FINAL EXAMINATION - SOLUTIONS

(Average score = 81/100)

Problem 1 - (20 points - This problem is required)

An output stage is shown. Assume the parameters of the NMOS transistors are $K_N'=110\mu A^2/V$, V_{TN} = 0.7V, $\lambda_N=0.04V^{-1}$, the PMOS transistors are $K_P'=50V/\mu A^2$, $V_{TP} = -0.7V$, $\lambda_P=0.05V^{-1}$ and the lateral npn BJT has a current gain of $\beta_F = 50$ and V_t = 25mV. Find the small-signal output resistance (not including R_L), the small-signal voltage gain (ignore the bulk effect on M1), and the large signal slew rate (plus and minus) if a 10pF capacitor is connected to the output.

<u>Solution</u>

Model parameters:

M1:
$$g_{m1} = \sqrt{2 \cdot 40 \cdot 10 \cdot 50} = 0.2 \text{mS}$$

Q2: $g_{m2} = \frac{500 \mu \text{A}}{25 \text{mV}} = 20 \text{mS}$ and $r_{\pi 2} = \frac{51}{20 \text{mS}} = 2.55 \text{k}\Omega$

Small-signal model:

$$\begin{array}{c}
\overbrace{}^{ib}_{m} \\
\overbrace{}^{v_{in}}_{gmvgs} \\
\overbrace{}^{v_{in}}_{smvgs} \\
\overbrace{}^{v_{in}}_{smvgs} \\
\overbrace{}^{v_{in}}_{smvgs} \\
\overbrace{}^{v_{in}}_{smvgs} \\
\overbrace{}^{v_{in}}_{smvgs} \\
\overbrace{}^{v_{in}}_{smvgs} \\
\overbrace{}^{v_{out}}_{smvgs} \\
\overbrace{}^{v_{out}}_$$

$$\frac{v_{out}}{v_{in}} = \left(\frac{g_{m1}[(1+\beta)R_L]}{1+g_{m1}[r_{\pi 2}+(1+\beta)R_L]}\right) = \frac{0.2\text{mS}\cdot101\cdot100\Omega}{1+0.2\text{mS}(2.55\text{k}\Omega+5.1\text{k}\Omega)} = \frac{1.20}{2.53} = \underline{0.403\text{V/V}}$$

Slew rates:

$$SR^{+} = \frac{50\mu A(51) - 50\mu A}{10pF} = \underline{205 \text{ V/}\mu\text{s}}$$
$$SR^{-} = \frac{500\mu A}{10pF} = \underline{-50 \text{ V/}\mu\text{s}}$$

Problem 2 - (20 points - This problem is optional)

А differential-in, differential-out amplifier is shown that eliminates the need for matching sinks and sources. Assume that all W/L values are equal and that each transistor has approximately the same current flowing through it. If all transistors are in the saturation $v_1 o_{+}$ region, find an algebraic expression for the voltage gain, v_{out}/v_{in} , and the differential output resistance, R_{out} , where $v_{out} = v_3 - v_4$ and $v_{in} =$ v_1 - v_2 . R_{out} is the resistance seen between the output terminals.

<u>Solution</u>

Using the schematic approach to small signal analysis, we apply $v_{in}/2$ positively to M1 (M2) and negatively to M4 (M3). The resulting ac currents are shown on the schematic. At node, v_3 , these currents flow out of a resistance whose value is $r_{ds1} || r_{ds5}$ to give v_3 as

$$v_3 = -\left(\frac{g_{m1} + g_{m3}}{2(g_{ds1} + g_{ds5})}\right) v_{in} = \frac{-g_{m1}v_{in}}{g_{ds1} + g_{ds5}}$$

Similarly for v_4 , we get

$$v_{4} = \left(\frac{g_{m2} + g_{m4}}{2(g_{ds2} + g_{ds8})}\right) v_{in} = \frac{g_{m2}v_{in}}{g_{ds2} + g_{ds8}} \Rightarrow \frac{v_{out}}{v_{in}} = \frac{g_{m1} + g_{m2}}{g_{ds1} + g_{ds5}} = \frac{g_{m1} + g_{m2}}{g_{ds4} + g_{ds8}}$$

The output resistance seen differentially is the sum of the resistances seen to ground which is

$${}^{\circ}R_{out} = \frac{1}{g_{ds1} + g_{ds5}} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds1} ||r_{ds5} + {}^{\circ}r_{ds4} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds4} ||r_{ds8} + \frac{1}{g_{ds4} + g_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {}^{\circ}r_{ds4} ||r_{ds4} + g_{ds8} + \frac{1}{g_{ds4} + g_{ds8}} = {$$

Problem 3 - (20 points - This problem is optional)

Find an expression for the equivalent input noise voltage of the circuit in the previous M9 problem, \overline{e}_{eq}^2 , in terms of the small signal model parameters and the individual equivalent input noise voltages, \overline{e}_{ni}^2 , of each of the transistors (i = 1 through 7). Assume M1 and M2, M3 and M4, and M6 and M7 are matched.

<u>Solution</u>

Equivalent noise circuit:

If M1 through M2 are matched then $g_{m1} = g_{m2}$ and we get

$$\overline{e}_{eq}^{2} = 2 \overline{e}_{n1}^{2} + 2\left(\frac{g_{m3}}{g_{m3}}\right)^{2} \overline{e}_{n3}^{2} + 2\left(\frac{g_{m6}}{g_{m1}}\right)^{2} \overline{e}_{n6}^{2}$$

Problem 4 - (20 points - This problem is optional)

Assuming the transconductance and output resistance of mp1, mn1, and mn2 are g_{mp1} , g_{mn1} , g_{mn2} , r_{sdp1} , r_{dsn1} , and r_{dsn2} , respectively, and that R_1 , R_2 , and R_3 are much smaller than r_{ds1} , r_{ds2} , and r_{ds3} , answer the following questions:

(a) Determine the type of mixing being employed by the circuit.

(b) Determine the type of sampling being employed at $V_{\mbox{\scriptsize out1}}.$

(c) Determine the type of sampling being employed at $V_{\mbox{\scriptsize out2}}.$

- (d) Determine the loop gain of the circuit.
- (e) Determine the open-loop resistance at V_{out1} .
- (f) Determine the open-loop resistance at V_{out2} .

(g) Assuming the loop gain is infinite, what is the closed-loop gain from V_{in} to V_{out2} ?

<u>Solution</u>

- (a) Series
- (b) Shunt
- (c) Series
- (d) Open loop at inverting input of Op-Amp (gate of mn2):

$$LG = \underline{-g_{mn2}}\underline{R_3} \quad * \quad \underline{g_{mp1}}\underline{R_1}$$
$$2 \quad 1 + g_{mp1}R$$

(e)
$$R_{out1_ol} = R_1 \parallel (1/g_{mp1}) \approx 1/g_{mp}$$

(f) $R_{out2 ol} = R_2 \parallel R_x = R_2 \parallel \{r_{ds1} (g_{mp1}R_1 + 1) + R_1\} \approx R_2 \parallel (r_{ds1}g_{mp1}R_1)$

(g) $V_{+} \approx V_{-} = v_{gn1} = v_{gn2} = v_{in}$ & remembering that V_{dd} = ac ground,

Problem 5 - (20 points - This problem is optional)

Assuming mn1, mn2, I_1 , and I_2 are ideal (r_{out} and $r_{ds} \rightarrow \infty$, and C_{gs} , C_{dg} , and C_{db} are all negligible), use either the Short-Circuit or the Open-Circuit Time-Constant test to determine (a) the dominant pole of the circuit (lowest, high-frequency pole) and (b) the second dominant pole. In doing part (b), state which capacitor determines the second dominant pole (intuitively), then derive it. Also assume \mathbf{R}_1 = $R_2 = 1M_-, C_3 = C_2 = 10pF, C_1 = 0.1pF, and g_{m1} = g_{m2} = 10\muS$. Do NOT use any other means to determine the answer and show your

work.

Solution

(a) Open-Circuit Time Constant Test

$$R_3'C_3 \rightarrow R_3' = R_2 (1 + g_{m2}R_1) + R_1 \approx R_2R_1g_{m2} = 10M_1$$

 $R_3C_3 = 100\mu s \rightarrow W = 10k \text{ rad/s} \rightarrow f = 1.59kHz$

 $R_2C_2 = R_2C_2 = 10\mu s \rightarrow W = 100k \text{ rad/s} \rightarrow f = 15.9kHz$

 $R_1C_1 = R_1C_1 = 0.1 \mu s \rightarrow W = 10M \text{ rad/s} \rightarrow f = 1.59MHz$

Thus, $W_{dominant} = 10k \text{ rad/s or } f_{dominant} = 1.59kHz$

(b) Short-Circuit Time Constant Test

Neglect C₁ since it is much smaller than $C_2 \rightarrow 2^{nd}$ pole is determined by C₂.

 $R_3C_3 = R_1C_3 = 10\mu s \rightarrow W = 100k \text{ rad/s} \rightarrow f = 15.9kHz$

 $R_2C_2 = \{(1/g_m) || R_2\}C_2 \approx C_2/g_m = 1 \mu s \rightarrow W = 1 M \text{ rad/s} \rightarrow f = 159 \text{ kHz}$

Thus, $W_{2-dominant} = 1M$ rad/s or $f_{2-dominant} = 159kHz$

Problem 6 - (20 points - This problem is optional)

Assuming transconductance parameter K', small-signal output resistance r_{ds} , and threshold voltage V_T of all transistors are $100\mu A/V^2$, ∞ , and 0.6V, respectively, answer the following questions (ignore bulk effects):

(a) Identify the transistors in the ac-signal path of the positive feedback loop.

(b) What type of sampling is being employed at $V_{\mbox{\tiny out1}}$ and $V_{\mbox{\tiny out2}}?$

(c) Based on the answers of (a) and (b), is the feedback circuit increasing or decreasing the effective output resistance at V_{out1} and V_{out2} ?

(d) Determine the rising threshold voltage (V_{th+}) of the circuit.

(e) Determine the falling threshold voltage (V_{th}) of the circuit.

<u>Solution</u>

(a) mp1, mp2, mp4, and mp3.

(b) Shunt and Shunt.

(c) Since it is shunt + fb, V_{out1} and V_{out2} are both increased.

(d) Rising
$$\rightarrow i_{mn1} = i_{mp3} = 9i_{mn2} \& i_{mn1} + i_{mn2} = 20\mu A \rightarrow i_{mn2} = 2\mu A \text{ and } i_{mn1} = 18\mu A$$

 $V_{th+} - V_{gs1} + V_{gs2} = 0 \Rightarrow V_{th+} = V_{gs1} - V_{gs2} = sqrt(2i_{mn1} / K') - sqrt(2i_{mn2} / K')$
 $= sqrt(36/100) - sqrt(4/100) = 0.4V$

(e) Falling $\rightarrow i_{mn2} = i_{mp2} = i_{mn1} \& i_{mn1} + i_{mn2} = 20\mu A \rightarrow i_{mn2} = 10\mu A$ and $i_{mn1} = 10\mu A$ Since the currents equal, their V_{gs}'s also equal and V_{th-} = 0V

