EXAMINATION NO. 3 - SOLUTIONS

$($ Average $=47$, High $=65$, Low $=27)$

Problem 1-(25 points)

The simplified schematic of a feedback amplifier is shown. Use the method of feedback analysis to find $V_{2} / V_{1}, R_{\text {in }}=V_{1} / I_{1}$, and $R_{\text {out }}=V_{2} / I_{2}$. Assume that all transistors are matched and that $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{d s}=$ ∞.

Solution

This feedback circuit is shunt-series. We begin with the open-loop, quasi-ac model shown below.

The small-signal, open-loop model is:

$$
\begin{aligned}
& \frac{I_{o}^{\bullet}}{I_{s}^{\star}}=\left(\frac{I_{o}^{\iota}}{V_{g s 2}}\right)\left(\frac{V_{g s 2}}{V_{g s 1}}\right)\left(\frac{V_{g s 1}}{I_{s}^{\bullet}}\right) \\
& V_{g s 2}= \\
& \quad-g_{m 1} V_{g s 1} R_{2}-g_{m 2} V_{g s 2} R_{4}
\end{aligned}
$$

or
$\frac{V_{g s 2}}{V_{g s 1}}=\frac{-g_{m 1} R_{2}}{1+g_{m 2} R_{4}}=-\frac{50}{2}=-25 \quad \therefore a=\frac{I_{o}^{\leftarrow}}{I_{s}^{\star}}=\left(g_{m 2}\right)(-25)\left(\frac{-1}{g_{m 1}}\right)=25 \mathrm{~A} / \mathrm{A}$
$f=\frac{I_{f}^{\leftarrow}}{I_{o}^{\leftarrow}}=\left(\frac{I_{f}^{\leftarrow}}{V_{g s 3}}\right)\left(\frac{V_{g s 3}}{I_{o}^{\leftarrow}}\right)=\left(g_{m 3}\right)\left(\frac{R_{4}}{1+g_{m 3} R_{1}}\right)=(1 \mathrm{~mA} / \mathrm{V})(0.5 \mathrm{k} \Omega)=0.5$
$\therefore a f=25 \cdot 0.5=12.5$
$R_{i}=\frac{v_{1}^{\leftarrow}}{I_{s}^{\leftarrow}}=\frac{1}{g_{m 1}}=1 \mathrm{k} \Omega \rightarrow \quad R_{i n}=R_{i f}=\frac{R_{i}}{1+a f}=\frac{1000}{13.5}=74.07 \Omega$
$R_{\text {out }}=50 \mathrm{k} \Omega \quad\left(R_{3}\right.$ is outside the feedback loop)
$\frac{I_{o}}{I_{s}}=\frac{a}{1+a f}=\frac{25}{1+12.5}=1.852 \mathrm{~A} / \mathrm{A} \rightarrow \frac{v_{2}}{v_{1}}=\frac{I_{o}(-50 \mathrm{k} \Omega)}{I_{s}(74.07 \Omega)}=-1240.1 \mathrm{~V} / \mathrm{V}$

Problem 2-(25 points)

Use the Blackman's formula (see below) to calculate the smallsignal output resistance of the stacked MOSFET configuration having identical drain-source drops for both transistors. Express your answer in terms of all the pertinent small-signal parameters and then simplify your answer if $g_{m}>g_{d s}>(1 / R)$. Assume the MOSFETs are identical.

$$
R_{\text {out }}=R_{\text {out }}\left(g_{m}=0\right)\left[\frac{1+R R(\text { output port shorted })}{1+R R(\text { output port open })}\right]
$$

(You may use small-signal analysis if you wish but this circuit seems to be one of the rare cases where feedback analysis is more efficient.)
Solution

$$
R_{\text {out }}\left(g_{m 2}=0\right)=2 R \|\left(r_{d s 1}+r_{d s 2}\right)=\frac{2 R\left(r_{d s 1}+r_{d s 2}\right)}{2 R+r_{d s 1}+r_{d s 2}}
$$

$R R($ port shorted $)=?$

$$
\begin{aligned}
& v_{r}=0-v_{s 2}=-g_{m 2} v_{t}\left(\frac{r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}}\right) \\
& \Rightarrow \quad R R(\text { port shorted })=\frac{g_{m 2} r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}}
\end{aligned}
$$

$R R($ port open $)=$?

$$
\begin{gathered}
\quad v_{r}=-g_{m 2} v_{t}\left(\frac{r_{d s 2}\left(r_{d s 1}+R\right)}{r_{d s 1}+r_{d s 2}+2 R}\right) \\
\Rightarrow \quad R R(\text { port open })=\frac{g_{m 2} r_{d s 2}\left(r_{d s 1}+R\right)}{r_{d s 1}+r_{d s 2}+2 R} \\
\therefore \quad R_{\text {out }}=\frac{2 R\left(r_{d s 1}+r_{d s 2}\right)}{2 R+r_{d s 1}+r_{d s 2}}\left[\frac{1+\frac{g_{m 2} r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}}}{1+\frac{g_{m 2} r_{d s 2}\left(r_{d s 1}+R\right)}{r_{d s 1}+r_{d s 2}+2 R}}\right]=2 R\left(\frac{r_{d s 1}}{r_{d s 1}+r_{d s 2}+2 R+g_{m 2} r_{d s 2}\left(r_{d s 1}+R\right)}\right)
\end{gathered}
$$

Using the assumptions of $g_{m}>g_{d s}>(1 / R)$ we can simplify $R_{\text {out }}$ as

$$
R_{\text {out }} \approx 2 R\left(\frac{g_{m 2} r_{d s 1} r_{d s 2}}{g_{m 2} r_{d s 2} R}\right)=\underline{\underline{2 r}} \underline{\underline{d s 1}}
$$

What is the insight? Well there are two feedback loops, one a series (the normal cascode) and one a shunt. Apparently they are working against each other and the effective output resistance is pretty much what it would be if there were two transistors in series without any feedback.

Problem 3-(25 points)

Calculate the small-signal voltage gain, the $S R\left(C_{L}=1 \mathrm{pF}\right)$, and the $P_{\text {diss }}$ for the op amp shown where $I_{5}=100 \mathrm{nA}$ and all transistors M1-M11 have a W / L of $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and $V_{D D}$ $=-V_{S S}=1.5 \mathrm{~V}$. If the minimum voltage across the drain-source of M6 and M7 are to be 0.1 V , design the W / L ratios of $\mathrm{M} 12-\mathrm{M} 15$ that give the maximum plus and minus output voltage swing assuming that transistors M12 and M15 have a current of 50nA. The transistors are working in weak inversion and are modeled by the large signal model of

$$
i_{D}=\frac{W}{L} I_{D O} \exp \left(\frac{v_{G S}}{n V_{t}}\right)
$$

where $I_{D O}=2 \mathrm{nA}$ for PMOS and NMOS and $n_{P}=2.5$ and $n_{N}=1.5$. Assume $V_{t}=26 \mathrm{mV}$ and $\lambda_{N}=0.4 \mathrm{~V}^{-1}$ and $\lambda_{P}=0.5 \mathrm{~V}^{-1}$.

Soluton

The small-signal voltage gain, A_{v}, is $g_{m 1} R_{\text {out }}$ (see end of solution) where,

$$
R_{\text {out }}=\left(r_{d s 6} g_{m 10} r_{d s 10}\right) \|\left(r_{d s 7} g_{m 11} r_{d s 11}\right)
$$

With the currents and W / L ratios of transistors M1 through M11 known, we get

$$
\begin{aligned}
& g_{m 1}=g_{m 11}=\frac{50 \mathrm{nA}}{1.5 \cdot 26 \mathrm{mV}}=1.282 \mu \mathrm{~S} \quad \text { and } \quad r_{d s 7}=r_{d s 11}=\frac{10^{9}}{0.04 \cdot 50}=0.5 \times 10^{9} \Omega \\
& g_{m 10}=\frac{50 \mathrm{nA}}{2.5 \cdot 26 \mathrm{mV}}=0.769 \mu \mathrm{~S} \text { and } \quad r_{d s 6}=r_{d s 10}=\frac{10^{9}}{0.05 \cdot 50}=0.4 \times 10^{9} \Omega \\
& R_{\text {out }}=\left(0.4 \times 10^{9} \cdot 1.282 \times 10^{-6} \cdot 0.4 \times 10^{9}\right) \|\left(0.5 \times 10^{9} \cdot 0.769 \times 10^{-6} \cdot 0.5 \times 10^{9}\right)=9.924 \times 10^{10} \Omega \\
& \therefore \quad A_{v}=1.282 \times 10^{-6} \cdot 9.924 \times 10^{10}=\underline{\underline{127,726 \mathrm{~V} / \mathrm{V}}} \\
& S R=\frac{100 \mathrm{nA}}{1 \mathrm{pF}}=\underline{\underline{0.1 \mathrm{~V} / \mu \mathrm{s}}} \\
& P_{\text {diss }}=3 \mathrm{~V}(50 \mathrm{nA} \cdot 6)=\underline{\underline{0.9 \mu \mathrm{~W}}}
\end{aligned}
$$

Problem 3 - Continued

Design of the W / L 's of M12 through M15:
To get 50 nA in M12 means the $W_{12} / L_{12}=0.5\left(W_{5} / L_{5}\right)=5 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$
M15:

$$
\begin{aligned}
& V_{G S 11}=n_{N} V_{t} \ln \left(\frac{I_{D}}{I_{D O}(W / L)}\right)=1.5 \cdot 0.026 \ln \left(\frac{50}{2 \cdot 10}\right)=0.0357 \mathrm{~V} \\
\therefore & V_{G S 15}=0.1+0.0357=0.1357 \mathrm{~V} \rightarrow \frac{W_{15}}{L_{15}}=\frac{50 \mathrm{nA}}{2 \mathrm{nA} \cdot \exp \left(\frac{135.7}{1.5 \cdot 26}\right)}=\underline{\underline{0.77 \mu \mathrm{~m} / 1 \mu \mathrm{~m}}}
\end{aligned}
$$

M13 and M14:

$$
\begin{aligned}
& V_{S G 10}=n_{P} V_{t} \ln \left(\frac{I_{D}}{I_{D O}(W / L)}\right)=2.5 \cdot 0.026 \ln \left(\frac{50}{2 \cdot 10}\right)=0.0596 \mathrm{~V} \\
\therefore & V_{G S 13}=0.1+0.0596=0.1596 \mathrm{~V} \rightarrow \frac{W_{13}}{L_{13}}=\frac{50 \mathrm{nA}}{2 \mathrm{nA} \cdot \exp \left(\frac{159.6}{1.5 \cdot 26}\right)}=2.146 \mu \mathrm{~m} / 1 \mu \mathrm{~m}
\end{aligned}
$$

Thus

$$
\frac{W_{13}}{L_{13}}=\frac{W_{14}}{L_{14}}=\underline{\underline{2.146 \mu \mathrm{~m} / 1 \mu \mathrm{~m}}}
$$

Comments on the small-signal gain:
It is much easier to use the expression $g_{m 1} R_{\text {out }}$ for the small-signal voltage gain. However, some prefer the following expression,

$$
v_{\text {out }}=\left(\frac{g_{m 1} \cdot g_{m 8} \cdot g_{m 7}}{2 g_{m 3} \cdot g_{m 9}}+\frac{g_{m 2} \cdot g_{m} 6}{2 g_{m 4}}\right) R_{\text {out }}
$$

which is equivalent since $g_{m 3}=g_{m 8}, g_{m 7}=g_{m 9}, g_{m 4}=g_{m 6}$, and $g_{m 1}=g_{m 2}$.

