FINAL EXAMINATION - SOLUTIONS

(Average score $=81 / 100$)

Problem 1-(20 points - This problem is required)

An output stage is shown. Assume the parameters of the NMOS transistors are $K_{N}{ }^{\prime}=110 \mu \mathrm{~A}^{2} / \mathrm{V}, V_{T N}$ $=0.7 \mathrm{~V}, \lambda_{N}=0.04 \mathrm{~V}^{-1}$, the PMOS transistors are $K_{P}{ }^{\prime}=50 \mathrm{~V} / \mu \mathrm{A}^{2}, V_{T P}=-0.7 \mathrm{~V}, \lambda_{P}=0.05 \mathrm{~V}^{-1}$ and the lateral npn BJT has a current gain of $\beta_{F}=50$ and V_{t} $=25 \mathrm{mV}$. Find the small-signal output resistance (not including R_{L}), the small-signal voltage gain (ignore the bulk effect on M1), and the large signal slew rate (plus and minus) if a 10 pF capacitor is connected to the output.

Solution

Model parameters:
$\mathrm{M} 1: g_{m 1}=\sqrt{2 \cdot 40 \cdot 10 \cdot 50}=0.2 \mathrm{mS}$
Q2: $g_{m 2}=\frac{500 \mu \mathrm{~A}}{25 \mathrm{mV}}=20 \mathrm{mS}$ and $r_{\pi 2}=\frac{51}{20 \mathrm{mS}}=2.55 \mathrm{k} \Omega$
Small-signal model:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{g_{m 1}\left[(1+\beta) R_{L}\right]}{1+g_{m 1}\left[r_{\pi 2}+(1+\beta) R_{L}\right]}\right)=\frac{0.2 \mathrm{mS} \cdot 101 \cdot 100 \Omega}{1+0.2 \mathrm{mS}(2.55 \mathrm{k} \Omega+5.1 \mathrm{k} \Omega)}=\frac{1.20}{2.53}=\underline{\underline{0.403 \mathrm{~V} / \mathrm{V}}}
$$

Slew rates:

$$
\begin{aligned}
& S R^{+}=\frac{50 \mu \mathrm{~A}(51)-50 \mu \mathrm{~A}}{10 \mathrm{pF}}=\underline{\underline{205 \mathrm{~V} / \mu \mathrm{s}}} \\
& S R^{-}=\frac{500 \mu \mathrm{~A}}{10 \mathrm{pF}}=\underline{\underline{-50 \mathrm{~V} / \mu \mathrm{s}}}
\end{aligned}
$$

Problem 2-(20 points - This problem is optional)

A differential-in, differential-out amplifier is shown that eliminates the need for matching sinks and sources. Assume that all W/L values are equal and that each transistor has approximately the same current flowing through it. If all transistors are in the saturation region, find an algebraic expression for the voltage gain, $v_{\text {out }} / v_{\text {in }}$, and the differential output resistance, $R_{\text {out }}$, where $v_{\text {out }}=v_{3}-v_{4}$ and $v_{\text {in }}=$ $v_{1}-v_{2} . \quad R_{\text {out }}$ is the resistance seen between the output terminals.

Solution

Using the schematic approach to small signal analysis, we apply $v_{i n} / 2$ positively to M1 (M2) and negatively to M4 (M3). The resulting ac currents are shown on the schematic. At node, v_{3}, these currents flow out of a resistance whose value is $r_{d s 1} \| r_{d s 5}$ to give v_{3} as

$$
v_{3}=-\left(\frac{g_{m 1}+g_{m 3}}{2\left(g_{d s 1}+g_{d s 5}\right)}\right) v_{i n}=\frac{-g_{m 1} v_{i n}}{g_{d s 1}+g_{d s 5}}
$$

Similarly for v_{4}, we get

$$
v_{4}=\left(\frac{g_{m 2}+g_{m 4}}{2\left(g_{d s 2}+g_{d s 8}\right)}\right) v_{i n}=\frac{g_{m 2} v_{\text {in }}}{g_{d s 2}+g_{d s 8}} \Rightarrow \frac{v_{\text {out }}}{v_{\text {in }}}=\circ-\frac{g_{m 1}+g_{m 2}}{\mathrm{~g}_{d s 1}+g_{d s 5}}=\circ-\frac{g_{m 1}+g_{m 2}}{g_{d s 4}+g_{d s 8}}
$$

The output resistance seen differentially is the sum of the resistances seen to ground which is

$$
{ }^{\circ} R_{\text {out }}{ }^{\circ}=\frac{1}{g_{d s 1}+g_{d s 5}}{ }^{\circ}+\frac{1}{g_{d s 4}+g_{d s 8}}{ }^{\circ}={ }^{\circ} r_{d s 1}\left\|r_{d s 5}{ }^{\circ}+{ }^{\circ} r_{d s 4}\right\| r_{d s 8}{ }^{\circ}
$$

Problem 3-(20 points - This problem is optional)

Find an expression for the equivalent input noise voltage of the circuit in the previous problem, $\bar{e}_{e q}^{2}$, in terms of the small signal model parameters and the individual equivalent input noise voltages, $\bar{e}_{\mathrm{ni}}^{2}$, of each of the transistors ($\mathrm{i}=1$ through 7). Assume M1 and M2, M3 and M4, and M6 and M7 are
 matched.

Solution

Equivalent noise circuit:

$$
\bar{e}_{\mathrm{out}}^{2}=\left(g_{m 1}^{2} \bar{e}_{\mathrm{n} 1}^{2}+g_{m 2} 2^{2} \bar{e}_{\mathrm{n} 2}^{2}+g_{m 3} 2^{2} \bar{e}_{\mathrm{n} 3}^{2}+g_{m 4} 2^{2} \bar{e}_{\mathrm{n} 4}^{2}+g_{m 5}{ }^{2} \bar{e}_{\mathrm{n} 6}^{2}+g_{m 6}{ }^{2} \bar{e}_{\mathrm{n} 7}^{2}\right) R_{\text {out }}^{2}
$$

$$
\bar{e}_{e q}^{2}=\frac{\bar{e}_{\text {out }}^{2}}{\left(g_{m 1} R_{\text {out }}\right)^{2}}=\bar{e}_{\mathrm{n} 1}^{2}+\bar{e}_{\mathrm{n} 2}^{2}+\left(\frac{g_{m 3}}{g_{m 1}}\right)^{2}\left(\bar{e}_{\mathrm{n} 3}^{2}+\bar{e}_{\mathrm{n} 4}^{2}\right)+\left(\frac{g_{m 6}}{g_{m 1}}\right)^{2}\left(\bar{e}_{\mathrm{n} 6}^{2}+\bar{e}_{\mathrm{n} 7}^{2}\right)
$$

If M1 through M2 are matched then $g_{m 1}=g_{m 2}$ and we get

$$
\bar{e}_{e q}^{2}=2 \bar{e}_{\mathrm{n} 1}^{2}+2\left(\frac{g_{m 3}}{g_{m 3}}\right)^{2} \bar{e}_{\mathrm{n} 3}^{2}+2\left(\frac{g_{m 6}}{g_{m 1}}\right)^{2} \bar{e}_{\mathrm{n} 6}^{2}
$$

Problem 4-(20 points - This problem is optional)

Assuming the transconductance and output resistance of $\mathrm{mp} 1, \mathrm{mn} 1$, and mn 2 are $\mathrm{g}_{\mathrm{mpl}}, \mathrm{g}_{\mathrm{mn} 1}, \mathrm{~g}_{\mathrm{mn} 2}, \mathrm{r}_{\text {sdp1 }}, \mathrm{r}_{\mathrm{dsn} 1}$, and $\mathrm{r}_{\mathrm{dsn} 2}$, respectively, and that $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are much smaller than $\mathrm{r}_{\mathrm{ds} 1}, \mathrm{r}_{\mathrm{d} 22}$, and $\mathrm{r}_{\mathrm{ds} 3}$, answer the following questions:
(a) Determine the type of mixing being employed by the circuit.
(b) Determine the type of sampling being employed at $\mathrm{V}_{\text {out }}$.
(c) Determine the type of sampling being employed at $V_{\text {out2 }}$.

(d) Determine the loop gain of the circuit.
(e) Determine the open-loop resistance at $\mathrm{V}_{\text {out }}$.
(f) Determine the open-loop resistance at $\mathrm{V}_{\text {out }}$.
(g) Assuming the loop gain is infinite, what is the closed-loop gain from $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out2 }}$?

Solution

(a) Series
(b) Shunt
(c) Series
(d) Open loop at inverting input of Op-Amp (gate of mn2):

$$
\mathrm{LG}=\underset{-\mathrm{g}_{\mathrm{mn} 2} \underline{\mathrm{R}}_{\underline{3}}}{2} \quad * \quad \mathrm{~g}_{\mathrm{mp1}} \underline{\mathrm{R}}_{1}
$$

(e) $R_{\text {out } 1 \text { ol }}=R_{1} \|\left(1 / g_{\text {mp1 }}\right) \approx 1 / g_{\text {mp } 1}$
(f) $R_{\text {out } 201}=R_{2}\left\|R_{x}=R_{2}\right\|\left\{r_{\text {ds } 1}\left(g_{m p 1} R_{1}+1\right)+R_{1}\right\} \approx R_{2} \|\left(r_{\text {ds } 1} g_{m p 1} R_{1}\right)$
(g) $\mathrm{V}_{+} \approx \mathrm{V}_{-}=\mathrm{v}_{\mathrm{gn} 1}=\mathrm{v}_{\mathrm{gn} 2}=\mathrm{v}_{\mathrm{in}} \&$ remembering that $\mathrm{V}_{\mathrm{dd}}=\mathrm{ac}$ ground,

$$
\begin{aligned}
& \rightarrow \mathrm{v}_{\text {out } 2} / \mathrm{v}_{\text {in }}=\left(\mathrm{v}_{\text {out } 2} / \mathrm{i}_{\mathrm{R} 1}\right)\left(\mathrm{i}_{\mathrm{R} 1} / \mathrm{v}_{\mathrm{gn} 1}\right)\left(\mathrm{v}_{\mathrm{gn} 1} / \mathrm{v}_{\text {in }}\right) \approx\left(\mathrm{v}_{\text {out } 2} / \mathrm{i}_{\mathrm{R} 1}\right)\left(\mathrm{i}_{\mathrm{R} 1} / \mathrm{v}_{\mathrm{gn} 1}\right)(1) \\
&=\left(-\mathrm{R}_{2}\right)\left(1 / \mathrm{R}_{1}\right)
\end{aligned}
$$

Problem 5-(20 points - This problem is optional)

Assuming mn1, mn2, I_{1}, and I_{2} are ideal ($\mathrm{r}_{\text {out }}$ and $r_{d s} \rightarrow \infty$, and $C_{g s}, C_{d d}$, and $C_{d b}$ are all negligible), use either the Short-Circuit or the Open-Circuit Time-Constant test to determine (a) the dominant pole of the circuit (lowest, high-frequency pole) and (b) the second dominant pole. In doing part (b), state which capacitor determines the second dominant pole (intuitively), then derive it. Also assume $\mathrm{R}_{1}=$ $\mathrm{R}_{2}=1 \mathrm{M}_{-}, \mathrm{C}_{3}=\mathrm{C}_{2}=10 \mathrm{pF}, \mathrm{C}_{1}=0.1 \mathrm{pF}$, and
 $\mathrm{g}_{\mathrm{m} 1}=\mathrm{g}_{\mathrm{m} 2}=10 \mu \mathrm{~S}$. Do NOT use any other means to determine the answer and show your work.

Solution

(a) Open-Circuit Time Constant Test
$\mathrm{R}_{3}{ }^{\prime} \mathrm{C}_{3} \rightarrow \mathrm{R}_{3}{ }^{\prime}=\mathrm{R}_{2}\left(1+\mathrm{g}_{\mathrm{m} 2} \mathrm{R}_{1}\right)+\mathrm{R}_{1} \approx \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{~g}_{\mathrm{m} 2}=10 \mathrm{M}_{-}$
$\mathrm{R}_{3} \mathrm{C}_{3}=100 \mu \mathrm{~s} \rightarrow \mathrm{~W}=10 \mathrm{krad} / \mathrm{s} \rightarrow \mathrm{f}=1.59 \mathrm{kHz}$
$\mathrm{R}_{2}{ }^{\prime} \mathrm{C}_{2}=\mathrm{R}_{2} \mathrm{C}_{2}=10 \mu \mathrm{~s} \rightarrow \mathrm{~W}=100 \mathrm{krad} / \mathrm{s} \rightarrow \mathrm{f}=15.9 \mathrm{kHz}$

$\mathrm{R}_{1}{ }^{\prime} \mathrm{C}_{1}=\mathrm{R}_{1} \mathrm{C}_{1}=0.1 \mu \mathrm{~s} \rightarrow \mathrm{~W}=10 \mathrm{Mrad} / \mathrm{s} \rightarrow \mathrm{f}=1.59 \mathrm{MHz}$

Thus, $\quad W_{\text {dominant }}=10 \mathrm{krad} / \mathrm{s}$ or $f_{\text {dominant }}=1.59 \mathrm{kHz}$
(b) Short-Circuit Time Constant Test

Neglect C_{1} since it is much smaller than $\mathrm{C}_{2} \rightarrow 2^{\text {nd }}$ pole is determined by C_{2}.
$\mathrm{R}_{3}{ }^{\prime} \mathrm{C}_{3}=\mathrm{R}_{1} \mathrm{C}_{3}=10 \mu \mathrm{~s} \rightarrow \mathrm{~W}=100 \mathrm{krad} / \mathrm{s} \rightarrow \mathrm{f}=15.9 \mathrm{kHz}$
$\mathrm{R}_{2}{ }^{\prime} \mathrm{C}_{2}=\left\{\left(1 / \mathrm{g}_{\mathrm{m} 2}\right) \| \mathrm{R}_{2}\right\} \mathrm{C}_{2} \approx \mathrm{C}_{2} / \mathrm{g}_{\mathrm{m} 2}=1 \mu \mathrm{~s} \rightarrow \mathrm{~W}=1 \mathrm{M} \mathrm{rad} / \mathrm{s} \rightarrow \mathrm{f}=159 \mathrm{kHz}$

Thus, $\quad W_{2 \text {-dominant }}=1 M \mathrm{rad} / \mathrm{s}$ or $f_{2 \text {-dominant }}=159 \mathrm{kHz}$

Problem 6-(20 points - This problem is optional)

Assuming transconductance parameter K^{\prime}, small-signal output resistance r_{ds}, and threshold voltage V_{T} of all transistors are $100 \mu \mathrm{~A} / \mathrm{V}^{2}, \infty$, and 0.6 V , respectively, answer the following questions (ignore bulk effects):
(a) Identify the transistors in the ac-signal path of the positive feedback loop.
(b) What type of sampling is being employed at $\mathrm{V}_{\text {out1 }}$ and $\mathrm{V}_{\text {out } 2}$?
(c) Based on the answers of (a) and (b), is the feedback circuit increasing or decreasing the effective output resistance at $\mathrm{V}_{\text {out }}$ and $\mathrm{V}_{\text {out2 }}$?

(d) Determine the rising threshold voltage $\left(\mathrm{V}_{\mathrm{th}+}\right)$ of the circuit.
(e) Determine the falling threshold voltage $\left(\mathrm{V}_{\mathrm{th}}\right)$ of the circuit.

Solution

(a) $\mathrm{mp} 1, \mathrm{mp} 2, \mathrm{mp} 4$, and mp 3 .
(b) Shunt and Shunt.
(c) Since it is shunt $+\mathrm{fb}, \mathrm{V}_{\text {out }}$ and $\mathrm{V}_{\text {out2 }}$ are both increased.
(d) Rising $\rightarrow i_{m n 1}=i_{m p 3}=9 i_{m n 2} \& i_{m n 1}+i_{m n 2}=20 \mu \mathrm{~A} \rightarrow i_{m n 2}=2 \mu A$ and $i_{m n 1}=18 \mu \mathrm{~A}$

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{th}+}-\mathrm{V}_{\mathrm{gs} 1}+\mathrm{V}_{\mathrm{gs} 2}=0 \rightarrow \mathrm{~V}_{\mathrm{th}+}=\mathrm{V}_{\mathrm{gs} 1}-\mathrm{V}_{\mathrm{gs} 2}=\operatorname{sqrt}\left(2 \mathrm{i}_{\mathrm{mn} 1} / \mathrm{K}^{\prime}\right)-\operatorname{sqrt}\left(2 \mathrm{i}_{\mathrm{mn2} 2} / \mathrm{K}^{\prime}\right) \\
= \\
=\operatorname{sqrt}(36 / 100)-\operatorname{sqrt}(4 / 100)=0.4 \mathrm{~V}
\end{array}
$$

(e) Falling $\rightarrow i_{m n 2}=i_{m p 2}=i_{m n 1} \& i_{m n 1}+i_{m n 2}=20 \mu A \rightarrow i_{m n 2}=10 \mu A$ and $i_{m n 1}=10 \mu A$

Since the currents equal, their V_{gs} 's also equal and $\mathrm{V}_{\mathrm{th}-}=0 \mathrm{~V}$

