EXAMINATION NO. 3

NAME \qquad SCORE /100

INSTRUCTIONS: This exam is closed book with one sheet of notes permitted. The exam consists of 4 questions for a total of 100 points. Please show your work leading to your answers so that maximum partial credit may be given where appropriate. Be sure to turn in your exam with the problems in numerical order, firmly attached together.

Problem 1-(25 points)

For the feedback circuit shown below:
a. Identify the types of feedback topologies used.
b. Using the Blackman's formula, derive expressions for the input $\left(R_{I N}\right)$ and the output ($R_{\text {oUT }}$) resistances of this circuit (neglect the output resistance of the transistor r_{o}). Simplify your expressions as much as possible with the assumption that $g_{m} R_{E} \gg 1$.
c. If the source $\left(R_{l}\right)$ and load $\left(R_{L}\right)$ resistances are equal, what relationship will hold between the input and output resistances of this circuit? Explain the role of each feedback loop in achieving this characteristic.

Problem 2-(25 points)

A shunt-shunt feedback amplifier is shown. Use the methods of feedback analysis to find the numerical values of $v_{2} / v_{1}, v_{1} / i_{1}$, and v_{2} / i_{2}. Assume that all transistors are matched and that $V_{t}=25 \mathrm{mV}, \beta($ of the BJT $)=100, I_{C 1}=I_{C 2}=$ $100 \mu \mathrm{~A}$, and $r_{o}=\infty$.

Problem 3-(25 points)

A low-gain, high-bandwidth voltage amplifier is shown. Find the low frequency voltage gain, $v_{\text {out }} / v_{i n}$, and the unity-gainbandwidth, $G B$, if the sum of the capacitance connected to nodes A and B is 0.5 pF each. Assume that the independent current sources used have infinite resistance. The transistor model parameters are $K_{N}{ }^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=0.7 \mathrm{~V}, \lambda_{N}=0$, $K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{P}=0$.

Problem 4-(25 points)

For the amplifier shown assume that all transconductances are equal. Find (a.) the equivalent input noise voltage in units of $\mathrm{V}^{2} / \mathrm{Hz}$ for thermal noise ($k=$ $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$), (b.) the equivalent input noise voltage in units of $\mathrm{V}^{2} / \mathrm{Hz}$ for $1 / \mathrm{f}$ noise $\left(B_{N}=8 \times 10^{-22}(\mathrm{~V}-\mathrm{m})^{2}\right.$ and $\left.B_{P}=2 \times 10^{-22}(\mathrm{~V}-\mathrm{m})^{2}\right)$, and (c.) the noise corner b
frequency in Hz. Using $\int \frac{1}{f} d f=\ln (b)-\ln (a)$, find the rms noise voltage in a bandwidth of 1 Hz to 100 kHz in V(rms).

Extra Sheet

