Homework Assignment No. 12

Due Friday, April 11, 2003 in class
Problem 1-(10 points)
Problem 7.3-7 of Allen and Holberg, $2^{\text {nd }}$ edition
Problem 2-(10 points)
Calculate the small-signal voltage gain, the $S R\left(C_{L}=1 \mathrm{pF}\right)$, and the $P_{\text {diss }}$ for the op amp shown where $I_{5}=100 \mathrm{nA}$ and all transistors M1-M11 have a W / L of $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ and $V_{D D}$ $=-V_{S S}=1.5 \mathrm{~V}$. If the minimum voltage across the drain-source of M6 and M7 are to be 0.1 V , design the W / L ratios of M12-M15 that give the maximum plus and minus output voltage swing assuming that transistors M12 and M15 have a current of 50nA. The transistors are working in weak inversion and are modeled by the large signal model of

$$
i_{D}=\frac{W}{L} I_{D O} \exp \left(\frac{v_{G S}}{n V_{t}}\right)
$$

where $I_{D O}=2 \mathrm{nA}$ for PMOS and NMOS and $n_{P}=2.5$ and $n_{N}=1.5$. Assume $V_{t}=26 \mathrm{mV}$ and $\lambda_{N}=0.4 \mathrm{~V}^{-1}$ and $\lambda_{P}=0.5 \mathrm{~V}^{-1}$.

Problem 3-(10 points)
Problem 7.4-3 of Allen and Holberg, $2^{\text {nd }}$ edition
Problem 4-(10 points)
Problem 7.5-5 of Allen and Holberg, $2^{\text {nd }}$ edition

Problem 5-(10 points)

A CMOS op amp capable of operating from 1.5 V power supply is shown. All device lengths are $1 \mu \mathrm{~m}$ and are to operate in the saturation region. Design all of the W values of every transistor of this op amp to meet the following specifications.

Slew rate $= \pm 10 \mathrm{~V} / \mu \mathrm{s}$	$\mathrm{V}_{\text {out }}(\max)=1.25 \mathrm{~V}$	$\mathrm{~V}_{\text {out }}(\min)=0.75 \mathrm{~V}$		
$\mathrm{~V}_{\mathrm{ic}}(\min)=1 \mathrm{~V}$	$\mathrm{~V}_{\text {ic }}(\max)=2 \mathrm{~V}$	$\mathrm{~GB}=10 \mathrm{MHz}$		Phase margin $=60^{\circ}$ when the output pole $=2 \mathrm{~GB}$ and the RHP zero $=10 \mathrm{~GB}$.
:---				
Keep the mirror pole $\geq 10 \mathrm{~GB}\left(\mathrm{C}_{\mathrm{ox}}=0.5 \mathrm{fF} / \mu \mathrm{m}^{2}\right)$.				

Your design should meet or exceed these specifications. Ignore bulk effects in this problem and summarize your W values to the nearest micron, the value of $C_{c}(\mathrm{pF})$, and $I(\mu \mathrm{~A})$ in the following table. Use the following model parameters: $K_{N}{ }^{\prime}=24 \mu \mathrm{~A} / \mathrm{V}^{2}, K_{P}{ }^{\prime}=$ $8 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=-V_{T P}=0.75 \mathrm{~V}, \lambda_{N}=0.01 \mathrm{~V}^{-1}$ and $\lambda_{P}=0.02 \mathrm{~V}^{-1}$.

C_{c}	I	$W 1=W 2$	$W 3=W 4$	$W 5=W 8$	$W 6$	$W 7$	$W 9=W 10$	$W 11=W 12$	$P_{\text {diss }}$

