EXAMINATION NO. 3 - SOLUTIONS

(Average Score $=52 / 100$)

Problem 1-(25 points)

For the feedback circuit shown below:
a. Identify the types of feedback topologies used.
b. Using the Blackman's formula, derive expressions for the input $\left(R_{I N}\right)$ and the output ($R_{\text {oUT }}$) resistances of this circuit (neglect the output resistance of the transistor r_{o}). Simplify your expressions as much as possible with the assumption that $g_{m} R_{S} \gg 1$.
c. If the source $\left(R_{I}\right)$ and load $\left(R_{L}\right)$ resistances are equal, what relationship will hold between the input and output resistances of this circuit? Explain the role of each feedback loop in achieving this characteristic.

Solution

(a) Two types of feedback are used simultaneously in this circuit (sometimes called dual-loop feedback): 1) Shunt-shunt feedback through R_{F}, and 2) series-series feedback through R_{S}.
(b)
$R_{\text {OUT }}=R_{\text {OUT }}\left(g_{m}=0\right)\left[\frac{1+R R(\text { portshorted })}{1+R R(\text { portopen })}\right]$
$R_{\text {OUT }}\left(g_{m}=0\right)=R_{F}+R_{1}$
$R R($ shorted $)=g_{m} R_{S}$

$R R($ open $)=g_{m}\left(R_{S}+R_{1}\right)$
$\rightarrow R_{\text {OUT }}=\left(R_{F}+R_{1}\right)\left[\frac{1+g_{m} R_{S}}{1+g_{m}\left(R_{S}+R_{1}\right)}\right] \rightarrow$ If $g_{m} R_{S} \gg 1$, then: $R_{\text {OUT }}=\frac{\left(R_{F}+R_{1}\right)}{1+\frac{R_{1}}{R_{S}}}$
Input resistance: $R_{I N}=R_{I N}\left(g_{m}=0\right)\left[\frac{1+R R(\text { port shorted })}{1+R R(\text { portopen })}\right]$
$R_{I N}\left(g_{m}=0\right)=R_{F}+R_{L}$
$R R($ shorted $)=g_{m} R_{S}$
$R R($ open $)=g_{m}\left(R_{S}+R_{L}\right)$
$\rightarrow R_{I N}=\left(R_{F}+R_{L}\right)\left[\frac{1+g_{m} R_{S}}{1+g_{m}\left(R_{S}+R_{L}\right)}\right] \rightarrow$ If $g_{m} R_{S} \gg 1$, then: $\quad R_{I N}=\frac{\left(R_{F}+R_{L}\right)}{1+\frac{R_{L}}{R_{S}}}$
c) If $R_{I}=R_{L}$, then $\boldsymbol{R}_{I N}=\boldsymbol{R}_{\text {OUT }}$. By choosing the right values of R_{F} and R_{S}, the input and output resistances can be matched to the source and load resistances (for maximum power transfer, $50 / 75 \Omega$ in RF circuits) and the voltage gain can be set arbitrarily large. The application of series feedback will increase the output resistance of the transistor. The shunt feedback through R_{F} will then reduce the input and output resistances of the circuit to achieve impedance matching.

Problem 2-(25 points)

A shunt-shunt feedback amplifier is shown. Use the methods of feedback analysis to find the numerical values of $v_{2} / v_{1}, v_{1} / i_{1}$, and v_{2} / i_{2}.
Assume that all transistors are matched and that $V_{t}=25 \mathrm{mV}, \beta($ of the BJT $)=100, I_{C 1}=I_{C 2}=$ $100 \mu \mathrm{~A}$, and $r_{o}=\infty$.

Solution

A simplified ac schematic for $\beta \neq 0$ is given as,

The open-loop $(\beta=0)$ simplified ac schematic is given as,

The small-signal model for $(\beta=0)$ is,

$$
\frac{v_{2}^{\prime}}{i_{1}^{\prime}}=\left(\frac{v_{2}^{\prime}}{i_{b 2^{\prime}}}\right)\left(\frac{i_{b 2}{ }^{\prime}}{i_{b 1}{ }^{\prime}}\right)\left(\frac{i_{b 1}{ }^{\prime}}{i_{1^{\prime}}}\right)=\left[-\beta\left(R_{3} \| R_{4}\right)\right]\left(\frac{-\beta R_{2}}{r_{\pi 2^{2}}+R_{2}}\right)\left(\frac{-R_{4}}{R_{4}+1 / g_{m 1}} \frac{1}{1+\beta}\right)
$$

$$
=(-100 \cdot 1 \mathrm{~K} \| 10 \mathrm{~K})\left(\frac{-100 \cdot 10 \mathrm{~K}}{35 \mathrm{~K}}\right)\left(\frac{-10 \mathrm{~K}}{10 \mathrm{~K}+0.25 \mathrm{~K}} \frac{1}{101}\right)=(-90.9)(-28.571)(-0.00966)
$$

$$
\begin{gathered}
R_{T}=\frac{v_{2}^{\prime}}{i_{1}{ }^{\prime}}=-25.087 \mathrm{k} \Omega \quad \Rightarrow \quad \frac{v_{2}}{i_{1}}=\frac{R_{T}}{1+\beta R_{T}}=\frac{-25.087 \mathrm{~K} \Omega}{1+2.5087}=-7.15 \mathrm{k} \Omega \\
R_{\text {in }}=R_{4}\left\|\left(1 / g_{m 1}\right)=10000\right\| 250=244 \Omega, R_{\text {inF }}=\frac{R_{\text {in }}}{1+\beta R_{T}}=\frac{244 \Omega}{3.509}=69.5 \Omega \\
\therefore \frac{v_{1}}{i_{1}}=R_{1}+R_{\text {inF }}=1000+70=\underline{\underline{1070 \Omega}} \quad \frac{v_{2}}{v_{1}}=\frac{v_{2}}{i_{1}} \frac{i_{1}}{v_{1}}=\frac{-7.51 \mathrm{~K}}{1070}=\underline{\underline{-7.02 \mathrm{~V} / \mathrm{V}}} \\
R_{\text {out }}=R_{3} \| R_{4}=909 \Omega
\end{gathered} \quad \rightarrow \quad \frac{v_{2}}{i_{2}}=\frac{R_{\text {out }}}{1+\beta R_{T}}=\frac{909 \Omega}{3.509}=\underline{\underline{259 \Omega}} .
$$

Problem 3-(25 points)

A low-gain, high-bandwidth voltage amplifier is shown. Find the low frequency voltage gain, $v_{\text {out }} / v_{i n}$, and the unity-gainbandwidth, $G B$, if the sum of the capacitance connected to nodes A and B is 0.5 pF each. Assume that the independent current sources used have infinite resistance. The transistor model parameters are $K_{N}{ }^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=0.7 \mathrm{~V}, \lambda_{N}=0$, $K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{P}=0$.

Solution

The low frequency voltage gain can be found by inspection as $0.5 g_{m 1} R$. For those of you not into "found by inspection" the following small-signal model is useful.

$$
\begin{aligned}
& v_{\text {out }}=i\left(R+\frac{1}{g_{m 7}}\right)=\frac{g_{m 1}}{2}\left(R+\frac{1}{g_{m 7}}\right) v_{\text {in }} \quad g_{m 1}=\sqrt{2 \cdot 110 \cdot 100 \cdot 50}=1.048 \mathrm{mS} \\
& g_{m 7}=\sqrt{2 \cdot 110 \cdot 25 \cdot 200}=1.048 \mathrm{mS} \quad \therefore \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1.048}{2}\left(100+\frac{1}{1.048}\right)=52.9 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The approach to the second part of the problem will be to find the poles at A and B. The resistance to ground at node A is effectively $R_{A} \approx 1 / g_{m 7}=1 / 1.048 \mathrm{mS}$ and at node B to ground is $R_{B}=R=100 \mathrm{k} \Omega$. However, because of the shunt feedback at node B (and A) with a loop gain of 1 , the output resistance is really $50 \mathrm{k} \Omega$. Therefore,

$$
p_{A}=\frac{2 g_{m 7}}{R_{A}}=\frac{2 \cdot 1.048 \mathrm{mS}}{0.5 \mathrm{pF}}=4.192 \times 10^{9} \mathrm{rads} / \mathrm{sec}
$$

and

$$
\begin{aligned}
& p_{B}=\frac{2}{R_{B} C_{B}}=\frac{2}{100 \mathrm{k} \Omega \cdot 0.5 \mathrm{pF}}=40 \times 10^{6} \mathrm{rads} / \mathrm{sec} . \\
\therefore \quad & G B=52.9 \cdot 40 \times 10^{6}=2116 \times 10^{6} \mathrm{rads} / \mathrm{sec} \quad \rightarrow \quad G B=336.8 \mathrm{MHz}
\end{aligned}
$$

Problem 4-(25 points)

For the amplifier shown assume that all transconductances are equal. Find (a.) the equivalent input noise voltage in units of $\mathrm{V}^{2} / \mathrm{Hz}$ for thermal noise ($k=$ $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$), (b.) the equivalent input noise voltage in units of $\mathrm{V}^{2} / \mathrm{Hz}$ for $1 / \mathrm{f}$ noise $\left(B_{N}=8 \times 10^{-22}(\mathrm{~V}-\mathrm{m})^{2}\right.$ and $\left.B_{P}=2 \times 10^{-22}(\mathrm{~V}-\mathrm{m})^{2}\right)$, and (c.) the noise corner b
frequency in Hz. Using $\int_{a} \frac{1}{f} d f=\ln (b)-\ln (a)$, find the rms noise voltage in a bandwidth of 1 Hz to 100 kHz in V(rms).

Solution

The short-circuit noise current as a function of all 8 of the noise sources in series with the gates can be written as,

$$
i_{t o}^{2}=g_{m 1}^{2} e_{n 1}^{2}+g_{m 2}^{2} e_{n 2}^{2}+g_{m 5}^{2}\left(e_{n 3}^{2}+e_{n 5}^{2}\right)+g_{m 6}^{2}\left(e_{n 4}^{2}+e_{n 6}^{2}\right)+g_{m 8}^{2}\left(e_{n 7}^{2}+e_{n 8}^{2}\right)
$$

The above can be written as,

$$
i_{t o}^{2}=g_{m}^{2}\left[4 e_{n N}^{2}+4 e_{n P}^{2}\right]
$$

Dividing by g_{m}^{2} gives the equivalent input noise voltage as,

$$
e_{e q}^{2}=4 e_{n N}^{2}+4 e_{n P}^{2}=4 e_{n N}^{2}\left(1+\frac{e_{n P}^{2}}{e_{n N}^{2}}\right)
$$

(a.) For thermal noise, $e_{n N}^{2}=e_{n P}^{2}$ so that

$$
e_{e q}^{2}=8 e_{n N}^{2}=8 \frac{8 k T}{3 g_{m N}}=64 \frac{1.38 \times 10^{-23.300}}{3 \cdot 300 \times 10^{-6}}=\underline{\underline{2.944 \times 10^{-16} \mathrm{~V}^{2} / \mathrm{Hz}}}
$$

(b.) For $1 / f$ noise,

$$
\begin{gathered}
e_{n N}^{2}=\frac{B_{N}}{f W L}=\frac{8 \times 10^{-22}}{f 10 \times 10^{-12}}=\frac{8 \times 10^{-11}}{f} \quad \text { and } \quad e_{n P}^{2}=\frac{B_{P}}{f W L}=\frac{2 \times 10^{-22}}{f 10 \times 10^{-12}}=\frac{2 \times 10^{-11}}{f} \\
\therefore \quad e_{e q}^{2}=4 e_{n N}^{2}\left(1+\frac{e_{n P}^{2}}{e_{n N}^{2}}\right)=\frac{32 \times 10^{-11}}{f}\left(1+\frac{2}{8}\right)=\frac{40 \times 10^{-11}}{f} \quad e_{e q}^{2}=\frac{40 \times 10^{-11}}{f} \mathrm{~V}^{2} / \mathrm{Hz}
\end{gathered}
$$

(c.) Equating the above results gives,

$$
\frac{40 \times 10^{-11}}{f}=2.944 \times 10^{-16} \rightarrow f_{c}=\frac{40 \times 10^{-11}}{2.944 \times 10^{-16}}=\underline{\underline{1.359 M H z}}
$$

Finally, we can find the rms noise by integrating just the $1 / f$ noise from 1 Hz to 100 kHz .

$$
\begin{aligned}
& V_{e q}^{2}(\mathrm{rms})=\int_{1}^{10^{5}} \frac{40 \times 10^{-11}}{f} \mathrm{df}=40 \times 10^{-11}\left[\ln \left(10^{5}\right)-\ln (1)\right] \\
& \quad=40 \times 10^{-11}(11.513)=4.605 \times 10^{9} \mathrm{~V}^{2}(\mathrm{rms}) \rightarrow V_{e q}(\mathrm{rms})=68 \mu \mathrm{~V}(\mathrm{rms})
\end{aligned}
$$

