## LECTURE 080 - SINGLE-STAGE FREQUENCY RESPONSE - II <br> (READING: GHLM - 504-516)

## Objective

The objective of this presentation is:
1.) Illustrate the frequency analysis of single stage amplifiers
2.) Introduce the Miller technique and the approximate method of solving for two poles

## Outline

- Differential and Common Frequency Response of the Differential Amplifier
- Emitter/Source Follower Frequency Response
- Common Base/Gate Frequency Response
- Summary


## Emitter Follower Input Impedance



If we let $z_{\pi}=\frac{r_{\pi}}{1+s C_{i} r_{\pi}}$, then

$$
\begin{aligned}
& V_{i}=V_{b}=I_{i n}\left(r_{b}+z_{\pi}\right)+\left(I_{\text {in }}+g_{m} z_{\pi} I_{i n}\right) R_{L} \rightarrow Z_{i}=\frac{V_{i}}{I_{i n}}=r_{b}+z_{\pi}+\left(1+g_{m} z_{\pi}\right) R_{L} \\
& \therefore \quad Z_{i}=r_{b}+\frac{r_{\pi}}{1+s C_{i} r_{\pi}}+\left(1+\frac{g_{m} r_{\pi}}{1+s C_{i} r_{\pi}}\right) R_{L}=r_{b}+\left(\frac{\left(1+g_{m} R_{L}\right) r_{\pi}}{1+s C_{i} r_{\pi}}\right)+R_{L} \\
& Z_{i}=r_{b}+\frac{\left(1+g_{m} R_{L}\right) r_{\pi}}{1+\frac{s C_{i}}{1+g_{m} R_{L}}\left(1+g_{m} R_{L}\right) r_{\pi}}+R_{L}=r_{b}+\frac{R}{1+s C R}+R_{L}
\end{aligned}
$$

## Emitter Follower Output Impedance

From the previous model (or from the impedance transformation aspect of a BJT) we can write,

$$
Z_{o}=\frac{V_{\text {out }}}{I_{o}}=\frac{z_{\pi}+R_{I}+r_{b}}{1+g_{m} z^{2} \pi}=\frac{z_{\pi}+R_{I}^{\prime}}{1+g_{m} z_{\pi}}=\frac{\frac{r_{\pi}}{1+s C_{i} r_{\pi}}+R_{I}^{\prime}}{1+\frac{g_{m} r_{\pi}}{1+s C_{i} r_{\pi}}}=\frac{r_{\pi}+R_{I}^{\prime}+s C_{i} r_{\pi} R_{I}^{\prime}}{\beta_{0}+1+s C_{i} r_{\pi}}
$$

Multiplying top and bottom by $1 / \beta_{0}$, gives

$$
Z_{o}=\frac{\left(\frac{1}{g_{m}}+\frac{R_{I}^{\prime}}{\beta_{0}}+s C_{i} r \pi \frac{R_{I}^{\prime}}{\beta_{0}}\right) R_{I}^{\prime}}{R_{I}^{\prime}+s C_{i} r \pi \frac{R_{I}^{\prime}}{\beta_{0}}}=\frac{\left(R_{1}+s L\right) R_{2}}{R_{2}+s L} \quad \text { assuming } \beta_{0} \gg 1 .
$$

Equivalent output circuit:


ECE 6412 - Analog Integrated Circuits and Systems II

## Source Follower Frequency Response

From the previous lecture for the MOSFET $r_{\pi}=\infty, r_{b}=0$, and $R^{\prime}{ }_{L}=\frac{R_{L}}{1+g_{m b s} R_{L}}$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m} R_{L^{+}}^{\prime} \frac{R_{L}^{\prime}}{r_{\pi}}}{1+g_{m} R_{L}^{\prime} R^{+} \frac{R_{I^{\prime}}+R_{L}^{\prime}}{r_{\pi}}}\left[\frac{1-\frac{s}{z_{1}}}{1-\frac{s}{p_{1}}}\right] \quad \rightarrow \quad \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m} R_{L}^{\prime}}{1+g_{m} R_{L}^{\prime}}\left[\frac{1-\frac{s}{z_{1}}}{1-\frac{s}{p_{1}}}\right]
$$

where $\quad z_{1}=-\frac{g_{m}}{C_{g s}}, \quad p_{1}=-\frac{1}{R_{1} C_{g s}}$ and $R_{1}=\frac{R_{I}+R_{L}^{\prime}}{1+g_{m} R_{L}^{\prime}} \approx \frac{1}{g_{m}}$

## Example

Calculate the transfer function for a source follower with $C_{g s}=7.33 \mathrm{pF}, K^{\prime} W / L=100 \mathrm{~mA} / \mathrm{V}^{2}$, $R_{L}=2 \mathrm{k} \Omega, R_{I}=190 \Omega$, and $I_{D}=4 \mathrm{~mA}$. Let $g_{m b s} \approx 0, C_{g d}=0, C_{g b}=0$, and $C_{b s}=0$.

## Solution

$$
\begin{array}{ll}
g_{m}=\sqrt{2(100) 4} \mathrm{~mA} / \mathrm{V}=28.2 \mathrm{~mA} / \mathrm{V} . & \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{28.2 \cdot 2}{1+28.2 \cdot 2}=0.983 \mathrm{~V} / \mathrm{V} \\
\left|z_{1}\right|=\omega_{T}=\frac{g_{m}}{C_{g s}}=3.85 \times 10^{9} \mathrm{rads} / \mathrm{s}, & R_{1}=\frac{R_{I}+R_{L}^{\prime}}{1+g_{m} R_{L}^{\prime}}=\frac{190+2000}{1+128.2 \cdot 2}=38.2 \Omega, \\
p_{1}=-\frac{10^{12}}{38.2 \cdot 7.33}=-3.57 \times 10^{9} \mathrm{rads} / \mathrm{s} & \left(C_{g d}, C_{g b}, \text { and } C_{b s} \text { cause two poles, } 1 \text { zero }\right)
\end{array}
$$

## Source Follower Output Impedance

The output impedance of the source follower can be found from the previous general analysis or from the following model:


Summing currents at the output,

$$
\begin{aligned}
& I_{o}+g_{m} V_{g s}+s C_{g s} V_{g s}=g_{m b s} V_{\text {out }} \quad \text { and } \quad V_{g s}=-\frac{V_{\text {out }}}{s C_{g s} R_{I}+1} \\
\therefore \quad & I_{o}=g_{m b s} V_{\text {out }}-\left(g_{m}+s C_{g s}\right)\left(\frac{-V_{\text {out }}}{s C_{\text {os }} R_{I}+1}\right) \quad \rightarrow \frac{I_{o}}{V_{\text {out }}}=g_{m b s}+\frac{g_{m}+s C_{g s}}{1+s C_{g s} R_{I}} \\
& Z_{o}=\frac{V_{\text {out }}}{I_{o}}=\frac{1+s C_{g s} R_{I}}{\left(g_{m}+g_{m b s}\right)+s C_{g s}\left(R_{I} g_{m b s}+1\right)}=\frac{1}{g_{m}+g_{m b s}}\left[\frac{1+s C_{g s} R_{I}}{1+s C_{g s}\left(\frac{R_{I} g_{m b s}+1}{g_{m}+g_{m b s}}\right.}\right)
\end{aligned}
$$

## Identification of the Output Impedance

Find the value of $R_{1}, R_{2}$, and $L$ in the equivalent output impedance model shown for the source follower.
Note that,

$$
Z_{o}=\frac{R_{2}\left(R_{1}+s L\right)}{R_{1}+R_{2}+s L} \approx \frac{R_{2}\left(R_{1}+s L\right)}{R_{2}+s L} \quad \text { if } \quad R_{1} \ll R_{2}
$$

The best way to solve this problem is to use the limits of $Z_{o}$.


$$
\begin{aligned}
& \lim Z_{o}(s \rightarrow 0)=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \approx R_{1}=\frac{1}{g_{m}+g_{m b s}} \text { where } R_{1} \ll R_{2} \\
& \lim Z_{o}(s \rightarrow \infty)=R_{2}=\frac{R_{I}}{R_{I} g_{m b s}+1} \\
\therefore & L=\frac{C_{g s}\left(1+R_{I} g_{m b s}\right)}{g_{m}+g_{m b s}}=\frac{C_{g s} R_{I} R_{1}}{R_{2}}
\end{aligned}
$$

If one includes $C_{g d}$ in parallet with the equivalent circuit, the potential for resonance of the output impedance will occur roughly at $\sqrt{\frac{1}{L C_{g d}}}$ if $R_{1}$ is small. Using the values of the previous example with $g_{m b s}=0.1 g_{m}$ and $C_{g d}=0.5$ pf gives $R_{1}=32.2 \Omega, R_{2}=123.7 \Omega$ and $L=(7.33 \mathrm{pF} \cdot 190 \Omega \cdot 32.2 \Omega / 123.7 \Omega)=0.362 \mathrm{nH} \Rightarrow f_{\text {osc }}=11.8 \mathrm{GHz}$

## Frequency Response of Current Buffers

Current buffers include the common base and common gate configurations.


Summing the currents at the input node (neglecting $R_{I}$ ),

$$
i_{i}+\frac{v_{1}}{z_{\pi}}+g_{m} v_{1} \approx 0 \quad \text { where } \quad z_{\pi}=\frac{r_{\pi}}{1+s C_{i} r_{\pi}} \rightarrow \quad i_{i}=-v_{1}\left(g_{m}+\frac{1}{r_{\pi}}+s C_{i}\right)
$$

The short-circuit output current gain can be found as,

$$
i_{o}=-g_{m} v_{1} \quad \rightarrow \quad \frac{i_{o}}{i_{i}}=\frac{g_{m} r_{\pi}}{1+g_{m} r_{\pi}} \frac{1}{1+s \frac{r_{\pi}}{1+g_{m} r_{\pi}} C_{i}}
$$

## Common-Base Amplifier Frequency Response

Replace $C_{i}$ with $C_{\pi}$ gives,

$$
\frac{i_{o}}{i_{i}}=\frac{g_{m} r_{\pi}}{1+g_{m} r_{\pi}} \frac{1}{1+s \frac{r_{\pi}}{1+g_{m} r_{\pi}} C_{\pi}} \approx \frac{\beta_{0}}{1+\beta_{0}} \frac{1}{1+s \frac{C_{\pi}}{g_{m}}} \text { if } \beta_{0} \gg 1 \text { where } \beta_{0}=g_{m} r_{\pi}
$$

$\therefore$ Low frequency gain, $\frac{i_{o}}{i_{i}}=\alpha_{0}$ and a pole at $\quad p_{1}=-\frac{g_{m}}{C_{\pi}} \approx-\omega_{T}$
If the output current flows through $R_{L}$, then the current gain has another pole due to $C_{\mu}$ :

$$
\frac{i_{o}}{i_{i}}=\frac{g_{m} r_{\pi}}{1+g_{m} r_{\pi}} \frac{1}{1+s \frac{r_{\pi}}{1+g_{m} r_{\pi}} C_{\pi}} \frac{1}{1+s R_{L} C_{\mu}} \approx \frac{\beta_{0}}{1+\beta_{0}}\left(\frac{1}{1+s \frac{C_{\pi}}{g_{m}}}\right)\left(\frac{1}{1+s R_{L} C_{\mu}}\right)=A_{i}\left(\frac{1}{1+\frac{s}{p_{1}}}\right)\left(\frac{1}{1+\frac{s}{p_{2}}}\right)
$$

Example:

$$
\text { If } I_{C}=1 \mathrm{~mA}, \beta_{0}=100, C_{\pi}=10 \mathrm{pF}, C_{\mu}=0.5 \mathrm{pF}, C_{C s}=1 \mathrm{pf} \text {, and } R_{L}=2 \mathrm{k} \Omega \text {, evaluate the }
$$

CB amplifier.
$g_{m}=1 / 26 \mathrm{mS}$

$$
A_{i}=0.99, p_{1}=-2.6 \times 10^{12} \mathrm{rad} / \mathrm{s} \text {, and } p_{2}=-\frac{1}{R_{L}\left(C_{\mu}+C_{c s}\right)}=-0.333 \times 10^{9} \mathrm{rad} / \mathrm{s}
$$

## Common Gate Amplifier Frequency Response

Short-circuit current gain:

$$
\frac{i_{o}}{i_{i}}=\frac{g_{m} r_{\pi}}{1+g_{m} r_{\pi}} \frac{1}{1+s \frac{r_{\pi}}{1+g_{m} r_{\pi}} C_{i}} \quad \rightarrow \quad \frac{i_{o}}{i_{i}}=\frac{1}{1+s \frac{C_{g s}+C_{b s}}{g_{m}+g_{m b s}}}
$$

Current gain ( $R_{L} \neq 0$ ):

$$
\frac{i_{o}}{i_{i}}=\frac{1}{1+s \frac{C_{g s}+C_{b s}}{g_{m}+g_{m b s}}}\left(\frac{1}{1+s R_{L} C_{g d}}\right)=A_{i}\left(\frac{1}{1+\frac{s}{p_{1}}}\right)\left(\frac{1}{1+\frac{s}{p_{2}}}\right)
$$

where

$$
A_{i}=1, \quad p_{1}=-\frac{g_{m}+g_{m b s}}{C_{g s}+C_{b s}} \quad \text { and } \quad p_{2}=-\frac{1}{R_{L} C_{g d}}
$$

Example
Calculate the transfer function for a common-gate amplifier with $C_{g s}=7.33 \mathrm{pF}$, $K^{\prime} W / L=100 \mathrm{~mA} / \mathrm{V}^{2}, R_{L}=2 \mathrm{k} \Omega$, and $I_{D}=4 \mathrm{~mA}$. Let $g_{m b s} \approx 0, C_{g d}=1 \mathrm{pF}$, and $C_{b s}=2 \mathrm{pF}$.

$$
\begin{gathered}
g_{m}=\sqrt{2 \cdot 4 \cdot 100} \mathrm{mS}=28.2 \mathrm{mS} \quad \therefore \quad p_{1}=-\frac{28.2 \times 10^{-3}}{9.33 \times 10^{-12}}=-3.03 \times 10^{9} \mathrm{rad} / \mathrm{s} \\
\text { and } \quad p_{2}=-\frac{1}{2000 \cdot 10^{-12}}=0.5 \times 10^{9} \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

## SUMMARY

- The emitter follower and source follower have very high frequency responses
- The -3 dB frequency will most likely be caused by the pole at the output of the follower
- The equivalent output of the emitter follower is inductive
- The common base and common gate amplifiers have a current gain of 1
- The CB and CG amplifiers have a high frequency response because of the low input resistance at the input
- If $R_{L} \neq 0$, the pole at the output of the CB and CG amplifiers causes the -3 dB frequency
- The common base amplifier has an input impedance that is inductive
- More detailed analysis of these amplifiers leads to complex poles which will influence the high frequency behavior

