EXAMINATION NO. 2 - SOLUTIONS

(Average score $=75 / 100$)

Problem 1-(25 points)

A self-compensated op amp has three higher order poles grouped closely around -1×10^{9} radians/sec. What should be the $G B$ of this op amp in Hz to achieve a 60° phase margin? If the low frequency gain of the op amp is 80 dB , where is the location of the dominant pole, p_{1} ? If the output resistance of this amplifier is $10 \mathrm{M} \Omega$, what is the value of C_{L} that will give this location for p_{1} ? (Ignore any other capacitance at the output for this part of the problem).

Solution

The key to this problem is to assume that the three closely grouped poles around -1×10^{9} radians $/ \mathrm{sec}$. can be approximated as three poles at -1×10^{9} radians $/ \mathrm{sec}$. Therefore,

$$
\text { Phase margin }=\mathrm{PM}=180^{\circ}-\tan ^{-1}\left(\frac{G B}{\left|p_{1}\right|}\right)-3 \tan ^{-1}\left(\frac{G B}{\left|p_{H}\right|}\right)=60^{\circ}
$$

where p_{H} is a pole at -1×10^{9} radians $/ \mathrm{sec}$. Assuming that $G B /\left|p_{1}\right|$ is large then, we can write the above as,

$$
\begin{aligned}
& 180^{\circ}-90^{\circ}-3 \tan ^{-1}\left(\frac{G B}{\left|p_{H}\right|}\right)=60^{\circ} \rightarrow 30^{\circ}=-3 \tan ^{-1}\left(\frac{G B}{\left|p_{H}\right|}\right) \rightarrow \frac{G B}{\left|p_{H}\right|}=\tan \left(10^{\circ}\right)=0.1763 \\
\therefore & G B=0.1763\left|p_{H}\right|=176.3 \text { Mradians/sec. } \rightarrow G B=28.06 \mathrm{MHz}
\end{aligned}
$$

$80 \mathrm{~dB} \rightarrow 10,000$ which gives

The expression for p_{1} is

$$
\left|p_{1}\right|=\frac{1}{R_{\text {out }} C_{L}} \quad \rightarrow C_{L}=\frac{1}{R_{\text {out }}\left|p_{1}\right|}=\frac{1}{1.763 \times 10^{4} \cdot 10^{7}}=\underline{\underline{5.672 \mathrm{pF}}}
$$

Problem 2-(25 points)

Design the values of W for each of the transistors of the op amp shown assuming that the channel lengths of all transistors are $1 \mu \mathrm{~m}$. Also design the values of the bias voltages $V_{B N}$ and $V_{B P}$. The transistor model parameters are $K_{N}{ }^{\prime}=300 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=0.5 \mathrm{~V}$, and $K_{P}{ }^{\prime}=70 \mu \mathrm{~A} / \mathrm{V}^{2}, \quad V_{T P}=$ -0.5 V . Ignore the bulk effects. Use the following constraints among the transistor widths:
$W_{1}=W_{2}, W_{4}=W_{5}, W_{6}=$ $10 W_{4}, W_{7}=10 W_{5}, W_{8}=W_{9}$, and $W_{10}=W_{11}=W_{12}=W_{13}$

Round the values of the transistor
 widths to the nearest integer that meets or exceeds the specifications. Do not use safety factors or worst case in your design. The op amp specifications assuming a load capacitance of 5 pF are:
$V_{\text {icm }}{ }^{+}=0.75 \mathrm{~V}, V_{\text {icm }}{ }^{-}=-0.25 \mathrm{~V}, G B=200 \mathrm{MHz}, V_{\text {out }}{ }^{+}=0.5 \mathrm{~V}, V_{\text {out }}{ }^{-}=-0.5 \mathrm{~V}, S R=100 \mathrm{~V} / \mu \mathrm{s}$

Solution

1.) $S R=100 \mathrm{~V} / \mu \mathrm{s} \quad \rightarrow \quad I_{\text {out }}=C_{L} \cdot S R=5 \times 10^{-12} \cdot 10^{8}=500 \mu \mathrm{~A} \quad \rightarrow I_{3}=50 \mu \mathrm{~A}$
2.) $V_{i c m}{ }^{+}=0.75 \mathrm{~V} \rightarrow V_{S G 4}=V_{D D}-V_{i c m}{ }^{+}+V_{T N}=1.0-0.75+0.5=0.75 \mathrm{~V}$

$$
\begin{aligned}
& V_{O N 3}=0.75-0.5=0.25 \mathrm{~V} \quad \rightarrow \frac{W_{4}}{L_{4}}=\frac{2 I_{4}}{K_{N}\left(V_{O N 4}\right)^{2}}=\frac{50}{70(0.25)^{2}}=11.43=12 \\
& \therefore \underline{\underline{W}}_{\underline{4}}==_{5}=12 \mu \mathrm{~m} \quad \rightarrow \quad \underline{\underline{W}}_{6}=\underline{W}_{\underline{7}}=120 \mu \mathrm{~m}
\end{aligned}
$$

3.) $G B=200 \mathrm{MHz}$ or $G B=400 \pi \times 10^{6} \mathrm{rads} / \mathrm{sec}$.

$$
\begin{aligned}
& G B=\frac{g_{m 1}}{C_{L}} 10 \quad \rightarrow \quad g_{m 1}=\frac{G B \cdot C_{L}}{10}=\frac{400 \pi \times 10^{6} \cdot 5 \times 10^{-12}}{10}=628 \mu \mathrm{~S} \\
& \frac{W_{1}}{L_{1}}=\frac{g_{m 1}^{2}}{2 K_{N} I_{1}}=\frac{628^{2}}{50 \cdot 300}=26.32=27 \quad \therefore \quad \underline{W}_{1}=W_{2}=27 \mu \mathrm{~m}
\end{aligned}
$$

4.) $V_{\text {icm }}{ }^{-}=-0.25 \mathrm{~V} \quad \rightarrow \quad V_{D S 3}=V_{i c m}{ }^{-} V_{G S 1}-V_{S S}$

$$
\begin{aligned}
& V_{G S 1}=\sqrt{\frac{2 \cdot 25}{300 \cdot 27}}+0.5=0.5786 \mathrm{~V} \quad \rightarrow V_{D S 3}=-0.25-0.5786+1=0.1714 \mathrm{~V} \\
& \therefore \frac{W_{3}}{L_{3}}=\frac{2 I_{3}}{K_{N}\left(V_{O N 3}\right)^{2}}=\frac{2 \cdot 50}{300(0.1714)^{2}}=11.34=12 \quad \therefore \underline{W}_{3}=12 \mu \mathrm{~m}
\end{aligned}
$$

Problem 2-Continued
5.) $V_{\text {out }}{ }^{+}=0.5 \mathrm{~V}$

$$
\begin{aligned}
& V_{S D 6}=\sqrt{\frac{2 \cdot I_{6}}{K_{N}\left(W_{6} / L_{6}\right)}}=\sqrt{\frac{2 \cdot 250}{70 \cdot 120}}=0.243 \mathrm{~V} \rightarrow V_{S D 8}=0.256 \mathrm{~V} \\
\therefore & \frac{W_{8}}{L_{8}}=\frac{2 I_{8}}{K_{P}\left(V_{O N 8}\right)^{2}}=\frac{2 \cdot 250}{70(0.256)^{2}}=108.99=109 \quad \therefore \underline{W}_{8}=W_{9}=109 \mu \mathrm{~m}
\end{aligned}
$$

$$
\text { 6.) } V_{\text {out }}=-0.5 \mathrm{~V} \quad \text { Let } V_{D S 10}=V_{D S 12}=0.25 \mathrm{~V}
$$

$$
\begin{aligned}
& \frac{W_{12}}{L_{12}}=\frac{2 I_{12}}{K_{N}\left(V_{O N 12}\right)^{2}}=\frac{2 \cdot 250}{300(0.25)^{2}}=26.67=27 \\
\therefore & \underline{\underline{W}} \underline{\underline{\underline{10}}=W^{11}} \underline{\underline{\underline{11}}} \underline{\underline{\underline{W}}} \underline{=W} \underline{\underline{13}}=27 \mu \mathrm{~m}
\end{aligned}
$$

Problem 3-(25 points)

Assume the following for all transistors: $\mathrm{g}_{\mathrm{m}}=50 _\mathrm{S}$, $\mathrm{r}_{\mathrm{ds}}=100 \mathrm{~K}_{-}, \mathrm{V}_{\mathrm{ds} \text { sat }}=$ $300 \mathrm{mV}, \mathrm{V}_{\mathrm{bs}}^{-}=0 \mathrm{~V}$, and $\mathrm{C}_{\mathrm{L}}=$ 25 pF .
a) Determine the differential small-signal gain at very low frequencies.
b) Determine the Slew-Rate performance.
c) Determine the dominant pole of this circuit.
d) Identify the locations of the non-dominant poles of this circuit (e.g., gate of mnb2b, etc.).

(3) (4)

Problem 4-(25 points)

a) Identify the node that establishes the dominant pole frequency (e.g., base of Q24, etc.).
b) Identify all the nodes that introduce nondominant poles in the circuit.
c) What is the purpose of Q15?
d) What is the purpose of Q16?
e) What is the purpose of Q17?
f) What is the purpose of QT?

g) Is the gain from the base of Q17 to the emitter of Q23A high or low?
(4) (a) base of Q16
(1) emitters o Q3, 44
bare of if
hath of $\$ 6$
mores of 2.6
base of 9238
" \% Q20
" 8 Q 84
(c) Short. incur T protition (deviate Ibase-aiy from The bare Ψ_{0} The output when the output dernands Too much current)
(d) bahama The ic collector voltages of of $\$ Q 6$ (reduce systematic 96 sets)
(c) Second gain Jigger
(A) Bet helper (base-unnent error)
(g) hugh gam

