Homework Assignment No. 12

Due Friday, April 11, 2003 in class

Problem 1 - (10 points)

Problem 7.3-7 of Allen and Holberg, 2nd edition

Problem 2 – (10 points)

Calculate the small-signal voltage gain, the SR ($C_L = 1$ pF), and the P_{diss} for the op amp shown where $I_5 = 100$ nA and all transistors M1-M11 have a W/L of 10µm/1µm and V_{DD} = $-V_{SS} = 1.5$ V. If the minimum voltage across the drain-source of M6 and M7 are to be 0.1V, design the W/L ratios of M12-M15 that give the maximum plus and minus output voltage swing assuming that transistors M12 and M15 have a current of 50nA. The transistors are working in weak inversion and are modeled by the large signal model of

$$i_D = \frac{W}{L} I_{DO} \exp\left(\frac{v_{GS}}{nV_t}\right)$$

where $I_{DO} = 2nA$ for PMOS and NMOS and $n_P = 2.5$ and $n_N = 1.5$. Assume $V_t = 26mV$ and $\lambda_N = 0.4V^{-1}$ and $\lambda_P = 0.5V^{-1}$.

Problem 3 – (10 points)

Problem 7.4-3 of Allen and Holberg, 2nd edition

Problem 4 - (10 points)

Problem 7.5-5 of Allen and Holberg, 2nd edition

Problem 5 - (10 points)

A CMOS op amp capable of operating from 1.5V power supply is shown. All device lengths are $1\mu m$ and are to operate in the saturation region. Design all of the W values of every transistor of this op amp to meet the following specifications.

Slew rate = $\pm 10V/\mu s$	$V_{out}(max) = 1.25V$	$V_{out}(min) = 0.75V$						
$V_{ic}(min) = 1V$	$V_{ic}(max) = 2V$	GB = 10MHz						
Phase margin = 60° when the output pole = 2GB and the RHP zero = 10GB.								
Keep the mirror pole ≥ 10 GB (C _{ox} = 0.5fF/ μ m ²).								

Your design should meet or exceed these specifications. Ignore bulk effects in this problem and summarize your W values to the nearest micron, the value of $C_c(pF)$, and $I(\mu A)$ in the following table. Use the following model parameters: $K_N'=24\mu A/V^2$, $K_P'=$

 $8\mu A/V^2$, $V_{TN} = -V_{TP} = 0.75V$, $\lambda_N = 0.01V^{-1}$ and $\lambda_P = 0.02V^{-1}$.

C_{c}	Ι	W1=W2	W3 = W4	W5 = W8	<i>W</i> 6	W7	W9 = W10	W11 = W12	P _{diss}