LECTURE 140 - SIMPLE OP AMPS
 (READING: Text-GHLM - 425-434, 453-454, AH - 249-253)

INTRODUCTION

The objective of this presentation is:
1.) Illustrate the analysis of BJT and CMOS op amps
2.) Prepare for the design of BJT and CMOS op amps

Outline

- Simple CMOS Op Amps

Two-stage
Folded-cascode

- Simple BJT Op Amps

Two-stage
Folded-cascode

- Summary

SIMPLE TWO-STAGE CMOS OP AMPS

Two-Stage CMOS Op Amp

Circuit:
DC Conditions:

$$
\begin{aligned}
& I_{5}=I_{\text {bias }}, I_{1}=I_{2}=0.5 I_{5}=0.5 I_{\text {bias }}, \\
& I_{7}=I_{6}=n I_{\text {Bias }} \\
& V_{\text {icm }}(\max)=V_{D D}-V_{S G 3}+V_{T 1} \\
& V_{\text {icm }}(\min)=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{G S 1} \\
& V_{\text {out }}(\max)=V_{D D}-V_{S D 6}(\mathrm{sat}) \\
& V_{\text {out }}(\min)=V_{S S}+V_{D S 7}(\mathrm{sat})
\end{aligned}
$$

Notice that the output stage is class A

$\therefore I_{\text {sink }}=I_{7}$ and $I_{\text {source }}=\frac{K_{N^{\prime} W_{6}}}{2 L_{6}}\left(V_{D D^{-}} V_{S S}-V_{T}\right)^{2}-I_{7}$

DC Balance Conditions for the Two-Stage Op Amp

For best performance, keep all transistors in saturation.
M4 is the only transistor that cannot be forced into saturation by internal connections or external voltages.
Therefore, we develop conditions to force M4 to be in saturation.
1.) First assume that $V_{S G 4}=V_{S G 6}$. This will cause "proper mirroring" in the M3-M4 mirror. Also, the gate and drain of M4 are at the same
 potential so that M4 is "guaranteed" to be in saturation.
2.) Let $S_{i} \equiv \frac{W_{i}}{L_{i}}$, if $V_{S G 4}=V_{S G 6}$, then $I_{6}=\left(\frac{S_{6}}{S_{4}} I_{4}\right.$
3.) However, $I_{7}=\left(\frac{S_{7}}{S_{5}}\right) I_{5}=\left(\frac{S_{7}}{S_{5}}\right)\left(2 I_{4}\right)$
4.) For balance, I_{6} must equal $I_{7} \Rightarrow \frac{S_{6}}{S_{4}}=\frac{2 S_{7}}{S_{5}}$ which is called the "balance conditions"
5.) So if the balance conditions are satisfied, then $V_{D G 4}=0$ and M 4 is saturated.

Small-Signal Performance of the Two-Stage CMOS Op Amp

Small-Signal Performance of the Two-Stage CMOS Op Amp

Summary of the small signal performance:
Midband performance-

$$
A_{o}=g_{m \mathrm{I}} g_{m \mathrm{II}} R_{\mathrm{I}} R_{\mathrm{II}} \approx g_{m 1} g_{m 6}\left(r_{d s 2} \| r_{d s 4}\right)\left(r_{d s 6} \| r_{d s 7}\right), \quad R_{\text {out }}=r_{d s 6} \| r_{d s} 7, \quad R_{\text {in }}=\infty
$$

Roots-
Zero $=\frac{g_{m \mathrm{II}}}{C_{c}}=\frac{g_{m 6}}{C_{c}}$
Poles at $\quad p_{1} \approx \frac{-1}{g_{m I I} R_{I} R_{I I} C_{c}}=\frac{-\left(g_{d s 2}+g_{d s 4}\right)\left(g_{d s 6}+g_{d s 7}\right)}{g_{m 6} C_{c}} \quad$ and $\quad p_{2} \approx \frac{-g_{m I I}}{C_{I I}} \approx \frac{-g_{m 6}}{C_{L}}$
Assume that $g_{m 1}=100 \mu \mathrm{~S}, g_{m 6}=1 \mathrm{mS}, r_{d s 2}=r_{d s 4}=2 \mathrm{M} \Omega r_{d s 6}=r_{d s 7}=0.5 \mathrm{M} \Omega, C_{c}=5 \mathrm{pF}$ and $C_{L}=10 \mathrm{pF}$:

$$
\begin{aligned}
A_{o} & =(100 \mu \mathrm{~S})(1 \mathrm{M} \Omega)(1000 \mu \mathrm{~S})(0.25 \mathrm{M} \Omega)=25,000 \mathrm{~V} / \mathrm{V}, \quad R_{\text {in }}=\infty, R_{\text {out }}=250 \mathrm{k} \Omega \\
\text { Zero } & =1000 \mu \mathrm{~S} / 5 \mathrm{pF}=2 \times 10^{8} \mathrm{rads} / \mathrm{sec} \text { or } 31.83 \mathrm{MHz}, \\
p_{1} & =\frac{-1}{(1 \mathrm{mS})(1 \mathrm{M} \Omega)(0.25 \mathrm{M} \Omega)(5 \mathrm{pF})} \\
& =-800 \mathrm{rads} / \mathrm{sec} \text { or } 127.3 \mathrm{~Hz}, \\
G B & =3.178 \mathrm{MHz}
\end{aligned}
$$

and $\quad p_{2}=(-1000 \mu \mathrm{~S} / 10 \mathrm{pF})=10^{8} \mathrm{rads} / \mathrm{sec}$ or 15.915 MHz

Slew Rate of a Two-Stage CMOS Op Amp

Remember that slew rate occurs when currents flowing in a capacitor become limited and is given as

$$
I_{l i m}=C \frac{d v_{C}}{d t} \text { where } v_{C} \text { is the voltage across the capacitor } C \text {. }
$$

$S R^{+}=\min \left[\frac{I_{5}}{C_{c}}, \frac{I_{6}-I_{5}-I_{7}}{C_{L}}\right]=\frac{I_{5}}{C_{c}}$ because $I_{6} \gg I_{5} \quad S R^{-}=\min \left[\frac{I_{5}}{C_{c}}, \frac{I_{7}-I_{5}}{C_{L}}\right]=\frac{I_{5}}{C_{c}}$ if $I_{7} \gg I_{5}$.
Therefore, if C_{L} is not too large and if I_{7} is significantly greater than I_{5}, then the slew rate of the two-stage op amp should be,

$$
S R=\frac{I_{5}}{C_{c}}
$$

Folded Cascode, CMOS Op Amp

Circuit:

Comments:

- The bias currents, I_{4} and I_{5}, should be designed so that I_{6} and I_{7} never become zero (i.e. $I_{5}=I_{6}=1.5 I_{3}$)
- This amplifier is nearly balanced (would be exactly if R_{A} was equal to R_{B})

- Self compensating
- Poor noise performance, the gain occurs at the output so all intermediate transistors contribute to the noise along with the input transistors. (Some first stage gain can be achieved if R_{A} and R_{B} are greater than $g_{m 1}$ or $g_{m 2}$.

Small-Signal Analysis of the Folded Cascode Op Amp

Model:

Recalling what we learned about the resistance looking into the source of the cascode transistor;

$$
R_{A}=\frac{r_{d s 6}+R_{2}+\left(1 / g_{m 10}\right)}{1+g_{m 6} r_{g s 6}} \approx \frac{1}{g_{m 6}} \text { and } R_{B}=\frac{r_{d s 7}+R_{I I}}{1+g_{m 7} r_{d s 7}} \approx \frac{R_{I I}}{g_{m 7} r_{d s 7}} \text { where } R_{I I} \approx g_{m 9} r_{d s 9} r_{d s 11}
$$

The small-signal voltage transfer function can be found as follows. The current i_{10} is written as

$$
i_{10}=\frac{-g_{m 1}\left(r_{d s 1} \| r_{d s 4}\right) v_{i n}}{2\left[R_{A}+\left(r_{d s 1} \| r_{d s 4}\right)\right]} \approx \frac{-g_{m 1} v_{i n}}{2}
$$

and the current i_{7} can be expressed as

$$
i_{7}=\frac{g_{m 2}\left(r_{d s 2} \| r_{d s 5}\right) v_{i n}}{2\left[\frac{R_{I I}}{g_{m 7} r_{d s 7}}+\left(r_{d s 2} \| r_{d s 5}\right)\right]}=\frac{g_{m 2} v_{i n}}{2\left(1+\frac{R_{I I}\left(g_{d s 2}+g_{d s 5}\right)}{g_{m 7} r_{d s} 7}\right)}=\frac{g_{m 2} v_{i n}}{2(1+k)} \quad \text { where } \quad k=\frac{R_{I I}\left(g_{d s 2}+g_{d s 4}\right)}{g_{m 7} r_{d s 7}}
$$

The output voltage, $v_{\text {out }}$, is equal to the sum of i_{7} and i_{10} flowing through $R_{\text {out }}$. Thus,

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{g_{m 1}}{2}+\frac{g_{m 2}}{2(1+k)}\right) R_{\text {out }}=\left(\frac{2+k}{2+2 k}\right) g_{m I} R_{\text {out }}
$$

Frequency Response of the Folded Cascode Op Amp

The frequency response of the folded cascode op amp is determined primarily by the output pole which is given as

$$
p_{\text {out }}=\frac{-1}{R_{\text {out }} C_{\text {out }}}
$$

where $C_{\text {out }}$ is all the capacitance connected from the output of the op amp to ground.
All other poles must be greater than $G B=g_{m 1} / C_{\text {out }}$. The approximate expressions for each pole is
1.) Pole at node A :

$$
p_{A} \approx-1 / R_{A} C_{A}
$$

2.) Pole at node B:

$$
p_{B} \approx-1 / R_{B} C_{B}
$$

3.) Pole at drain of M6:

$$
p_{6} \approx \frac{-1}{\left(R_{2}+1 / g_{m 10}\right) C_{6}}
$$

4.) Pole at source of M8: $\quad p_{8} \approx-g_{m 8} / C_{8}$
5.) Pole at source of M9: $\quad p_{9} \approx-g_{m 9} / C_{9}$
6.) Pole at gate of M10: $\quad p_{10} \approx-g_{m 10} / C_{10}$
where the approximate expressions are found by the reciprocal product of the resistance and parasitic capacitance seen to ground from a given node. One might feel that because R_{B} is approximately $r_{d s}$ that this pole might be too small. However, at frequencies where this pole has influence, $C_{\text {out }}$, causes $R_{\text {out }}$ to be much smaller making p_{B} also non-dominant.

Example 1 - Folded Cascode, CMOS Op Amp

Assume that all $g_{m N}=g_{m P}=100 \mu \mathrm{~S}, r_{d s N}=2 \mathrm{M} \Omega, r_{d s} P=1 \mathrm{M} \Omega$, and $C_{L}=10 \mathrm{pF}$. Find all of the small-signal performance values for the folded-cascode op amp.
$R_{I I}=0.4 \mathrm{G} \Omega, R_{A}=10 \mathrm{k} \Omega$, and $R_{B}=4 \mathrm{M} \Omega \therefore \quad k=\frac{0.4 \times 10^{9}\left(0.3 \times 10^{-6}\right)}{100}=1.2$
$\frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{2+1.2}{2+2.2}\right)(100)(57.143)=4,354 \mathrm{~V} / \mathrm{V}$
$R_{\text {out }}=R_{I I}\left\|\left[g_{m 7} r_{d s 7}\left(r_{d s 5} \| r_{d s 2}\right)\right]=400 \mathrm{M} \Omega\right\|[(100)(0.667 \mathrm{M} \Omega)]=57.143 \mathrm{M} \Omega$
$\left|p_{\text {out }}\right|=\frac{1}{R_{\text {out }} C_{\text {out }}}=\frac{1}{57.143 \mathrm{M} \Omega \cdot 10 \mathrm{pF}}=1,750 \mathrm{rads} / \mathrm{sec} . \Rightarrow 278 \mathrm{~Hz} \Rightarrow \quad G B=1.21 \mathrm{MHz}$
Comments on the Folded Cascode, CMOS Op Amp:

- Good PSRR
- Good ICMR
- Self compensated
- Can cascade an output stage to get extremely high gain with lower output resistance (use Miller compensation in this case)
- Need first stage gain for good noise performance
- Widely used in telecommunication circuits where large dynamic range is required

SIMPLE TWO-STAGE BJT OP AMPS

BJT Two-Stage Op Amp

Circuit:

DC Conditions:

$$
\begin{aligned}
& I_{5}=I_{\text {bias }}, \quad I_{1}=I_{2}=0.5 I_{5}=0.5 I_{\text {bias }}, \quad I_{7}=I_{6}=n I_{\text {Bias }} \\
& V_{\text {icm }}(\max)=V_{C C}-V_{E B 3}-V_{C E 1}(\mathrm{sat})+V_{B E 1} \\
& V_{\text {icm }}(\min)=V_{E E}+V_{C E 5}(\mathrm{sat})+V_{B E 1} \\
& V_{\text {out }}(\max)=V_{C C}-V_{E C 6}(\mathrm{sat}) \\
& V_{\text {out }}(\mathrm{min})=V_{E E}+V_{C E 7}(\mathrm{sat})
\end{aligned}
$$

Notice that the output stage is class $\mathrm{A} \Rightarrow I_{\text {sink }}=I_{7}$ and $I_{\text {source }}=\beta_{F} I_{5}-I_{7}$

Two-Stage BJT Op Amp - Continued

Small Signal Performance:

Assuming differential mode operation, we can write the small-signal model as,

Fig. 140-09
where,

$$
\begin{array}{lllr}
R_{1}=\frac{1}{g_{m 3}}\left\|r_{\pi 3}\right\| r_{\pi 4} \| r_{o 3} \approx \frac{1}{g_{m 3}} & R_{2}=r_{\pi 6}\left\|r_{o 2}\right\| r_{o 4} \approx r_{\pi 6} & \text { and } & R_{3}=r_{o 6} \| r_{o 7} \\
C_{1}=C_{\pi 3}+C_{\pi 4}+C_{c s 1}+C_{c s 3} & C_{2}=C_{\pi 6}+C_{C s 2}+C_{c S 4} & \text { and } & C_{3}=C_{L}+C_{c s 6}+C_{c s} 7
\end{array}
$$

Note that we have ignored the base-collector capacitors, C_{μ}, except for M6, which is called C_{C}.
Assuming the pole due to C_{1} is much greater than the poles due to C_{2} and C_{3} gives

Fig. 140-10

Two-Stage BJT Op Amp - Continued

Summary of the small signal performance:
Midband performance-
$A_{o}=g_{m \mathrm{I}} g_{m \mathrm{II}} R_{\mathrm{I}} R_{\mathrm{II}} \approx g_{m 1} g_{m 6} r_{\pi 6}\left(r_{o 6} \| r_{o 7}\right)=g_{m 1} \beta_{F 6}\left(r_{o 6} \| r_{o 7}\right), R_{o u t}=r_{o 6} \| r_{o 7}, R_{\text {in }}=2 r_{\pi 1}$
Roots-
Zero $=\frac{g_{m \mathrm{II}}}{C_{c}}=\frac{g_{m 6}}{C_{c}}$
Poles at $\quad p_{1} \approx \frac{-1}{g_{m \mathrm{II}} R_{\mathrm{I}} R_{\mathrm{II}} C_{c}}=\frac{-1}{g_{m 6} r_{\pi 6}\left(r_{o 6} \| r_{o 7}\right) C_{c}}=\frac{-g_{m 1}}{A_{o} C_{c}} \quad$ and $\quad p_{2} \approx \frac{-g_{m \mathrm{II}}}{C_{\mathrm{II}}} \approx \frac{-g_{m 6}}{C_{L}}$
Assume that $\beta_{F}=100, g_{m 1}=1 \mathrm{mS}, g_{m 6}=10 \mathrm{mS}, r_{06}=r_{o 7}=0.5 \mathrm{M} \Omega, C_{C}=5 \mathrm{pF}$ and $C_{L}=10 \mathrm{pF}$:
$A_{o}=(1 \mathrm{mS})(100)(250 \mathrm{k} \Omega)=25,000 \mathrm{~V} / \mathrm{V}, \quad R_{\text {in }} 2\left(\beta_{F} / g_{m 1}\right) 2(100 \mathrm{k} \Omega)=200 \mathrm{k} \Omega, \quad R_{\text {out }}=250 \mathrm{k} \Omega$
Zero $=\frac{10 \mathrm{mS}}{5 \mathrm{pF}}=2 \times 10^{9} \mathrm{rads} / \mathrm{sec}$
or 318.3 MHz ,
$p_{1}=\frac{-1 \mathrm{mS}}{(25,000) 5 \mathrm{pF}}=\frac{-2 \times 10^{8}}{25,000}$

$=-8000 \mathrm{rads} / \mathrm{sec}$ or 1273 Hz ,
and $p_{2}=-10 \mathrm{mS} / 10 \mathrm{pF}=-10^{9} \mathrm{rads} / \mathrm{sec}$ or 159.15 MHz
ECE 6412 - Analog Integrated Circuit Design - II
© P.E. Allen - 2002

Slew Rate of the Two-Stage BJT Op Amp

Remember that slew rate occurs when currents flowing in a capacitor become limited and is given as

$$
I_{\text {lim }}=C \frac{d v_{C}}{d t} \text { where } v_{C} \text { is the voltage across the capacitor } C \text {. }
$$

$S R^{+}=\min \left[\frac{I_{5}}{C_{C}}, \frac{I_{6}-I_{5}-I_{7}}{C_{L}}\right]=\frac{I_{5}}{C_{C}}$ because $I_{6} \gg I_{5}$
$S R^{-}=\min \left[\frac{I_{5}}{C_{c}}, \frac{I_{7}-I_{5}}{C_{L}}\right]=\frac{I_{5}}{C_{c}}$ if $I_{7} \gg I_{5}$.
Therefore, if C_{L} is not too large and if I_{7} is significantly greater than I_{5}, then the slew rate of the two-stage op amp should be,

$$
S R=\frac{I_{5}}{C_{c}}
$$

Folded-Cascode BJT Op Amp

Circuit

DC Conditions:
$I_{3}=I_{\text {bias }}, I_{1}=I_{2}=0.5 I_{5}=0.5 I_{\text {bias }}, \quad I_{4}=I_{5}=k I_{\text {Bias }}, \quad I_{10}=I_{11}=k I_{\text {Bias }}-0.5 I_{\text {bias }}(k>1)$
$V_{i c m}(\max)=V_{C C}-V_{C E 3}(\mathrm{sat})+V_{E B 1} \quad V_{i c m}(\mathrm{~min})=V_{E E}+V_{C E 4}(\mathrm{sat})+V_{E C 1}(\mathrm{sat})-V_{B E 1}$
$V_{\text {out }}(\max)=V_{C C}-V_{E C 9}(\mathrm{sat})-V_{E C 11}(\mathrm{sat}) \quad V_{\text {out }}(\mathrm{min})=V_{E E}+V_{C E 5}(\mathrm{sat})+V_{C E 7}(\mathrm{sat})$
Notice that the output stage is push-pull $\Rightarrow I_{\text {sink }}$ and $I_{\text {source }}$ are limited by the base current.
ECE 6412 - Analog Integrated Circuit Design - II
© P.E. Allen - 2002

Folded-Cascode BJT Op Amp - Continued

Small-Signal Analysis:

where $R_{A} \approx 1 / g_{m 6}$ and $R_{B} \approx \frac{r_{O 7}+\beta_{P} r_{011} / 2}{1+g_{m 7} r_{07}} \approx \frac{r_{\pi 7}}{2}$ if $r_{07} \approx r_{011}$

$$
\begin{aligned}
& \quad i_{10} \approx \frac{-g_{m 1} r_{\pi 6} v_{\text {in }}}{2\left(r_{\pi 6}+R_{A}\right)} \approx \frac{-g_{m 1} v_{\text {in }}}{2} \quad i_{7} \approx \frac{g_{m 2} r_{\pi 7} v_{\text {in }}}{2\left(r_{\pi 7}+R_{B}\right)} \approx \frac{g_{m 2} r_{\pi 7} v_{\text {in }}}{2\left(r_{\pi 7}+0.5 r_{\pi 7}\right)}=\frac{g_{m 2} v_{\text {in }}}{3} \\
& \therefore \quad v_{\text {out }}=\left(i_{7}-i_{10}\right) \beta_{P} R_{\text {out }} v_{\text {in }}=\frac{5}{6}\left(g_{m 1} \beta_{P} R_{\text {out }}\right) v_{\text {in }} \quad \text { if } g_{m 1}=g_{m 2} \Rightarrow \quad \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{5}{6}\left(g_{m 1} \beta_{P} R_{\text {out }}\right) \\
& \left.R_{\text {out }}=\beta_{P} r_{\text {o11 }} \| \beta_{N}\left(r_{\text {o }} \| r_{\text {o } 2}\right)\right] \quad \text { and } \quad R_{\text {in }}=2 r_{\pi 1}
\end{aligned}
$$

Assume that $\beta_{F N}=100, \beta_{F P}=50, g_{m 1}=g_{m 2}=1 \mathrm{mS}, r_{o N}=1 \mathrm{M} \Omega$, and $r_{o P}=0.5 \mathrm{M} \Omega$:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=14,285 \mathrm{~V} / \mathrm{V} \quad R_{\text {out }}=14.285 \mathrm{M} \Omega \quad \text { and } R_{\text {in }}=100 \mathrm{k} \Omega
$$

Folded-Cascode BJT Op Amp - Continued

Frequency response includes only 1 dominant pole at the output (self-compensation),

$$
p_{1}=\frac{-1}{R_{\text {out }} C_{L}}
$$

There are other poles but we shall assume that they are less than $G B$
If $C_{L}=25 \mathrm{pF}$, then $\left|p_{1}\right|=2800 \mathrm{rads} / \mathrm{sec}$. or $446 \mathrm{~Hz} \Rightarrow \quad G B=6.371 \mathrm{MHz}$
Checking some of the nondominant poles gives:
$\left|p_{A}\right|=\frac{1}{R_{A} C_{A}}=\frac{g_{m 6}}{C_{A}} \Rightarrow 159 \mathrm{MHz}$ if $C_{A}=1 \mathrm{pf}$
(the capacitance to ac ground at the emitter of Q6)
$\left|p_{B}\right|=\frac{1}{R_{B} C_{B}}=\frac{2}{r_{\pi 7} C_{B}} \Rightarrow 6.37 \mathrm{MHz}$ if $C_{B}=1 \mathrm{pf}$ (the capacitance to ac ground at the emitter of Q7)
This indicates that for small capacitive loads, this op amp will suffer from higher poles with respect to phase margin. Capacitive loads greater than 25 pF , will have better stability (and less $G B$).

SUMMARY

- Two stage op amp gives reasonably robust performance as an "on-chip" op amp
- DC balance conditions insure proper mirroring and all transistors in saturation
- Slew rate of the two-stage op amp is I_{5} / C_{c}
- Folded cascode op amp offers wider input common voltage range
- Folded cascode op amp is a self-compensated op amp because the dominant pole at the output and proportional to the load capacitor

