Homework Assignment No. 2 - Solutions

Problem 1-(10 points)

a) For the emitter follower output stage shown below, find the value of R_{I} for maximum efficiency and find the value of that efficiency. $\quad V_{C C}=-V_{E E}=2.5 \mathrm{~V}, \quad V_{C E}($ sat $)=0.2 \mathrm{~V}$, $R_{L}=10 \mathrm{k} \Omega, V_{B E}($ on $)=0.7 \mathrm{~V}$.
b) The load resistance R_{L} is replaced with a capacitor of 100 pF . If the input voltage suddenly drops from 2.5 V to 2.5 V , explain what happens at the output and accurately sketch the output voltage as a function of time, specifying its initial and final values and time interval.

Solution

The I_{Q} for maximum efficiency is found as,

$$
\begin{aligned}
& I_{Q}=\left(\frac{V_{C C}-V_{C E}(\text { sat })}{R_{L}}\right)=230 \mu \mathrm{~A} \\
& R_{I}=\left(\frac{-V_{E E}-V_{B E}}{I_{Q}}\right)=7.826 \mathrm{k} \Omega \\
& P_{L}(\max)=\left(\frac{V_{C C}-V_{C E}(\text { sat })}{\sqrt{2}}\right)\left(\frac{I_{Q}}{\sqrt{2}}\right)=0.5(2.3 \mathrm{~V})(0.23 \mathrm{~mA})=0.2645 \mathrm{~mW} \\
& P_{\text {Supply }}=2 V_{C C} I=2(2.5)(0.23 \mathrm{~mA})=1.15 \mathrm{~mW} \\
& \eta=\frac{P_{L(\max)}}{P_{\text {sup } p l y}}=\frac{1}{4}\left(1-\frac{V_{C E(s a t)}}{V_{C C}}\right)=23 \%
\end{aligned}
$$

b) The output would slew under such condition. The current will be limited by the bias current:

Slew rate $=0.23 \mathrm{~mA} / 100 \mathrm{pF}=2.3 \mathrm{~V} / \mu \mathrm{s}$

Problem 2-(10 points)

Six versions of a source follower are shown below. Assume that $K_{N}^{\prime}=2 K_{P}^{\prime}, \lambda_{P}=2 \lambda_{N}$, all W/L ratios of all devices are equal, and that all bias currents in each device are equal. Neglect bulk effects in this problem and assume no external load resistor. Identify which circuit or circuits have the following characteristics: (a.) highest small-signal voltage gain, (b.) lowest small-signal voltage gain, (c.) the highest output resistance, (d.) the lowest output resistance, (e.) the highest $v_{\text {out }}(\max)$ and (f.) the lowest $v_{\text {out }}(\max)$.

Solution

(a.) and (b.) - Voltage gain. Small signal model:

The voltage gain is found as: $\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m}}{g_{m}+G_{L}}$
where G_{L} is the load conductance. Therefore we get:

Circuit	1	2	3	4	5	6
$\frac{v_{\text {out }}}{v_{\text {in }}}$	$\frac{g_{m N}}{g_{m N}+g_{m N}}$	$\frac{g_{m P}}{g_{m P}+g_{m P}}$	$\frac{g_{m N}}{g_{m N}+g_{m P}}$	$\frac{g_{m P}}{g_{m P}+g_{m N}}$	$\frac{g_{m N}}{g_{m N}+g_{d s N}+g_{d s P}}$	$\frac{g_{m P}}{g_{m P}+g_{d s N}+g_{d s P}}$

But $g_{\mathrm{mN}}=\sqrt{2} g_{\mathrm{mP}}$ and $g_{\mathrm{dsN}}=0.5 \mathrm{~g}_{\mathrm{dsP}}$, therefore

Circuit	1	2	3	4	5	6
$\frac{v_{\text {out }}}{v_{\text {in }}}$	$\frac{1}{2}$	$\frac{1}{2}$	0.5858	0.4142	$\frac{g_{m P}}{g_{m P}+\left(g_{d s P}+g_{d s N}\right) / \sqrt{2}}$	$\frac{g_{m P}}{g_{m P}+g_{d s P}+g_{d s N}}$

Thus, circuit 5 has the highest gain and circuit 4 the lowest gain
(c.) and (d.) - Output resistance.

The denominators of the first table show the following:
Ckt. 6 has the highest output resistance and Ckt. 1 the lowest output resistance.
(e.) Assuming no current has to be provided by the output, circuits 2,4 , and 6 can pull the output to $\mathrm{V}_{\text {DD. }} \therefore$ Circuits 2, 4 and 6 have the highest output swing.
(f.) Assuming no current has to be provided by the output, circuits 1, 3, and 5 can pull the output to ground. \therefore Circuits 1,3 and 5 have lowest output swing.

Summary

(a.) Ckt. 5 has the highest voltage gain
(d.) Ckt. 1 has the lowest output resistance
(b.) Ckt. 4 has the lowest voltage gain
(e.) Ckts. 2,4 and 6 have the highest output
(c.) Ckt. 6 has the highest output resistance
(f.) Ckts. 1,3 and 5 have the lowest output

Problem 3-(10 points)

A push-pull follower is shown which uses an NPN BJT and a p-channel MOSFET. In this problem, ignore the bulk effect, the channel length modulation, and the Early voltage. The parameters for the NPN BJT are $\beta_{F}=$ $100, I_{s}=10 \mathrm{fA}$ and $V_{t}=25.9 \mathrm{mV}$. The model parameters for the PMOS are $K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{T}=$ -0.7 V . (a.) Find the value of the dc batteries, V_{1} and V_{2}, which will cause $100 \mu \mathrm{~A}$ to flow in Q1 and M2 when the dc value of $v_{I N}=0 V D C$. (b.) Find the smallsignal input resistance, output resistance and voltage gain when the dc value of $v_{I N}=0 \mathrm{VDC}$.

Solution

$$
\begin{aligned}
& \text { (a.) } V_{1}=V_{B E 1}=V_{t} \ln \left(\frac{i_{C}}{I_{s}}\right)=0.0259 \ln \left(\frac{100 \mu \mathrm{~A}}{10 \mathrm{fA}}\right)=0.5964 \mathrm{~V}-V_{1}=0.5964 \mathrm{~V} \\
& V_{2}=V_{S G 2}=\sqrt{\frac{2 I_{D}}{K_{P}{ }^{\prime}(\mathrm{W} / \mathrm{L})}}+\left|V_{T P}\right|=\sqrt{\frac{2 \cdot 100}{50 \cdot 100}}+0.7=0.9 \mathrm{~V}-\quad V_{2}=0.9 \mathrm{~V}
\end{aligned}
$$

(b.) Small-signal model (simplified):

$$
\begin{aligned}
& g_{m 1}=\frac{I_{C 1}}{V_{t}}=\frac{100 \mu \mathrm{~A}}{25.9 \mathrm{mV}}=3.86 \mathrm{mS} \\
& r_{\pi 1}=\frac{1+\beta_{F}}{g_{m 1}}=26.159 \mathrm{k} \Omega
\end{aligned}
$$

$g_{m 2}=\sqrt{\frac{2 K_{P}{ }^{\prime} W_{2} I_{D 2}}{L_{2}}}=\sqrt{2 \cdot 50 \cdot 100 \cdot 100}=1 \mathrm{mS}$

$$
R_{i n}: v_{i n}=r_{\pi 1} i_{i n}+\left(i_{i n}+g_{m 1} v_{\pi}+g_{m 2} v_{g s 2}\right) R_{L}=r_{\pi l} i_{i n}+\left(i_{i n}+g_{m 1} r_{\pi l} i_{i n}+g_{m 2} r_{\pi 1} i_{i n}\right) R_{L}
$$

$$
R_{i n}=\frac{v_{i n}}{i_{i n}}=r_{\pi 1}+R_{L}+g_{m 1} r_{\pi 1} R_{L}+g_{m 2} r_{\pi 1} R_{L}=r_{\pi 1}+R_{L}\left(1+\beta_{F}\right)+g_{m 2} r_{\pi 1} R_{L}
$$

$$
\therefore R_{\text {in }}=26.159 \mathrm{k} \Omega+101 \cdot 100 \Omega+1 \cdot 26.159 \mathrm{k} \Omega \cdot 0.1=38.875 \mathrm{k} \Omega \quad R_{\text {in }}=38.875 \mathrm{k} \Omega
$$

$$
R_{\text {out }}: \quad R_{\text {out }}=\frac{1}{g_{m 1}} \| \frac{1}{g_{m 2}}=\frac{1}{3.86 \mathrm{mS}+1 \mathrm{mS}}=205.8 \mathrm{k}_{-} \quad R_{\text {out }}=205.8 \mathrm{~kW}
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}: \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{v_{\text {out }}}{i_{\text {in }}} \frac{i_{\text {in }}}{v_{\text {in }}}=\frac{R_{L}\left(1+b_{F}\right)+g_{m 2} r_{p 1} R_{L}}{r_{p 1}+R_{L}\left(1+b_{F}\right)+g_{m 2} r_{p 1} R_{L}}=\frac{12.716}{38.875}=0.3271
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=0.3271 \mathrm{~V} / \mathrm{V}
$$

Problem 4-(10 points)

Find an algebraic expression for the voltage gain, $v_{\text {out }} / v_{\text {in }}$, and the output resistance, $R_{\text {out }}$, of the source follower shown in terms of the smallsignal model parameters, g_{m} and R_{L} (ignore $r_{d s}$). If the bias current is 1 mA find the numerical value of the voltage gain and the output resistance. Assume that $K_{N}{ }^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}$ $=0.7 \mathrm{~V}$, and $K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T P}=-0.7 \mathrm{~V}$.

Solution

A small-signal model for this circuit is shown below neglecting $r_{d s}$ of the transistors.

Fig. S03E1S1

Summing currents at the output node gives,
$g_{m 1} v_{g s 1}=g_{m 3} v_{g s 3}+G_{L} v_{\text {out }}$
Also, $v_{g s 3}=-g_{m 1} v_{g s 1}\left(1 / g_{m 2}\right)$
$\therefore \quad g_{m 1} v_{g s 1}=g_{m 3}\left(-\frac{g_{m 1}}{g_{m 2}}\right) v_{g s 1}+G_{L} v_{\text {out }}$
$g_{m 1} v_{g s 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)=G_{L} v_{\text {out }} \rightarrow$

$$
\begin{aligned}
& g_{m 1}\left(v_{\text {out }}-v_{\text {in }}\right)\left(1+\frac{g_{m 3}}{g_{m 2}}\right)=G_{L} v_{\text {out }} \\
\therefore \quad & \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)}{g_{m 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)+G_{L}}
\end{aligned}
$$

Setting $v_{\text {in }}=0$ and applying i_{t} and solving for $v_{\text {out }}$ and ignoring R_{L} gives,

$$
\begin{aligned}
& i_{t}=g_{m 3} v_{g s 3}+g_{m 1} v_{\text {out }}=g_{m 3}\left(\frac{g_{m 1}}{g_{m 2}}\right) v_{\text {out }}+g_{m 1} v_{\text {out }} \\
\therefore & \frac{v_{\text {out }}}{i_{t}}=R_{\text {out }}=\frac{1}{g_{m 1}\left(1+\frac{g_{m 3}}{g_{m 2}}\right)}
\end{aligned}
$$

Note that the 1 mA splits between $\mathrm{M} 1(\mathrm{M} 2)$ and M 3 in a ratio of 1 to 100 . Therefore, $I_{D 1}=$ $I_{D 2}=9.9 \mu \mathrm{~A}$ and $I_{D 3}=990.1 \mu \mathrm{~A}$.
$\therefore g_{m 1}=\sqrt{2 \cdot 110 \cdot 100 \cdot 9.9}=466.71 \mu \mathrm{~S}, g_{m 2}=\sqrt{2 \cdot 50 \cdot 1 \cdot 9.9}=31.47 \mu \mathrm{~S}$
and $g_{m 3}=\sqrt{2 \cdot 110 \cdot 100 \cdot 990.1}=3146.7 \mu \mathrm{~S}$

$$
\begin{aligned}
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{466.71 \cdot 101}{466.71 \cdot 101+1 / 50}=\frac{47.137}{47.137+20}=\underline{\underline{0.702 \mathrm{~V} / \mathrm{V}}} \\
& R_{\text {out }}=\frac{1000}{47.137}=\underline{\underline{21.2 \Omega}}
\end{aligned}
$$

Qutput swing $125 \mathrm{~V}, 106 \mathrm{~V}$

DC gam $=110.6 \%$
efficiency $=30 \%$
score
40

A three stage amplifier connected in unity gain configuration is used as the output buffer. The first two stages are class-A whereas the last stage is class-AB.
lnF load capacitance makes the pole present at node nout the dominant pole
Therefore, there is no need to apply additional compansation to the three stage amplifier.

DC gain of the amplifier in unity gain configuration $=A_{V} /\left(1+A_{v}\right)$
where $A_{v}{ }^{\circ} g_{m}{ }^{3} r_{a}{ }^{\prime}$
Output impedance of the unity gain buffer $=r_{d s} /\left(1+A_{v}\right)$.

Mr 1 and Mr 2 act as a linear resistor, allowing a voltage drop between n 5 a and n 5 b
The net result is reduced quiescent current at the output stage.
*output buffer
.option brief
.options

+ post
+ ingold=2
+ scale=1e-6
+ accurate
+ delmax=0.5n
+ method=gear lvltim=2
+ probe
vdd dd 0 dc $2 v$
vss ss 0 dc $-2 v$
*vin in 0 dc 0 v
vin in $0 \sin (01.5100 k 0)$
*vin in 0 pulse ($-112 u 2 n 2 n$ iu $2 u)$
$\mathrm{mbl} \mathrm{nl} \mathrm{nl} \mathrm{dd} d d \operatorname{cmosp} \quad l=2 u \quad \mathrm{w}=200 \mathrm{u}$
mb2 n2 nl dd dd cmosp $l=2 u \quad w=200 u$
mb3 n6 n6 ss ss cmosn $l=5 u \quad w=4 u$
mb4 nl nl n6 ss cmosn l=5u w=4u
mil n3 in n2 n2 cmosp $l=2 u \mathrm{w}=200 \mathrm{u}$
mi2 n4 nout n2 n2 cmosp $l=2 u \mathrm{w}=200 \mathrm{u}$
mll n3 n3 ss ss cmosn l=2u w=200u
ml2 n4 n3 ss ss cmosn $l=2 u \quad w=200 u$
m21 n5a n4 ss ss cmosn $l=2 u \mathrm{w}=200 \mathrm{u}$
m22 n5b ni dd dd cmosp $l=2 u \mathrm{w}=200 \mathrm{u}$
mrl n5a ss n5k dd cmosp $1=20 u \mathrm{w}=8 \mathrm{u}$
mr2 n5b dd n5a ss cmosn $l=20 u \mathrm{w}=4 \mathrm{u}$
moutl nout n5a ss ss cmosn $l=2 u \mathrm{w}=100 \mathrm{u}$
mout2 nout n5b dd dd cmosp $l=2 u \quad w=200 u$
rl nout 0 100
cl nout ss lnF
*. dc vin -2 2 1m

. model cmosn nmos $\mathrm{kp}=110 \mathrm{u}$ vto $=0.7$ lambda=0.01 gamma=0.4 phi=0.7
. model cmosp pmos $\mathrm{kp}=50 \mathrm{u}$ vto $=-0.7$ lambda $=0.01$ gamma $=0.7$ phi=0.8
- probe $v(i n) v(n 1) v(n 2) v(n 3) v(n 4) v(n 5) v(n o u t) v(n 5 a) v(n 5 b) i(v d d) i(v s s)$
. op
.end
***** operating point status is all
node =voltage node =voltage
$+0 . \mathrm{dd}=2.000 \mathrm{e}+000: \mathrm{in}=0$.
$+0: n 2 \quad=7.723 e-01 \quad 0: n 3$
$+0: n 5 a \quad=-3.641 e-01 \quad 0: n 5 b$
+0 :nout $\quad=-1.441 e-050: s$
simulation time is 0 . node =voltage
$=0.0: \mathrm{n} 1 \quad=1.197 \mathrm{e}+00$
$=-1.250 \mathrm{e}+000: \mathrm{n} 4 \quad=-1.230 \mathrm{e}+00$
$=3.185 e-010: n 6 \quad=-5.283 e-01$
$=-2.000 e+00$
voltage sources
subckt

element	$0: v d d$	$0: v s s$	$0:$ vin
volts	$2.000 \mathrm{e}+00$	$-2.000 \mathrm{e}+00$	0.
current	$-2.537 \mathrm{e}-03$	$2.537 \mathrm{e}-03$	0.
power	$5.073 \mathrm{e}-03$	$5.074 \mathrm{e}-03$	0.

total voltage source power dissipation=
$1.015 e-02$
watts
**** resistors
subckt
element $0: r 1$
r value $1.000 e+02$
v drop -1.441e-05
current -1.441e-07
power $2.075 e-12$
**** mosfets

element	0:mb1	0:mb2	0:mb3	0:mb4	0:mil	0:mi2
model	0:cmosp	$0:$ cmosp	0 :cmosn	0:cmosn	$0:$ cmosp	0:cmosp
id	-2.659e-05	-2.670e-05	2.659e-05	2.659e-05	-1.335e-05	$-1.335 \mathrm{e}$
ibs	,	0	-	-1.472e-14	0.	0.
ibd	$8.027 e-15$	$1.228 \mathrm{e}-14$	-1.472e-14	-3.197e-14	$2.023 \mathrm{e}-14$	$2.003 \mathrm{e}-14$
vgs	-8.027e-01	-8.027e-01	$1.471 \mathrm{e}+00$	$1.725 e+00$	-7.723e-01	-7.72
vds	-8.027e-01	$-1.227 e+00$	$1.471 e+00$	$1.725 e+00$	$-2.023 e+00$	$-2.003 e+00$
vbs	0.	0	0.	-1.471e+00	0.	0.
vth	-7.000e-01	-7.000e-01	$7.000 \mathrm{e}-01$	$9.548 \mathrm{e}-01$	-7.000e-01	-7.000e-01
vdsat	-1.027e-01	-1.027e-01	$7.717 \mathrm{e}-01$	$7.708 \mathrm{e}-01$	-7.235e-02	-7.236e-02
beta	5.040e-03	5.061e-03	$8.930 \mathrm{e}-05$	$8.952 \mathrm{e}-05$	$5.101 \mathrm{e}-03$	$5.100 \mathrm{e}-03$
gam eff	$7.000 \mathrm{e}-01$	$7.000 \mathrm{e}-01$	$4.000 \mathrm{e}-01$	$4.000 \mathrm{e}-01$	$7.000 \mathrm{e}-01$.
gm	5.177e-04	5.199e-04	$6.891 e-05$	$6.900 \mathrm{e}-05$	$3.690 \mathrm{e}-04$. $690 \mathrm{e}-04$
gds	$2.638 \mathrm{e}-07$	$2.638 \mathrm{e}-07$	$2.620 \mathrm{e}-07$	$2.614 e-07$	$1.308 \mathrm{e}-07$	$1.309 \mathrm{e}-07$
gmb	2.026e-04	$2.034 \mathrm{e}-04$	$1.647 \mathrm{e}-05$	$9.364 \mathrm{e}-06$	$1.444 \mathrm{e}-04$	$1.444 \mathrm{e}-04$
cdtot	$1.478 \mathrm{e}-28$	$2.261 \mathrm{e}-28$	0.	0	$3.726 e-28$.689e-28
cgtot	9.856e-26	$9.864 e-26$	4.651e-27	$4.641 e-27$	$1.009 \mathrm{e}-25$	$1.009 \mathrm{e}-25$
cstot	$9.208 e-26$	$9.208 \mathrm{e}-26$	$4.604 \mathrm{e}-27$	$4.604 e-27$	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$
cbtot	$6.331 \mathrm{e}-27$	6.331e-27	0	0	$8.414 \mathrm{e}-27$	8.412e-27
cgs	$9.208 \mathrm{e}-26$	9.208e-26	$4.604 \mathrm{e}-27$	$4.604 e-27$	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$
cgd	$1.478 \mathrm{e}-28$	2.261e-28	0.	0.	$3.726 e-28$	$3.689 \mathrm{e}-28$

subckt

element	$0: \mathrm{ml1}$	$0: \mathrm{ml2}$	$0: \mathrm{m} 21$	$0: \mathrm{m} 22$	$0: \mathrm{mr} 1$	$0: \mathrm{mr} 2$
model	$0:$ cmosn	$0:$ cmosn	$0:$ cmosn	$0:$ cmosp	$0:$ cmosp	$0:$ cmosn
id	$1.335 \mathrm{e}-05$	$1.335 \mathrm{e}-05$	$2.682 \mathrm{e}-05$	$-2.682 \mathrm{e}-05$	$1.100 \mathrm{e}-05$	$1.582 \mathrm{e}-05$
ibs	0.0 .0 .14	$0.636 \mathrm{e}-14$				
ibd	$-7.491 \mathrm{e}-15$	$-7.693 \mathrm{e}-15$	$-1.636 \mathrm{e}-14$	$1.682 \mathrm{e}-14$	$1.684 \mathrm{e}-14$	$-1.63 \mathrm{e}-14$
	$-2.318 \mathrm{e}-14$					

vgs	$7.491 \mathrm{e}-01$	$7.491 \mathrm{e}-01$	$7.693 \mathrm{e}-01$	$-8.027 \mathrm{e}-01$	$-1.635 \mathrm{e}+00$	$2.364 \mathrm{e}+00$
vds	$7.491 \mathrm{e}-01$	$7.693 \mathrm{e}-01$	$1.635 \mathrm{e}+00$	$-1.681 \mathrm{e}+00$	$6.826 \mathrm{e}-01$	$6.826 \mathrm{e}-01$
vbs	0.0	0.0	0.	$2.364 \mathrm{e}+00$	$-1.635 \mathrm{e}+00$	
vth	$7.000 \mathrm{e}-01$	$7.000 \mathrm{e}-01$	$7.000 \mathrm{e}-01$	$-7.000 \mathrm{e}-01$	$-1.176 \mathrm{e}+00$	$9.767 \mathrm{e}-01$
vdsat	$4.908 \mathrm{e}-02$	$4.908 \mathrm{e}-02$	$6.927 \mathrm{e}-02$	$-1.027 \mathrm{e}-01$	$-6.826 \mathrm{e}-01$	$6.826 \mathrm{e}-01$
beta	$1.108 \mathrm{e}-02$	$1.108 \mathrm{e}-02$	$1.118 \mathrm{e}-02$	$5.084 \mathrm{e}-03$	$2.014 \mathrm{e}-05$	$2.215 \mathrm{e}-05$
gam eff	$4.000 \mathrm{e}-01$	$4.000 \mathrm{e}-01$	$4.000 \mathrm{e}-01$	$7.000 \mathrm{e}-01$	$7.000 \mathrm{e}-01$	$4.000 \mathrm{e}-01$
gm	$5.440 \mathrm{e}-04$	$5.441 \mathrm{e}-04$	$7.744 \mathrm{e}-04$	$5.222 \mathrm{e}-04$	$1.375 \mathrm{e}-05$	$1.512 \mathrm{e}-05$
gds	$1.325 \mathrm{e}-07$	$1.325 \mathrm{e}-07$	$2.639 \mathrm{e}-07$	$2.638 \mathrm{e}-07$	$9.357 \mathrm{e}-06$	$1.577 \mathrm{e}-05$
gmb	$1.300 \mathrm{e}-04$	$1.301 \mathrm{e}-04$	$1.851 \mathrm{e}-04$	$2.044 \mathrm{e}-04$	$3.054 \mathrm{e}-06$	$1.979 \mathrm{e}-06$
cdtot	$1.380 \mathrm{e}-28$	$1.417 \mathrm{e}-28$	$3.013 \mathrm{e}-28$	$3.097 \mathrm{e}-28$	$3.380 \mathrm{e}-26$	$1.032 \mathrm{e}-26$
cgtot	$9.994 \mathrm{e}-26$	$9.994 \mathrm{e}-26$	$9.836 \mathrm{e}-26$	$9.873 \mathrm{e}-26$	$5.208 \mathrm{e}-26$	$2.669 \mathrm{e}-26$
cstot	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$	$1.810 \mathrm{e}-26$	$1.633 \mathrm{e}-26$
cbtot	$7.715 \mathrm{e}-27$	$7.715 \mathrm{e}-27$	$5.970 \mathrm{e}-27$	$6.331 \mathrm{e}-27$	$1.729 \mathrm{e}-28$	0.0
cgs	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$	$9.208 \mathrm{e}-26$	$1.810 \mathrm{e}-26$	$1.633 \mathrm{e}-26$
cgd	$1.380 \mathrm{e}-28$	$1.417 \mathrm{e}-28$	$3.013 \mathrm{e}-28$	$3.097 \mathrm{e}-28$	$3.380 \mathrm{e}-26$	$1.032 \mathrm{e}-26$

subckt		
element	$0: m o u t 1$	$0: m o u t 2$
model	$0:$ cmosn	$0:$ cmosp
id	$2.457 \mathrm{e}-03$	$-2.457 \mathrm{e}-03$
ibs	0.	0.
ibd	$-2.000 \mathrm{e}-14$	$2.000 \mathrm{e}-14$
vgs	$1.635 \mathrm{e}+00$	$-1.681 \mathrm{e}+00$
vds	$2.000 \mathrm{e}+00$	$-2.000 \mathrm{e}+00$
vbs	0.	0.
vth	$7.000 \mathrm{e}-01$	$-7.000 \mathrm{e}-01$
vdsat	$9.359 \mathrm{e}-01$	$-9.815 \mathrm{e}-01$
beta	$5.610 \mathrm{e}-03$	$5.100 \mathrm{e}-03$
gam eff	$4.000 \mathrm{e}-01$	$7.000 \mathrm{e}-01$
gm	$5.250 \mathrm{e}-03$	$5.006 \mathrm{e}-03$
gds	$2.409 \mathrm{e}-05$	$2.408 \mathrm{e}-05$
gmb	$1.255 \mathrm{e}-03$	$1.959 \mathrm{e}-03$
cdtot	$1.842 \mathrm{e}-28$	$3.683 \mathrm{e}-28$
cgtot	$4.651 \mathrm{e}-26$	$9.323 \mathrm{e}-26$
cstot	$4.604 \mathrm{e}-26$	$9.208 \mathrm{e}-26$
cbtot	$2.788 \mathrm{e}-28$	$7.758 \mathrm{e}-28$
cgs	$4.604 \mathrm{e}-26$	$9.208 \mathrm{e}-26$
cgd	$1.842 \mathrm{e}-28$	$3.683 \mathrm{e}-28$

Opening plot unit= 15
file=./buffer.tro

*current source

tnom $=25.000$ temp $=25.000$
current vdd
power_vd̄d
$=-4.5829 \mathrm{E}-03$
$=-1.8332 \mathrm{E}-02$
from $=.0000 \mathrm{E}+00 \quad$ to $=5.0000 \mathrm{E}-05$ averaye pour disipation
job concluded

*current source
job statistics summary
total memory used
(970915) 14:15:30 98/06/01 pa
tnom $=25.000$ temp $=25.000$

