LECTURE 010 – ECE 4430 REVIEW I (READING: GHLM - Chap. 1)

Objective

The objective of this presentation is:

- 1.) Identify the prerequisite material as taught in ECE 4430
- 2.) Insure that the students of ECE 6412 are adequately prepared

Outline

- Models for Integrated-Circuit Active Devices
- Bipolar, MOS, and BiCMOS IC Technology
- Single-Transistor and Multiple-Transistor Amplifiers
- Transistor Current Sources and Active Loads

ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-2

MODELS FOR INTEGRATED-CIRCUIT ACTIVE DEVICES

PN Junctions - Step Junction

Barrier potential-

$$\psi_o = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) = V_t \ln \left(\frac{N_A N_D}{n_i^2} \right) = U_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

Depletion region widths-

$$W_{1} = \sqrt{\frac{2\varepsilon_{si}(\psi_{0}-v_{D})N_{D}}{qN_{A}(N_{A}+N_{D})}}$$

$$W_{2} = \sqrt{\frac{2\varepsilon_{si}(\psi_{0}-v_{D})N_{A}}{qN_{D}(N_{A}+N_{D})}}$$

$$W \propto \sqrt{\frac{1}{N}}$$

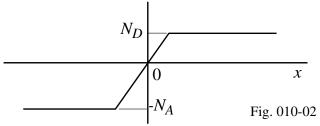
Depletion capacitance-

$$C_{j} = A \sqrt{\frac{\varepsilon_{si}qN_{A}N_{D}}{2(N_{A}+N_{D})}} \frac{1}{\sqrt{\psi_{o}-v_{D}}} = \frac{C_{j0}}{\sqrt{1-\frac{v_{D}}{\psi_{o}}}}$$
Fig. 010-01

 $\psi_0 v_D$

PN-Junctions - Graded Junction

Graded junction:



Above expressions become:

Depletion region widths-

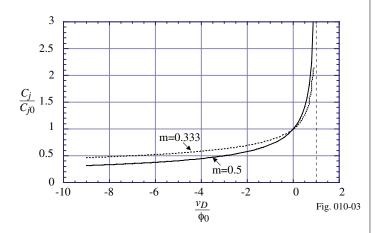
$$W_{1} = \left(\frac{2\varepsilon_{si}(\psi_{0}-v_{D})N_{D}}{qN_{D}(N_{A}+N_{D})}\right)^{m}$$

$$W_{2} = \left(\frac{2\varepsilon_{si}(\psi_{0}-v_{D})N_{A}}{qN_{D}(N_{A}+N_{D})}\right)^{m}$$
Depletion capacitance-

Depletion capacitance-

$$C_{j} = A \left(\frac{\varepsilon_{si} q N_{A} N_{D}}{2(N_{A} + N_{D})} \right)^{m} \frac{1}{(\psi_{o} - v_{D})^{m}} = \frac{C_{j0}}{\left(1 - \frac{v_{D}}{\psi_{o}}\right)^{m}}$$

where $0.33 \le m \le 0.5$.



ECE 6412 - Analog Integrated Circuits and Systems II

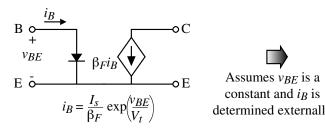
© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-4

Large Signal Model for the BJT in the Forward Active Region

Large-signal model for a *npn* transistor:



determined externally

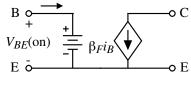


Fig.010-04

Large-signal model for a *pnp* transistor:



Assumes v_{BE} is a constant and i_B is determined externally

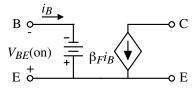


Fig.010-05

Early Voltage:

Modified large signal model becomes

$$i_C = I_S \left(1 + \frac{v_{CE}}{V_A} \right) \exp \left(\frac{v_{BE}}{V_t} \right)$$

The Ebers-Moll Equations

The reciprocity condition allows us to write,

$$\alpha_F I_{EF} = \alpha_R I_{CR} = I_S$$

Substituting into the previous form of the Ebers-Moll equations gives,

$$i_C = I_S \left(\exp \frac{v_{BE}}{V_t} + 1 \right) - \frac{I_S}{\alpha_R} \left(\exp \frac{v_{BC}}{V_t} + 1 \right)$$

and

$$i_E = -\frac{I_S}{\alpha_F} \left(\exp \frac{v_{BE}}{V_t} + 1 \right) + I_S \left(\exp \frac{v_{BC}}{V_t} + 1 \right)$$

These equations are valid for all four regions of operation of the BJT.

Also:

- Dependence of β_F as a function of collector current
- The temperature coefficient of β_F is,

$$TC_F = \frac{1}{\beta F} \frac{\partial \beta F}{\partial T} \approx +7000 \text{ppm/}^{\circ} C$$

ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-6

Simple Small Signal BJT Model

Implementing the above relationships, $i_c = g_m v_i + g_o v_{ce}$, and $v_i = r_{\pi} i_b$, into a schematic model gives,

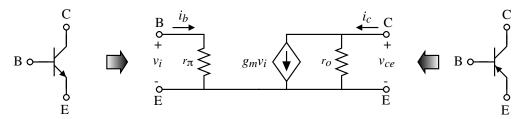


Fig. 010-06

Note that the small signal model is the same for either a npn or a pnp BJT.

Example:

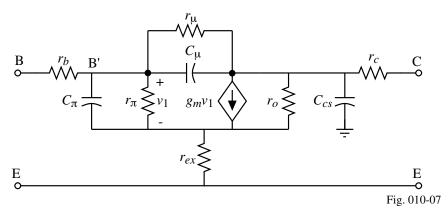
Find the small signal input resistance, R_{in} , the output resistance, R_{out} , and the voltage gain of the common emitter BJT if the BJT is unloaded ($R_L = \infty$), v_{out}/v_{in} , the dc collector current is 1mA, the Early voltage is 100V, and β_O at room temperature.

$$g_{m} = \frac{I_{C}}{V_{t}} = \frac{1 \text{mA}}{26 \text{mV}} = \frac{1}{26} \text{ mhos or Siemans}$$
 $R_{in} = r_{\pi} = \frac{\beta_{o}}{g_{m}} = 100 \cdot 26 = 2.6 \text{k}\Omega$ $R_{out} = r_{o} = \frac{V_{A}}{I_{C}} = \frac{100 \text{V}}{1 \text{mA}} = 100 \text{k}\Omega$ $\frac{v_{out}}{v_{in}} = -g_{m} r_{o} = -26 \text{mS} \cdot 100 \text{k}\Omega = -2600 \text{V/V}$

ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Complete Small Signal BJT Model



The capacitance, C_{π} , consists of the sum of C_{je} and C_b .

$$C_{\pi} = C_{je} + C_b$$

ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-8

Example 1

Derive the complete small signal equivalent circuit for a BJT at $I_C = 1$ mA, $V_{CB} = 3$ V, and $V_{CS} = 5$ V. The device parameters are $C_{je0} = 10$ fF, $n_e = 0.5$, $\psi_{0e} = 0.9$ V, $C_{\mu0} = 10$ fF, $n_c = 0.3$, $\psi_{0c} = 0.5$ V, $C_{cs0} = 20$ fF, $n_s = 0.3$, $\psi_{0s} = 0.65$ V, $\beta_o = 100$, $\tau_F = 10$ ps, $V_A = 20$ V, $r_b = 300\Omega$, $r_c = 50\Omega$, $r_{ex} = 5\Omega$, and $r_{\mu} = 10\beta_o r_o$.

Solution

Because C_{je} is difficult to determine and usually an insignificant part of C_{π} , let us approximate it as $2C_{je0}$.

$$\therefore C_{je} = 20 \text{fF}$$

$$C_{\mu} = \frac{C_{\mu 0}}{\left(1 + \frac{V_{CB}}{\psi_{0c}}\right)^{n_e}} = \frac{10 \text{fF}}{\left(1 + \frac{3}{0.5}\right)^{0.3}} = 5.6 \text{fF} \quad \text{and} \quad C_{cs} = \frac{C_{cs0}}{\left(1 + \frac{V_{CS}}{\psi_{0s}}\right)^{n_s}} = \frac{20 \text{fF}}{\left(1 + \frac{5}{0.65}\right)^{0.3}} = 10.5 \text{fF}$$

$$g_m = \frac{I_C}{V_t} = \frac{1 \text{mA}}{26 \text{mV}} = 38 \text{mA/V}$$
 $C_b = \tau_F g_m = (10 \text{ps})(38 \text{mA/V}) = 0.38 \text{pF}$

$$C_{\pi} = C_b + C_{je} = 0.38 \text{pF} + 0.02 \text{pF} = 0.4 \text{pF}$$

$$r_{\pi} = \frac{\beta_o}{g_m} = 100.26\Omega = 2.6 \text{k}\Omega$$
, $r_o = \frac{V_A}{I_C} = \frac{20 \text{V}}{1 \text{mA}} = 20 \text{k}\Omega$ and $r_{\mu} = 10 \beta_o r_o = 20 \text{M}\Omega$

ECE 6412 - Analog Integrated Circuits and Systems II

Transition Frequency, f_T

 f_T is the frequency where the magnitude of the short-circuit, common-emitter current =1. Circuit and model:

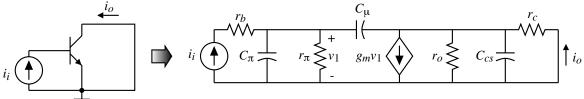


Fig.010-08

Assume that $r_C \approx 0$. As a result, r_O and C_{CS} have no effect.

$$V_{1} \approx \frac{r_{\pi}}{1 + r_{\pi}(C_{\pi} + C_{\mu})s} \ I_{i} \quad \text{and} \quad I_{o} \approx g_{m} V_{1} \ \Rightarrow \ \frac{I_{o}(j\omega)}{I_{i}(j\omega)} = \frac{g_{m}r_{\pi}}{1 + g_{m}r_{\pi}} = \frac{\beta_{o}}{1 + \beta_{o}} = \frac{\beta_{o}}{1 + \beta_{o}} = \frac{\beta_{o}}{g_{m}}$$

Now,
$$\beta(j\omega) = \frac{I_O(j\omega)}{I_i(j\omega)} = \frac{\beta_O}{1 + \beta_O} \frac{(C_{\pi} + C_{\mu})j\omega}{g_m}$$

At high frequencies,

$$\beta(j\omega) \approx \frac{g_m}{j\omega (C_{\pi} + C_{\mu})} \implies \text{When } |\beta(j\omega)| = 1 \text{ then } \omega_T = \frac{g_m}{C_{\pi} + C_{\mu}} \text{ or } f_T = \frac{1}{2\pi} \frac{g_m}{C_{\pi} + C_{\mu}}$$

ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-10

JFET Large Signal Model

Large signal model:

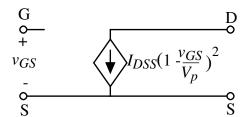


Fig. 010-09

Incorporating the channel modulation effect:

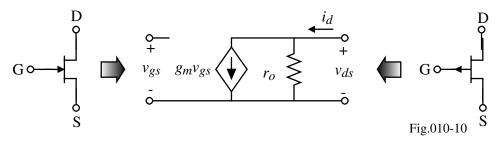
$$i_D = I_{DSS} \left(1 - \frac{v_{GS}}{V_p} \right)^2 (1 + \lambda v_{DS}) , \qquad v_{DS} \ge v_{GS} - V_p$$

Signs for the JFET variables:

Type of JFET	V_p	I_{DSS}	vGS
<i>p</i> -channel	Positive	Negative	Normally positive
<i>n</i> -channel	Negative	Positive	Normally negative

Frequency Independent JFET Small Signal Model

Schematic:



Parameters:

$$g_{m} = \frac{di_{D}}{dv_{GS}} \frac{1}{Q} = -\frac{2I_{DSS}}{V_{p}} \left(1 - \frac{V_{GS}}{V_{p}} \right) = g_{m0} \left(1 - \frac{V_{GS}}{V_{p}} \right)$$

where

$$g_{m0} = -\frac{2I_{DSS}}{V_p}$$

$$r_o = \frac{di_D}{dv_{DS}} \Big|_{Q} = \lambda I_{DSS} \Big(1 - \frac{V_{GS}}{V_p} \Big)^2 \approx \frac{1}{\lambda I_D}$$

Typical values of I_{DSS} and V_p for a p-channel JFET are -1mA and 2V, respectively. With $\lambda = 0.02 \text{V}^{-1}$ and $I_D = 1 \text{mA}$ we get $g_m = 1 \text{mA/V}$ or 1 mS and $r_o = 50 \text{k}\Omega$.

ECE 6412 - Analog Integrated Circuits and Systems II

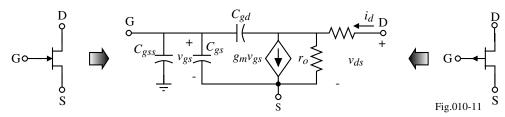
© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-12

Frequency Dependent JFET Small Signal Model

Complete small signal model:



All capacitors are reverse biased depletion capacitors given as,

$$C_{gs} = \frac{C_{gs0}}{\left(1 + \frac{V_{GS}}{\psi_o}\right)^{1/3}}$$
 (capacitance from source to *top* and *bottom* gates)

$$C_{gd} = \frac{C_{gd0}}{\left(1 + \frac{V_{GD}}{\psi_o}\right)^{1/3}}$$
 (capacitance from drain to *top* and *bottom* gates)

$$C_{gss} = \frac{C_{gss0}}{\left(1 + \frac{V_{GSS}}{\psi_o}\right)^{1/2}}$$
 (capacitance from the gate (p-base) to substrate)

$$\therefore f_T = \frac{1}{2\pi} \frac{g_m}{C_{gs} + C_{gd} + C_{gss}} = 30 \text{MHz if } g_m = 1 \text{mA/V and } C_{gs} + C_{gd} + C_{gss} = 5 \text{pF}$$

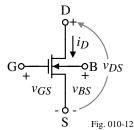
ECE 6412 - Analog Integrated Circuits and Systems II

Simple Large Signal MOSFET Model

N-channel reference convention:

Non-saturation-

$$i_{D} = \frac{W\mu_{o}C_{ox}}{L} \left[(v_{GS} - V_{T})v_{DS} - \frac{v_{DS}^{2}}{2} \right] (1 + \lambda v_{DS}), \quad 0 < v_{DS} < v_{GS} - V_{T}$$
oration-



Saturation-

$$i_{D} = \frac{W\mu_{o}C_{ox}}{L} \left[(v_{GS} - V_{T})v_{DS}(\text{sat}) - \frac{v_{DS}(\text{sat})^{2}}{2} \right] (1 + \lambda v_{DS})$$

$$= \frac{W\mu_{o}C_{ox}}{2L} (v_{GS} - V_{T})^{2} (1 + \lambda v_{DS}), \qquad 0 < v_{GS} - V_{T} < v_{DS}$$

where:

 μ_o = zero field mobility (cm²/volt·sec)

 C_{ox} = gate oxide capacitance per unit area (F/cm²)

= channel-length modulation parameter (volts-1)

$$V_T = V_{TO} + \gamma (\sqrt{2|\phi_f|} + |v_{BS}| - \sqrt{2|\phi_f|})$$

 V_{T0} = zero bias threshold voltage

 γ = bulk threshold parameter (volts-0.5)

 $2|\phi_f|$ = strong inversion surface potential (volts)

For p-channel MOSFETs, use n-channel equations with p-channel parameters and invert current.

ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-14

MOSFET Small-Signal Model

Complete schematic model:

$$G \circ H \circ B = G \circ H \circ B \circ B = V_{gs} \quad V_{bs} \quad g_{mbs} V_{bs} \circ S \circ F_{ig. 010-13}$$

where

$$g_{m} = \frac{di_{D}}{dv_{GS}} \Big|_{Q} = \beta(V_{GS} - V_{T}) = \sqrt{2\beta I_{D}} \qquad g_{ds} = \frac{di_{D}}{dv_{DS}} \Big|_{Q} = \frac{\lambda i_{D}}{1 + \lambda v_{DS}} \approx \lambda i_{D}$$
and
$$g_{mbs} = \frac{\partial \iota_{D}}{\partial v_{BS}} \Big|_{Q} = \left(\frac{\partial i_{D}}{\partial v_{GS}}\right) \left(\frac{\partial v_{GS}}{\partial v_{BS}}\right) \Big|_{Q} = \left(-\frac{\partial i_{D}}{\partial v_{T}}\right) \left(\frac{\partial v_{T}}{\partial v_{BS}}\right) \Big|_{Q} = \frac{g_{m}\gamma}{2\sqrt{2|\phi_{E}| - V_{RS}}} = \eta g_{m}$$

Simplified schematic model:

$$G \hookrightarrow \bigcup_{S} = G \hookrightarrow \bigcup_{S} \bigcup_{S} \bigcup_{g_{m}v_{gs}} \bigvee_{g_{m}v_{gs}} v_{ds} \bigvee_{g_{m}v_{gs}} v_{ds}$$

Extremely important assumption:

$$g_m \approx 10 g_{mbs} \approx 100 g_{ds}$$

MOSFET Depletion Capacitors - CBS and CBD

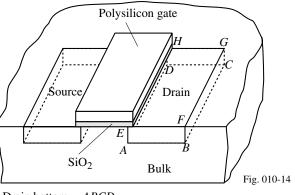
Model:

$$C_{BS} = \frac{CJ \cdot AS}{\left(1 - \frac{v_{BS}}{PB}\right)} + \frac{CJSW \cdot PS}{\left(1 - \frac{v_{BS}}{PB}\right)}, \quad v_{BS} \le FC \cdot PB$$

and

$$\begin{split} C_{BS} &= \frac{CJ \cdot AS}{(1 - FC)} \left(1 - (1 + MJ)FC + MJ \frac{V_{BS}}{PB} \right) \\ &+ \frac{CJSW \cdot PS}{(1 - FC)} \left(1 - (1 + MJSW)FC + MJSW \frac{V_{BS}}{PB} \right), \end{split}$$

 $v_{BS} > FC \cdot PB$



Drain bottom = ABCDDrain sidewall = ABFE + BCGF + DCGH + ADHE

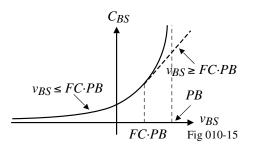
where

AS = area of the source

PS = perimeter of the source

CJSW = zero bias, bulk source sidewall capacitance *MJSW* = bulk-source sidewall grading coefficient

For the bulk-drain depletion capacitance replace "S" by "D" in the above equations.



ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Lecture 010 – ECE4430 Review I (12/29/01)

Page 010-16

MOSFET Intrinsic Capacitors - CGD, CGS and CGB

Cutoff Region:

$$C_{GB}=C_2+2C_5=C_{OX}(W_{eff})(L_{eff})+2CGBO(L_{eff})$$

$$C_{GS} = C_1 \approx C_{ox}(LD)W_{eff}) = CGSO(W_{eff})$$

$$C_{GD} = C_3 \approx C_{ox}(LD)W_{eff}) = CGDO(W_{eff})$$

Saturation Region:

$$C_{GB} = 2C_5 = \text{CGBO}(L_{\text{eff}})$$

$$C_{GS} = C_1 + (2/3)C_2 = C_{ox}(\text{LD} + 0.67L_{\text{eff}})(W_{\text{eff}})$$

= CGSO(W_{eff}) + 0.67 $C_{ox}(W_{\text{eff}})(L_{\text{eff}})$

$$C_{GD} = C_3 \approx C_{ox}(LD)W_{eff} = CGDO(W_{eff})$$

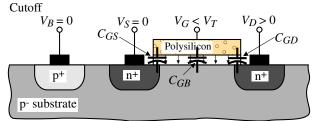
Active Region:

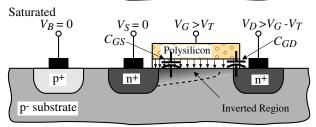
$$C_{GB}$$
 = 2 C_5 = 2CGBO(L_{eff})

$$C_{GS} = C_1 + 0.5C_2 = C_{ox}(\text{LD+0.5}L_{\text{eff}})(W_{\text{eff}})$$
$$= (\text{CGSO} + 0.5C_{ox}L_{\text{eff}})W_{\text{eff}}$$

$$C_{GD} = C_3 + 0.5C_2 = C_{ox}(\text{LD} + 0.5L_{\text{eff}})(W_{\text{eff}})$$

= (CGDO + 0.5 $C_{ox}L_{\text{eff}}$) W_{eff}





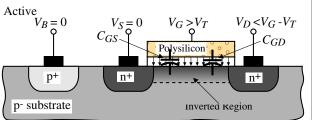


Fig 010-16

Fig 010-17

 C_{bs}

Small-Signal Frequency Dependent Model

The depletion capacitors are found by evaluating the large signal capacitors at the DC operating point. Go-

The charge storage capacitors are constant for a specific region of operation.

Gainbandwidth of the MOSFET:

Assume $V_{SB} = 0$ and the MOSFET is in saturation,

$$f_T = \frac{1}{2\pi} \frac{g_m}{C_{gs} + C_{gd}} \approx \frac{1}{2\pi} \frac{g_m}{C_{gs}}$$

Recalling that

$$C_{gs} \approx \frac{2}{3} C_{ox} WL$$
 and $g_m = \mu_o C_{ox} \frac{W}{L} (V_{GS} - V_T)$

gives

$$f_T = \frac{3}{4\pi} \frac{\mu_O}{L^2} (V_{GS} - V_T)$$

ECE 6412 - Analog Integrated Circuits and Systems II

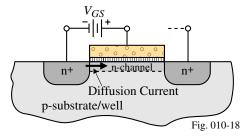
© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-18

Subthreshold MOSFET Model

Weak inversion operation occurs when the applied gate voltage is below V_T and pertains to when the surface of the substrate beneath the gate is weakly inverted.



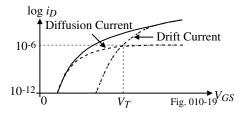
Regions of operation according to the surface potential, ϕ_s .

 $\phi_S < \phi_F$: Substrate not inverted

 $\phi_F < \phi_S < 2\phi_F$: Channel is weakly inverted (diffusion current)

 $2\phi_F < \phi_S$: Strong inversion (drift current)

Drift current versus diffusion current in a MOSFET:



Large-Signal Model for Subthreshold

Model:

$$i_D = K_x \frac{W}{L} e^{v_G s/nV_t} (1 - e^{-v_D s/V_t}) (1 + \lambda v_{DS})$$

where

 K_x is dependent on process parameters and the bulk-source voltage

$$n \approx 1.5 - 3$$

and

$$V_t = \frac{kT}{q}$$

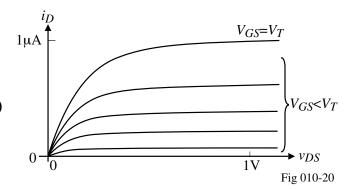
If $v_{DS} > 0$, then

$$i_D = K_x \frac{W}{L} e^{v_{GS}/nV_t} (1 + \lambda v_{DS})$$

Small-signal model:

$$g_m = \frac{\partial i_D}{\partial v_{GS}} \Big|_{Q} = \frac{qI_D}{nkT}$$

$$g_{dS} = \frac{\partial iD}{\partial v_{DS}} \stackrel{|}{Q} \approx \frac{ID}{V_A}$$



ECE 6412 - Analog Integrated Circuits and Systems II

© P.E. Allen - 2002

Lecture 010 - ECE4430 Review I (12/29/01)

Page 010-20

SUMMARY

- Models
 - Large-signal
 - Small-signal
- Components
 - pn Junction
 - BJT
 - MOSFET

Strong inversion

Weak inversion

- JFET
- Capacitors
 - Depletion
 - Parallel plate