(READING: GHLM - 599-613)

Objective

The objective of this presentation is:

- 1.) Illustrate the method of using return ratio to analyze feedback circuits
- 2.) Demonstrate using examples

Outline

- Concept of return ratio
- Closed-loop gain using return ratio
- Closed-loop impedance using return ratio
- Summary

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Page 290-2

Lecture 290 – Feedback Analysis using Return Ratio (3/20/02)

Concept of Return Ratio

Instead of using two-port analysis, return ratio takes advantage of signal flow graphs (theory).

The return ratio for a dependent source in a feedback loop is found as follows:

- 1.) Set all independent sources to zero.
- 2.) Change the dependent source to an independent source and define the controlling variable as, s_r , and the source variable as s_t .
- 3.) Calculate the return ratio designated as $RR = -s_r/s_t$.

Find the return ratio of the op amp with feedback shown if the input resistance of the op amp is r_i , the output resistance is r_o , and the voltage gain is a_v .

Closed-Loop Gain Using Return Ratio – Continued

Interpretation:

 B_1 is the transfer function from the input to the controlling signal with k = 0.

 B_2 is the transfer function from the controlling signal to the output with $s_{in} = 0$.

H is the transfer function from the output of the dependent source to the controlling signal with $s_{in} = 0$ and multiplied times a -1.

d is defined as,

$$d = \frac{s_{out}}{s_{in}} \frac{|}{s_{oc}=0} = \frac{s_{out}}{s_{in}} \frac{|}{k=0}$$

d = is the direct signal feedthrough when the controlled source in A is set to zero (k=0) Closed-loop gain (s_{out}/s_{in}) can be found as,

$$s_{ic} = B_1 s_{in} - H s_{oc} = B_1 s_{in} - kH s_{ic} \longrightarrow \frac{s_{ic}}{s_{in}} = \frac{B_1}{1 + kH}$$

$$s_{out} = d s_{in} + B_2 s_{oc} = d s_{in} + kB_2 s_{ic} = d s_{in} + \frac{B_1 kB_2}{1 + kH} s_{in}$$
2.)
$$A = \frac{s_{out}}{s_{in}} = \frac{B_1 kB_2}{1 + kH} + d = \frac{B_1 kB_2}{1 + RR} + d = \frac{g}{1 + RR} + d$$
where $RR = kH$ and $g = B_1 kB_2$ (gain from s_{in} to s_{out} if $H = 0$ and $k = 0$)
ECE 6412 - Analog Integrated Circuit Design - II

Lecture 290 - Feedback Analysis using Return Ratio (3/20/02)

<u>Closed-Loop Gain Using Return Ratio – Continued</u>

Further simplification:

$$A = \frac{g}{1+RR} + d = \frac{g+d(1+RR)}{1+RR} = \frac{g+d\cdot RR}{1+RR} + \frac{d}{1+RR} = \frac{\left(\frac{g}{RR} + d\right)RR}{1+RR} + \frac{d}{1+RR}$$

Define

2

$$A_{\infty} = \frac{g}{RR} + d$$

3.)
$$A = A_{\infty} \frac{RR}{1 + RR} + \frac{d}{1 + RR}$$

Note that as $RR \rightarrow \infty$, that $A = A_{\infty}$.

 A_{∞} is the closed-loop gain when the feedback circuit is ideal (i.e., $RR \rightarrow \infty$ or $k \rightarrow \infty$). Block diagram of the new formulation:

19

Note that $b = RR \cdot A_{\infty}$ is called the effective gain of the feedback amplifier. Page 290-6

© P.E. Allen - 2002

Find the closed-loop gain and the effective gain of the transistor feedback amplifier shown using the previous formulas. Assume that the BJT $g_m = 40$ mS, $r_{\pi} = 5$ k Ω , and $r_o = 1$ M Ω .

Solution

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Page 290-8

Lecture 290 - Feedback Analysis using Return Ratio (3/20/02)

Example 2 – Continued

What is left is to calculate the RR. A small-signal model for this is shown below.

$$V_{r} = (-g_{m}v_{t}) \left(\frac{r_{o}||R_{C}}{r_{\pi} + R_{F} + r_{o}||R_{C}} \right) r_{\pi} \rightarrow \frac{v_{r}}{v_{t}} = (-g_{m}r_{\pi}) \left(\frac{r_{o}||R_{C}}{r_{\pi} + R_{F} + r_{o}||R_{C}} \right) r_{\pi} \rightarrow \frac{v_{r}}{v_{t}} = (200) \left(\frac{1M\Omega||10k\Omega}{5k\Omega + 20k\Omega + 1M\Omega||10k\Omega} \right) = 56.74$$

Now, the closed loop gain is found to be,

$$A = A_{\infty} \frac{RR}{1 + RR} + \frac{d}{1 + RR} = (-20k\Omega) \left(\frac{56.74}{1 + 56.74}\right) + \left(\frac{1.4k\Omega}{1 + 56.74}\right) = -19.63k\Omega$$

The effective gain is given as,

$$b = RR \cdot A_{\infty} = 56.74(-20k\Omega) = -1135k\Omega$$

 V_{CC}

 $R_C = 10 \mathrm{k}\Omega$

Closed-Loop Impedance Formula using the Return Ratio (Blackman's Formula) Consider the following linear feedback circuit where the impedance at port X is to be calculated.

Expressing the signals, v_x and s_{ic} as linear functions of the signals i_x and s_y gives,

$$v_x = a_1 i_x + a_2 s_y$$

$$s_{ic} = a_3 i_x + a_4 s_y$$

The impedance looking into port X when k = 0 is,

$$Z_{port}(k=0) = \frac{v_x}{i_x} \Big|_{k=0} = \frac{v_x}{i_x} \Big|_{s_y=0}$$

ECE 6412 - Analog Integrated Circuit Design - II

Lecture 290 - Feedback Analysis using Return Ratio (3/20/02)

Closed-Loop Impedance Formula using the Return Ratio – Continued

Next, compute the RR for the controlled source, k, under two different conditions.

1.) The first condition is when port X is open $(i_x = 0)$.

$$s_{ic} = a_4 s_y = a_4 s_t$$

Also,

$$s_r = ks_{ic} \rightarrow s_r = ka_4s_t \rightarrow RR(\text{port open}) = -\frac{s_r}{s_t} = -ka_4$$

2.) The second condition is when port X is shorted ($v_x = 0$).

$$i_x = -\frac{a_2}{a_1} s_y = -\frac{a_2}{a_1} s_t$$

$$\cdot \qquad s_{ic} = a_3 i_x + a_4 s_y = \left(a_4 - \frac{a_2 a_3}{a_1}\right) s_t$$

The return signal is

$$s_r = ks_{ic} = k \left(a_4 - \frac{a_2 a_3}{a_1} \right) s_t \quad \Rightarrow \quad RR(\text{port shorted}) = -\frac{s_r}{s_t} = -k \left(a_4 - \frac{a_2 a_3}{a_1} \right)$$

3.) The port impedance can be found as (Blackman's formula), (a_2a_2)

4.)
$$Z_{\text{port}} = \frac{x_x}{i_x} = a_1 \left(\frac{1 - k \left(a_4 - \frac{a_2 a_3}{a_1} \right)}{1 - a_4} \right) \Rightarrow \qquad Z_{\text{port}} = Z_{\text{port}}(k=0) \left[\frac{1 + RR(\text{port shorted})}{1 + RR(\text{port open})} \right]$$

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

© P.E. Allen - 2002

Page 290-10

Example 3 – Application of Blackman's Formula

Use Blackman's formula to calculate the output resistance of Example 2.

Solution

We must calculate three quantities. They are $R_{out}(g_m=0)$, RR(output port shorted), and RR(output port open). Use the following model for calculations: r_{π}

 $R_{out}(g_m=0) = r_o ||R_C||(r_{\pi}+R_F) = 7.09 \text{k}\Omega$

RR(output port shorted) = 0 because v_t

= 0.

RR(output port open) = RR of Example 2 = 56.74

 $\therefore \qquad R_{out} = R_{out}(g_m = 0) \left[\frac{1 + RR(\text{port shorted})}{1 + RR(\text{port open})} \right] = 7.09 \text{k}\Omega\left(\frac{1}{1 + 56.74}\right) = 129\Omega$

ECE 6412 - Analog Integrated Circuit Design - II

Lecture 290 – Feedback Analysis using Return Ratio (3/20/02)

Example 4 – Output Resistance of a Super-Source Follower

Find an expression for the small-signal output resistance of the circuit shown.

Solution

The appropriate small-signal model is shown where $g_{m2} = k$.

© P.E. Allen - 2002

 V_{DD}

Page 290-12

Vout

Lecture 290 – Feedback Analysis using Return Ratio (3/20/02)	Page 290-13
$\therefore R_{out} = R_{out}(g_{m2}=0) \left[\frac{1 + RR(\text{port shorted})}{1 + RR(\text{port open})} \right] = r_{ds2} \left(\frac{1+0}{1+(1+g_{m1}r_{ds1})g_{m2}r_{ds2}} \right) \approx 1$	
$g_{m1}r_{ds1}g_{m2}$	
ECE 6412 - Analog Integrated Circuit Design - II	© P.E. Allen - 2002
Lecture 290 – Feedback Analysis using Return Ratio (3/20/02)	Page 290-14
SUMMARY	

- Return ratio is associated with a dependent source. If the dependent source is converted to an independent source, then the return ratio is the gain from the dependent source variable to the previously controlling variable.
 - The closed-loop gain of a linear, negative feedback system can be expressed as

$$A = A_{\infty} \frac{RR}{1 + RR} + \frac{d}{1 + RR}$$

where

 A_{∞} = the closed-loop gain when the loop gain is infinite

RR = the return ratio

d = the closed-loop gain when the amplifier gain is zero

• The resistance at a port can be found from Blackman's formula which is

 $Z_{\text{port}} = Z_{\text{port}}(k=0) \left[\frac{1 + RR(\text{port shorted})}{1 + RR(\text{port open})} \right]$

where k is the gain of the dependent source chosen for the return ratio calculation

- This stuff is all great but of *little use as far as calculations are concerned*. Small-signal analysis is generally quicker and easier than the two-port approach or the return ratio approach.
- Why study feedback? Because it is a great tool for understanding a circuit and for design.

ECE 6412 - Analog Integrated Circuit Design - II