FINAL EXAMINATION
NAME \qquad
\qquad /120

Problem	(1)	(2)	3	4	5	6	7	8
Score								

INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of 8,20 -point problems of which you are to work only 6 for a total of 120 points. You must attempt problems 1 and 2. All other problems are optional. Please circle the number in the table above of the remaining three problems you wish graded. If you do not indicate the problems to be graded, then problems 1 through 6 will be graded regardless of whether they are worked or not. Be sure to turn in only the 6 problems you wish graded in proper numerical order. Please show your work leading to your answers so that maximum partial credit may be given where appropriate.

Problem 1-(20 points - This problem is required)
If the folded-cascode op amp shown having a small-signal voltage gain of $7464 \mathrm{~V} / \mathrm{V}$ is used as a comparator, find the dominant pole if $C_{L}=5 \mathrm{pF}$. If the input step is 10 mV , determine whether the response is linear or slewing and find the propagation delay time. Assume the parameters of the NMOS transistors are $K_{N}{ }^{\prime}=110 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T N}=0.7 \mathrm{~V}, \lambda_{N}=0.04 \mathrm{~V}^{-1}$ and for the PMOS transistors are $K_{P}{ }^{\prime}=50 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{P}=0.05 \mathrm{~V}^{-1}$.

Problem 2-(20 points - This problem is required)

A comparator consists of an amplifier cascaded with a latch as shown below. The amplifier has voltage gain of $10 \mathrm{~V} / \mathrm{V}$ and $-f_{-3 \mathrm{~dB}}=100 \mathrm{MHz}$ and the latch has a time constant of 10 ns . The maximum and minimum voltage swings of the amplifier and latch are $V_{O H}$ and $V_{O L}$. When should the latch be enabled after the application of a step input to the amplifier of $0.05\left(V_{O H}-V_{O L}\right)$ to get minimum overall propagation time delay? What is the value of the minimum propagation time delay? It may useful to recall that the propagation time delay of the latch is given as $t_{p}=\tau_{L} \ln \left(\frac{V_{O H^{-}} V_{O L}}{2 v_{i l}}\right)$ where $v_{i l}$ is the latch input (ΔV_{i} of the text).

Problem 3- (20 points - This problem is optional)
If $R_{1}=R_{2}$ of the circuit shown, find an expression for the small-signal output resistance $R_{\text {out }}$ ignoring R_{L}. Repeat including the influence of R_{L} on the output resistance. Let $R_{1}=R_{2}$ and $R_{L}=1 \mathrm{k} \Omega$, dc currents through M 1 and M 2 be $500 \mu \mathrm{~A}, W_{1} / L_{1}=100 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and $W_{2} / L_{2}=200 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$. Find the value of $R_{\text {out }}$. Assume the parameters of the NMOS transistors are $K_{N}{ }^{\prime}=110 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T N}=0.7 \mathrm{~V}, \lambda_{N}=0.04 \mathrm{~V}^{-1}$ and for the PMOS transistors are $K_{P}{ }^{\prime}=50 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{P}=0.05 \mathrm{~V}^{-1}$. Assume that $R_{2} \gg r_{d s 1}$ or $r_{d s 2}$.

Problem 4- (20 points - This problem is optional)
A current mirror load, CMOS differential amplifier is shown. The current in M5 is $100 \mu \mathrm{~A}$. Assume the parameters of the NMOS transistors are K_{N}, $=110 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T N}=0.7 \mathrm{~V}, \lambda_{N}=0.04 \mathrm{~V}^{-1}$ and for the PMOS transistors are $K_{P}{ }^{\prime}=50 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T P}=$ $-0.7 \mathrm{~V}, \lambda_{P}=0.05 \mathrm{~V}^{-1}$. (a.) Find the small-signal output resistance and voltage gain if the W / L ratio of M1 and M2 is $100 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$. (b.) If the W / L ratio of M3 and M4 is $50 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and $C_{o x}=$ $24.7 \times 10^{-4} \mathrm{~F} / \mathrm{m}^{2}$, and the effective output capacitance is 1 pF , find all roots of this amplifier (ignore the influence of $C_{g d 4}$). Ony include the
 capacitors in this problem that you can calculate from the information given. (c.) What is the -3 dB frequency in Hertz?

Problem 5-(20 points - This problem is optional) The simplified schematic of a feedback amplifier is shown. Use the method of feedback analysis to find $v_{2} / v_{1}, R_{\text {in }}=v_{1} / i_{1}$, and $R_{\text {out }}=v_{2} / i_{2}$. Assume that all transistors are matched and that $\beta=100, r_{\pi}$ $=5 \mathrm{k} \Omega$ and $r_{o}=\infty$.

Problem 6-(20 points - This problem is optional)
A voltage follower feedback circuit is shown. For the MOS transistor, $I_{D}=0.5 \mathrm{~mA}, K^{\prime}=$ $180 \mu \mathrm{~A} / \mathrm{V}^{2}, r_{d s}=\infty$, and $W / L=100$. Although, the bulk effect should be considered, $g_{m b s}$, for simplicity ignore the bulk effects in this problem. For the op amp, assume that $R_{i}=1 \mathrm{M} \Omega, R_{o}=10 \mathrm{k} \Omega$, and $a_{v}=1000$. Calculate the input resistance and output resistance using Blackman's formula given below.

$$
R_{\text {out }}=R_{\text {out }}(\text { Controlled source }=0)\left[\frac{1+R R(\text { output port shorted })}{1+R R(\text { output port open })}\right]
$$

Problem 7 - (20 points - This problem is optional)

A CMOS op amp capable of operating from 1.5 V power supply is shown. All device lengths are $1 \mu \mathrm{~m}$ and are to operate in the saturation region. Design all of the W values of every transistor of this op amp to meet the following specifications.

design should meet or exceed these specifications. Ignore bulk effects in this problem and summarize your W values to the nearest micron, the value of $C_{c}(\mathrm{pF})$, and $I(\mu \mathrm{~A})$ in the following table. Use the following model parameters: $K_{N}{ }^{\prime}=24 \mu \mathrm{~A} / \mathrm{V}^{2}, K_{P}{ }^{\prime}=8 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}$ $=-V_{T P}=0.75 \mathrm{~V}, \lambda_{N}=0.01 \mathrm{~V}^{-1}$ and $\lambda_{P}=0.02 \mathrm{~V}^{-1}$.

C_{c}	I	$W 1=W 2$	$W 3=W 4$	$W 5=W 8$	$W 6$	$W 7$	$W 9=W 10$	$W 11=W 12$	$P_{\text {diss }}$

Problem 8-(20 points - This problem is optional)
A differential CMOS amplifier using depletion mode input devices is shown. Assume that the normal MOSFETs parameters are $K_{N}{ }^{\prime}=110 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T N}=$ $0.7 \mathrm{~V}, \lambda_{N}=0.04 \mathrm{~V}^{-1}$ and for the PMOS transistors are $K_{P}{ }^{\prime}=50 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{P}=0.05 \mathrm{~V}^{-1}$. For the depletion mode NMOS transistors, the parameters are the same as the normal NMOS except that $V_{T N}=-0.5 \mathrm{~V}$. (a.) What is the maximum input common-mode voltage, $V_{i c m}{ }^{+}(\max)$? (b.) What is the minimum input common-mode voltage, $V_{i c m}{ }^{-}(\mathrm{min})$? (c.) What
 value of $V_{D D}$ gives an $I C M R=0.5 V_{D D}$?

Extra Page

