Homework Assignment No. 5

Due Friday, February 14, 2003 in class

Problem 1-(10 points - Problem 6.2-8 of A\&H)
A two-stage, Miller-compensated CMOS op amp has a RHP zero at 20GB, a dominant pole due to the Miller compensation, a second pole at p_{2} and a mirror pole at $-3 G B$. (a) If $G B$ is 1 MHz , find the location of p_{2} corresponding to a 45° phase margin. (b) Assume that in part (a) that $\left|p_{2}\right|=2 G B$ and a nulling resistor is used to cancel p_{2}. What is the new phase margin assuming that $G B=1 \mathrm{MHz}$? (c) Using the conditions of (b), what is the phase margin if C_{L} is increased by a factor of 4 ?
Problem 2- (10 points - Problem 6.2-10 of A\&H)
For the two-stage op amp of Fig. 6.2-8, find $W_{1} / L_{1}, W_{6} / L_{6}$, and C_{c} if $G B=1 \mathrm{MHz},\left|p_{2}\right|=$ $5 G B, z=3 G B$ and $C_{L}=C_{2}=20 \mathrm{pF}$. Use the parameter values of Table 3.1-2 and consider only the two-pole model of the op amp. The bias current in M5 is $40 \mu \mathrm{~A}$ and in M7 is $320 \mu \mathrm{~A}$.
Problem 3-(10 points - Problem 6.2-11 of A\&H)
In the figure shown, assume that $R_{I}=150 \mathrm{k} \Omega, \mathrm{R}_{I I}=100 \mathrm{k} \Omega, g_{m I I}=500 \mu \mathrm{~S}, C_{I}=1 \mathrm{pF}$, $C_{I I}=5 \mathrm{pF}$, and $C_{c}=30 \mathrm{pF}$. Find the value of R_{z} and the locations of all roots for (a) the case where the zero is moved to infinity and (b) the case where the zero cancels the highest pole.

Problem 4-(10 points)

The poles and zeros of a Miller compensated, two-stage op amp are shown below.
(a.) If the influence of p_{3} and z_{1} are ignored, what is the $G B$ in MHz of this op amp for 60° phase margin?
(b.) What is the value of $A_{v}(0)$? What is the value of C_{c} if $g_{m 1}=g_{m 2}=500 \mu \mathrm{~S}$?
(c.) If p_{2} is moved to p_{3}, what is the new $G B$ in MHz for 60° phase margin? What is the new C_{c} if the input transconductances are the same as in (b.)?

