_{m 7} & =\sqrt{2 \cdot 110 \cdot 10 \cdot 100}=469 \mu \mathrm{~S}, r_{d s 7}=(25 / 100) \mathrm{M} \Omega=0.25 \mathrm{M} \Omega \\
r_{d s 8} & =(25 / 150) \mathrm{M} \Omega=0.167 \mathrm{M} \Omega \\
\therefore \quad R_{\text {out }} & \approx[469 \cdot 0.25(0.4 \| 0.167)] \|[316.2 \cdot 0.2(0.5 \| 0.133)] \mathrm{M} \Omega \\
& =(13.796 \| 6.644) \mathrm{M} \Omega=4.484 \mathrm{M} \Omega \\
\frac{v_{\text {out }}}{v_{\text {in }}} & =331.7 \cdot 4.484=\underline{\underline{1487 \mathrm{~V} / \mathrm{V}}} \\
G B & =\frac{g_{m 1}}{C_{L}}=\frac{331.7 \times 10^{-6}}{5 \times 10^{-12}}=66.33 \times 10^{+6} \rightarrow \underline{\underline{10.56 \mathrm{MHz}}} \\
S R & =\frac{100 \mu \mathrm{~A}}{C_{L}}=\frac{100 \times 10^{-6}}{5 \times 10^{-12}}=\underline{\underline{20 \mathrm{~V} / \mu \mathrm{s}}} \\
P_{\text {diss }} & =2(50 \mu \mathrm{~A}+50 \mu \mathrm{~A}+150 \mu \mathrm{~A})=\underline{\underline{500} \mu \mathrm{~W}}
\end{aligned}
$$

* This expression ignores the fact that about half the signal is lost due to the input resistances at the sources of M6 and M7 are at an $r_{d s}$ level.

Problem 2-(25 points)

A two-stage, Miller compensated op amp has the following values: $g_{m I}=100 \mu \mathrm{~S}, g_{m I I}=$ $1000 \mu \mathrm{~S}, C_{c}=2 \mathrm{pF}$, and $C_{L}=10 \mathrm{pF}$.
a.) What value of nulling resistor, R_{z}, will cancel the output pole?
b.) If the output capacitance of the first stage is $C_{I}=1 \mathrm{pF}$, what is the phase margin in part a.) if R_{z} is $5 \mathrm{k} \Omega$.
c.) If C_{L} is increased to 20 pF and $R_{z}=5 \mathrm{k} \Omega$, what is the new phase margin?

Solution

a.) The zero is given as $z=\frac{1}{C_{c}\left(\frac{1}{g_{m I I}}-R_{z}\right)}$ and the output pole is $p_{2}=-\frac{g_{m I I}}{C_{c}}$. Equating these two roots gives,

$$
R_{z}=\frac{1}{g_{m I I}}\left(\frac{C_{L}+C_{c}}{C_{c}}\right)=\frac{1}{1000 \mu \mathrm{~S}}\left(\frac{12}{2}\right)=\underline{\underline{6 \mathrm{k} \Omega}}
$$

b.) The pole due to R_{z} is

$$
p_{4}=-\frac{1}{R_{z} C_{I}}=-\frac{1}{5 \mathrm{k} \Omega \cdot 1 \mathrm{pF}}=-2 \times 10^{8} \mathrm{rads} / \mathrm{sec}
$$

Also, the $G B$ is

$$
G B=\frac{g_{m I}}{C_{c}}=\frac{100 \mu \mathrm{~S}}{2 \mathrm{pF}}=50 \times 10^{6} \mathrm{rads} / \mathrm{sec}
$$

The phase margin is,

$$
P M=180^{\circ}-90^{\circ}-\tan ^{-1}\left(\frac{G B}{\mid p_{4}{ }^{\dagger}}\right)=90^{\circ}-\tan ^{-1}\left(\frac{50}{200}\right)=90^{\circ}-14^{\circ}=\underline{\underline{76^{\circ}}}
$$

(You were intended to assume that z_{1} still cancels p_{2}. If you did assume this, the answer is 71.2° and you were given full credit.)
c.) The new phase margin is,

$$
\begin{aligned}
P M & =180^{\circ}-90^{\circ}+\tan ^{-1}\left(\frac{G B}{\left|p_{2}\right|}\right)-\tan ^{-1}\left(\frac{2 G B}{\left|p_{2}\right|}\right)-\tan ^{-1}\left(\frac{G B}{\left|p_{4}\right|}\right) \\
z_{1} & =-\frac{g_{m I I}}{C_{L}}=-\frac{1000 \mu \mathrm{~S}}{10 \mathrm{pF}}=-100 \times 10^{6} \mathrm{rads} / \mathrm{sec} . \\
p_{2} & =-\frac{g_{m I I}}{C_{L}}=-\frac{1000 \mu \mathrm{~S}}{20 \mathrm{pF}}=-50 \times 10^{6} \mathrm{rads} / \mathrm{sec} . \\
\therefore P M & =90^{\circ}+\tan ^{-1}\left(\frac{50}{50}\right)-\tan ^{-1}\left(\frac{100}{50}\right)-\tan ^{-1}\left(\frac{50}{200}\right)=90^{\circ}+43^{\circ}-63.43^{\circ}-14^{\circ}=\underline{\underline{57.52^{\circ}}}
\end{aligned}
$$

(Again, you were intended to assume that z_{1} is at the old value of p_{2}. If you did assume this, the answer is 52.8° and you were given full credit.)

Problem 3-(25 points)

For the CMOS op amp shown, assume the model parameters for the transistors are $K_{N}{ }^{\prime}=$ $110 \mu \mathrm{~A} / \mathrm{V}^{2}, K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}$ $=0.7 \mathrm{~V}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{N}=$ $0.04 \mathrm{~V}^{-1}$, and $\lambda_{P}=0.05 \mathrm{~V}^{-1}$. Let all transistor lengths be $1 \mu \mathrm{~m}$ and design the widths of every transistor and the dc currents I_{5} and I_{7} to satisfy the following specifications:

> Slew rate $=10 \mathrm{~V} / \mu \mathrm{s}$
> $+\mathrm{ICMR}=0.8 \mathrm{~V}$

$-\mathrm{ICMR}=0 \mathrm{~V}$
$\mathrm{GB}=10 \mathrm{MHz}$
Phase margin $=60^{\circ}\left(g_{m I I}=10 g_{m I}\right.$ and $\left.V_{S G 4}=V_{S G 6}\right)$

Solution

Slew rate $\rightarrow I_{5}=S R \cdot C_{L}=10 \mathrm{~V} \mu \mathrm{~s} \cdot 10 \mathrm{pF}=\underline{\underline{20 \mu \mathrm{~A}}} \rightarrow W_{5}=20 \mu \mathrm{~m}$ (check $-I C M R$ later) $+I C M R \rightarrow 0.8=1-V_{S G 3}+0.7 \rightarrow V_{S G 3}=0.9 \rightarrow V_{S D 3}($ sat $)=0.2 \mathrm{~V}$ $\frac{W_{3}}{L_{3}}=\frac{W_{4}}{L_{4}}=\frac{2 I_{3}}{K_{P}\left(V_{S D 3}(\text { sat })\right)^{2}}=\frac{2 \cdot 10}{50(0.2)^{2}}=10 \rightarrow W_{3}=W_{4}=\underline{\underline{10 \mu \mathrm{~m}}}$ $G B \rightarrow \frac{g_{m 1}}{C_{c}}=G B \rightarrow g_{m 1}=G B \cdot C_{c}=20 \pi \times 10^{6} \cdot 2 \times 10^{-12}=40 \pi \mu \mathrm{~S}$ $g_{m 1}=\sqrt{2 K_{N} \frac{W_{1}}{L_{1}} I_{1}} \rightarrow g_{m 1}^{2}=2 K_{N} \frac{W_{1}}{L_{1}} I_{1} \rightarrow \frac{W_{1}}{L_{1}}=\frac{g_{m 1}{ }^{2}}{2 K_{N} I_{1}}=\frac{(40 \pi)^{2}}{2 \cdot 110 \cdot 10}=7.17$ $W_{1}=W_{2}=\underline{\underline{7.17 \mu \mathrm{~m}}}$

$$
-I C M R \rightarrow 0=V_{G S 1}+V_{D S 5}(\mathrm{sat})-1 \rightarrow V_{D S 5}(\mathrm{sat})=1-V_{G S 1}=1-\sqrt{\frac{2 I_{1}}{K_{N}\left(W_{1} / L_{1}\right)}}-V_{T N}
$$

$$
V_{D S 5}(\text { sat })=1-\sqrt{\frac{20}{110 \cdot 7.17}}+0.7=1-0.859=0.141 \mathrm{~V}
$$

$$
\frac{W_{5}}{L_{5}}=\frac{2 I_{5}}{K_{N}\left(V_{D S 5}(\mathrm{sat})\right)^{2}}=\frac{2 \cdot 10}{110(0.141)^{2}}=18.29 \rightarrow W_{5}=18.29 \mu \mathrm{~m} \rightarrow W_{5}=\underline{\underline{20 \mu \mathrm{~m}}}
$$ 60° phase margin $\rightarrow g_{m 6}=10 g_{m 1}=400 \pi \mu \mathrm{~S}$

$$
\text { Also, } g_{m 4}=\sqrt{2 \cdot 50 \cdot 10 \cdot 10}=100 \mu \mathrm{~S} \quad \rightarrow W_{6}=\frac{400 \pi}{100} 10=40 \pi=\underline{\underline{125.66} \mu \mathrm{~m}}
$$

$$
I_{6}=\frac{g_{m 6}{ }^{2}}{2 K_{P}\left(W_{6} / L_{6}\right)}=\frac{(400 \pi)^{2}}{100 \cdot 125.66}=125.66 \mu \mathrm{~A}
$$

$$
W_{7}=W_{5} \frac{I_{6}}{I_{5}}=20 \frac{125.66}{20}=\underline{\underline{125.66 \mu \mathrm{~m}}}
$$

Problem 4-(25 points)

a) $R I_{C 9}=V_{T} \ln \left(I_{C 8} / I_{C 9}\right)$

$$
\begin{aligned}
& I_{C 8}=(20 \mathrm{~V}-1.4 \mathrm{~V}) / 50 \mathrm{k} \Omega=0.372 \mathrm{~mA} \\
& I C_{9}=20 \mu \mathrm{~A} \rightarrow \underline{R=3.8 \mathrm{k} \Omega}
\end{aligned}
$$

b) $G_{m I}=\frac{g_{m 4}}{1+g_{m 4} r_{e 2}}=\frac{g_{m 4}}{2}=0.1923 \times 10^{-3} \frac{A}{V} \quad$ note that $: r_{e 2}=\frac{1}{g_{m 2}}=\frac{1}{g_{m 4}}$

$$
R_{I}=r_{07}\left\|r_{04}\left(1+g_{m 4} \times r_{e 2}\right)=r_{07}\right\| 2 r_{04}=5.65 M \Omega \quad \text { because }: \quad r_{07}=\frac{V_{A}}{I_{7}}=13 M \Omega \quad \text { and } \quad r_{04}=51
$$

$$
G_{m I I}=\frac{g_{m 14}}{1+g_{m 14} R_{2}}=0.23 \times 10^{-3} \frac{\mathrm{~A}}{\mathrm{~V}} \quad \text { note that }: g_{m 14}=\sqrt{2 \mu C_{o x}\left(\frac{W}{L}\right)_{14} I_{M 14}}=0.424 \times 10^{-3} \frac{\mathrm{~A}}{\mathrm{~V}}
$$

$$
R_{I I}=r_{d s 4}\left(1+g_{m 14} \times R_{2}\right)\left\|r_{013}\left(1+g_{m 13} \times R_{3}\right)=1.848 M \Omega\right\| 1.13 M \Omega=0.7 M \Omega
$$

$$
A_{v}=G_{m l} R_{l} G_{m I I} R_{I I} \cong 175,000
$$

c) $\quad G B W=\frac{G_{m I}}{C_{C}} \quad \Rightarrow \quad C_{C}=\frac{G_{m I}}{G B W}=15.3 p F$
d) $\Phi_{M}=90^{\circ}-\tan ^{-1}\left(\frac{2 M H z}{p_{2}}\right)-\tan ^{-1}\left(\frac{2 M H z}{z}\right)$

$$
\begin{aligned}
& p_{2}=\frac{G_{m I I}}{C_{L}}=\frac{0.23 \times 10^{-3}}{5 \times 10^{-12}}=46 \times 10^{6} \mathrm{rad} / \mathrm{sec} \\
& z=\frac{G_{m I I}}{C_{C}}=\frac{0.23 \times 10^{-3}}{15.3 \times 10^{-12}}=15.03 \times 10^{6} \mathrm{rad} / \mathrm{sec} \\
& \Rightarrow \Phi_{M}=90^{\circ}-\tan ^{-1}\left(\frac{2 \times 2 \pi}{46}\right)-\tan ^{-1}\left(\frac{2 \times 2 \pi}{15.03}\right)=90^{\circ}-15.27^{\circ}-39.89^{\circ}=34.83^{\circ}
\end{aligned}
$$

