Homework Assignment No. 4 - Solutions

Problem 1

Find the midband voltage gain and the -3 dB frequency in Hertz for the circuit shown.

Solution

The midband gain is given as,

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\left(\frac{10 \mathrm{k} \Omega}{100}\right)\left(\frac{10 \mathrm{k} \Omega}{11 \mathrm{k} \Omega}\right)=-\underline{\underline{-90.91 \mathrm{~V} / \mathrm{V}}}
$$

To find the -3 dB frequency requires finding the 3 open-circuit time constants.
$R_{C 10}$:

$$
R_{C 10}=1 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega=0.9091 \mathrm{k} \Omega \quad \rightarrow \quad R_{C 10} C_{1}=0.9091 \cdot 10 \mathrm{~ns}=
$$

9.09 ns
$R_{C 20}$:

$$
\begin{aligned}
& v_{t}=i_{t} R_{C 10}+R_{3}\left(i_{t}+0.01 V_{1}\right) \\
& \quad=i_{t}\left(R_{C 10}+R_{3}+0.01 R_{C 10} R_{3}\right) \\
& \therefore R_{C 20}=R_{C 10}+R_{3}+0.01 R_{C 10} R_{3} \\
& \quad=\quad 0.9091
\end{aligned}
$$

$10(1+0.01 \cdot 909.1) \mathrm{k} \Omega=101.82 \mathrm{k} \Omega$

$$
R_{C 20} C_{2}=101.82 \cdot 1 \mathrm{~ns}=101.82 \mathrm{~ns}
$$

$R_{C 30}$:

$$
R_{C 30}=10 \mathrm{k} \Omega \quad \rightarrow \quad R_{C 30} C_{3}=10 \cdot 10 \mathrm{~ns}=100 \mathrm{~ns}
$$

$$
\Sigma T_{0}=(9.091+101.82+100) \mathrm{ns}=210.91 \mathrm{~ns} \quad \rightarrow \omega_{-3 \mathrm{~dB}}=\frac{1}{\Sigma T_{0}}=4.74 \times 10^{6} \mathrm{rad} / \mathrm{s}
$$

$$
f_{-3 \mathrm{~dB}}=\frac{4.74 \times 10^{6}}{2 \pi}=\underline{\underline{754.6 \mathrm{kHz}}}
$$

Problem 2-(10 points)

Find the midband voltage gain and the exact value of the two poles of the voltage transfer function for the circuit shown. Assume that $R_{I}=1 \mathrm{k} \Omega, R_{L}=10 \mathrm{~K} \Omega, g_{m}=1 \mathrm{mS}, C_{g s}=5 \mathrm{pF}$ and $C_{g d}=1 \mathrm{pF}$. Ignore $r_{d s}$.

Solution

The best approach to this problem is a direct analysis.
Small-signal model:

$V_{\text {out }}=g_{m} Z_{L} V_{S} \quad$ where $\quad Z_{L}=\frac{1}{s R_{L} C_{g d}+1} \quad$ and $\quad \frac{V_{\text {in }}-V_{s}}{R_{I}}=g_{m} V_{s}+$ $s C_{g s} V_{s}$
Solving for V_{s} from the second equation gives,

$$
V_{s}=\frac{V_{i n}}{1+g_{m} R_{I}+s C_{g s} R_{I}}
$$

Substituting V_{S} in the first equation gives,

$$
\begin{aligned}
& V_{\text {out }}=g_{m} Z_{L} \frac{V_{\text {in }}}{1+g_{m} R_{I}+s C_{g s} R_{I}} \rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=g_{m}\left(\frac{1}{s R_{L} C_{g d}+1}\right)\left(\frac{1}{1+g_{m} R_{I}+s C_{g s} R_{I}}\right) \\
& \quad=\left(\frac{g_{m} R_{L}}{1+g_{m} R_{I}}\right)\left(\frac{1}{s R_{L} C_{g d}+1}\right)\left(\frac{1}{\frac{s C_{g d} R_{I}}{1+g_{m} R_{I}}+1}\right)=\mathrm{MBG}\left(\frac{1}{1-\frac{s}{p_{1}}}\right)\left(\frac{1}{1-\frac{s}{p_{2}}}\right) \\
& \therefore \mathrm{MBG}=\left(\frac{g_{m} R_{L}}{1+g_{m} R_{I}}\right)=\left(\frac{1 \cdot 10}{1+1 \cdot 1}\right)=\underline{\underline{\mathrm{V} / \mathrm{V}}} \\
& p_{1}=-\frac{1}{R_{L} C_{g d}}=-\frac{1}{10 \cdot 1 \mathrm{~ns}}=\underline{\underline{-10^{8} \mathrm{rad} / \mathrm{s}}} \text { and } p_{2}=-\frac{1+g_{m} R_{I}}{R_{I} C_{g s}}=-\frac{1+1}{1 \cdot 5 \mathrm{~ns}}=\underline{\underline{-4 \times 10^{8} \mathrm{rad} / \mathrm{s}}}
\end{aligned}
$$

$7-22$
1.21
(a)

$=\frac{1}{52} \mathrm{~A} / \mathrm{V}$-both circuits

$$
R_{i} \simeq r_{\pi 1}\left(1+g_{m 1} r_{\pi 2}\right)=2 r_{\pi 1}=2 \frac{\beta}{g_{m 1}}
$$

$$
=2 \times 100 \times 2.6 \mathrm{~K}=520 \mathrm{k} \Omega
$$

-both Circuits

$$
\begin{aligned}
\therefore \frac{v_{0}}{v_{i}} & =-\frac{R_{i}}{R_{i}+R_{s}} G_{m} R_{L} \\
& =-\frac{520}{620} \times \frac{1}{52} \times 3000 \\
& =-48.4 \quad \text { both circuits }
\end{aligned}
$$

$$
\begin{aligned}
\therefore R_{\mu 01} & =83.9+3+\frac{1}{52} \times 3000 \times 83.9 \\
& =4.93 \mu \Omega \\
\therefore C_{\mu 1} R_{\mu 01} & =0.4 \times 4.93 \times 10^{3}=1972 \mathrm{~ns} \\
C_{\pi 2} & =11.8 \mathrm{pF} \\
R_{\pi 02} & =r_{\pi 2} \|\left(\frac{1}{g_{m 1}}+\frac{R_{5}}{\beta_{1}}\right) \\
& =2.6 \mathrm{k} \|\left(2.6 \mathrm{k}+\frac{100 \mathrm{~K}}{100}\right) \\
& =2.6 \mathrm{k} \| 3.6 \mathrm{~K}=1.51 \mathrm{k} \Omega
\end{aligned}
$$

$$
\therefore C_{\pi 2} R_{\pi 02}=17.8 n s .
$$

$$
R_{\mu_{0}}=R_{\pi_{02}}+R_{L}+g_{m 2} R_{L} R_{\pi_{02}}
$$

$$
=1.51+3+\frac{3000}{26} \times 1.51
$$

$$
=179 \mathrm{k} \Omega
$$

$$
\therefore C_{\mu 2} R_{\mu \cdot 2}=0.4 \times 179=71 \mathrm{~ns}
$$

$$
\therefore \Sigma T_{0}=6+90+1972+18+71
$$

$$
=2157 \mathrm{~ns}
$$

$$
\therefore f_{-3 d B}=\frac{1}{2 \pi \Sigma T_{0}}=73.8 \mathrm{kHz}
$$

Common - collector - Common emitter

$$
\begin{aligned}
& \text { (b) } D_{\text {arlington }} \\
& R_{c s_{0}}=R_{L}=3 k \Omega \text { for } Q_{1} \text { and } Q_{2} \\
& \therefore R_{c_{s 0}}\left(C_{c s_{1}}+C_{c s 2}\right)=3 \times 2=6 \mathrm{~ns} \\
& R_{\pi 01}=r_{\pi 1}\left\|\frac{R_{s}+R_{E}}{1+g_{m 1} R_{E}}=r_{\pi 1}\right\| \frac{R_{s}+r_{\pi 2}}{1+g_{n 1} r_{\pi 2}} \\
& =260 \mathrm{~K} \| \frac{102.6 \mathrm{~K}}{2}=42.9 \mathrm{~K} \Omega \\
& C_{\pi}+C_{\mu}=\frac{g_{m}}{2 \pi f_{T}}=\frac{1}{26} \frac{1}{2 \pi \times 500 \times 10^{6}} \\
& =12.2 \mathrm{pF} \quad \text { at } I_{c}=1 \mathrm{~mA} \\
& \therefore C_{\pi}=11.8 \mathrm{pF} \text { at } I_{c}=1 \mathrm{~mA} \\
& C_{b}=9.8 \mathrm{pF} \\
& \therefore C_{b 1}=0.1 \mathrm{pF}, \therefore C_{\pi 1}=2.1 \mathrm{pF} \\
& \therefore C_{\pi 1} R_{\pi 01}=2.1 \times 42.9=90.1 \mathrm{~ns} \\
& R_{\mu O 1}=R_{x}+R_{L}+G_{m} R_{x} R_{L} \\
& R_{x}=R_{i}\left\|R_{S}=520 \mathrm{~K}\right\| 100 \mathrm{~K}=83.9 \mathrm{~K} \Omega \\
& R_{\text {iso }} C_{c s 2}=3 n s \\
& R_{C S O} C_{C s 1}=0 \\
& C_{\pi 1} R_{\pi_{01}}=90.1 \mathrm{~ns} \\
& C_{\pi 2} R_{\pi 02}=17.8 \mathrm{~ns} \\
& C_{\mu 2} R_{\mu \mu_{2}}=71 \mathrm{~ns} \\
& R_{\mu 01}=R_{i} \| R_{s}=83.9 \mathrm{k} \Omega \\
& \therefore C_{\mu 1} R_{\mu \mathrm{Ol}}=0.4 \times 83.9=33.6 \mathrm{~ns} \\
& \therefore \sum T_{0}=3+90.1+17.8+71+33.6 \\
& =215.5 \mathrm{~ns} \\
& \therefore f_{-3 J B}=\frac{1}{2 \pi \Sigma T_{0}}=738 \mathrm{kHz} \\
& \frac{222}{(a)}
\end{aligned}
$$

Effective value of $r_{\pi 2}=15 \mathrm{k} \| 2.6 \mathrm{~K}$

$$
G_{m}=\frac{i_{0}}{v_{i}} \simeq \frac{g_{m 1} R_{E}}{g_{m 1} R_{E}+1} \times 2.2 \mathrm{k} \Omega
$$

$$
R_{E}=2.2 \mathrm{k} \Omega
$$

$$
\therefore G_{m}=\frac{\frac{0.05}{26} \times 2200}{1+\frac{0.05}{26} \times 2200} \times \frac{1}{26}
$$

$$
=31.2 \mathrm{~mA} / \mathrm{v}-\text { for both }
$$ Circuits

$$
R_{i}=r_{x_{1}}\left(1+g_{m}, R_{E}\right)
$$

$$
=\frac{100 \times 26}{0.05}\left(1+\frac{0.05}{26} \times 2200\right)=274 \mathrm{k} \Omega
$$

$$
\therefore \frac{v_{0}}{v_{i}}=-\frac{R_{i}}{R_{i}+R_{s}} G_{m} R_{L}
$$

$$
=-\frac{274}{274+100} \times 31.2 \times 10^{-3} \times 3000
$$

$$
=-68.6-\text { for both circuits }
$$

(b) $I_{c_{1}}=50 \mu \mathrm{~A} \quad \therefore C_{b 1}=0.5 \mathrm{pF}$

$$
C_{\pi 1}=2.5 \mathrm{pF}
$$

Darlington

$$
R_{C S O}=R_{L}=3 \mathrm{k} \Omega
$$

$$
\therefore R_{c s 0}\left(C_{c 31}+C_{c s 2}\right)=3 \times 2=6 \mathrm{~ns}
$$

$$
R_{\pi 01}=r_{\pi 1} \| \frac{R_{s}+R_{E}}{1+g_{m 1} R_{E}}
$$

$$
=52 k \| \frac{102.2 k}{1+4.27}=14.1 \mathrm{k} \Omega
$$

$$
\therefore C_{\pi 1} R_{x 01}=2.5 \times 14.1=35.3 \mathrm{~ns}
$$

$$
R_{\mu 01}=R_{x}+R_{L}+G_{m} R_{x} R_{L}
$$

$$
R_{x}=R_{i}\left\|R_{s}=274\right\| 100=73.3 \mathrm{k} \Omega
$$

$$
\therefore R_{M O 1}=73.3+3+31.2 \times 73.3 \times 3
$$

$$
=6.94 \mathrm{M} \Omega
$$

$\therefore C_{\mu 1} R_{\mu 01}=0.4 \times 6940=27 \% \mathrm{~ns}$

$$
\begin{aligned}
R_{\pi_{02}} & =r_{\pi 2} \|\left(\frac{1}{g_{M 1}}+\frac{R_{3}}{\beta_{1}}\right) \\
& =2.6 \mathrm{k} \|\left(520+\frac{100 \mathrm{~K}}{100}\right) \\
& =2.6 \mathrm{~K} \| 1.52 \mathrm{~K}=959 \Omega
\end{aligned}
$$

$$
\frac{7.23}{(a)}
$$

In both cases

$$
\begin{aligned}
& \frac{v_{0}}{i_{i}} \simeq-\beta_{1} \beta_{2} R_{L}=-100 \times 100 \times 3 \mathrm{~K}=-30 \mathrm{M} \Omega \\
& R_{i}-r_{\pi 4}\left(1+g_{m 1} r_{\pi 2}\right)=520 \mathrm{k} \Omega
\end{aligned}
$$

(b) $\left.\frac{D_{\text {arlington }}}{R_{c s 0}\left(C_{c 31}\right.}+C_{c s 2}\right)=6 n s$

$$
\begin{aligned}
& \therefore C_{\pi_{2}} R_{\pi 02}=11.8 \times 0.959=11.3 \mathrm{~ns} \\
& R_{\mu \mathrm{OZ}}=R_{\pi 02}+R_{L}+g_{m 2} R_{L} R_{\pi 02} \\
& =0.959+3+\frac{3000}{26} \times 0.959 \\
& =114.6 \mathrm{k} \Omega \\
& \therefore C_{\mu 2} R_{\mu 02}=0.4 \times 114.6=45.8 \mathrm{~ns} \\
& \therefore \Sigma T_{0}=6+35.3+2776+11.3+45.8 \\
& =2874 \mathrm{~ns} \\
& \therefore f_{-3 \mathrm{~dB}}=\frac{1}{2 \pi \sum T_{0}}=55.4 \mathrm{KHz} \\
& \text { Common-collector-Common emitter } \\
& R_{c s 0} C_{c s 2}=3 n s \\
& R_{c s 0} C_{c s 1}=0 \\
& C_{\pi 1} R_{\pi 01}=35.3 \mathrm{~ns} \\
& C_{\pi 2} R_{\pi 02}=11.3 \mathrm{~ns} \\
& C_{\mu_{2}} R_{\text {M02 }}=45.8 \mathrm{~ns} \\
& R_{\mu-1}=R_{i}\left\|R_{s}=2 \eta_{4}\right\|_{100}=73.3 \mathrm{k} \Omega \\
& \therefore C_{\mu 1} R_{\mu O 1}=0.4 \times 73.3=29.3 \mathrm{~ns} \\
& \therefore \Sigma T_{0}=3+35.3+11.3+45.8+29.3 \\
& \begin{aligned}
\therefore f_{-3 d B} & =\frac{124.7 n \mathrm{n}}{2 \pi \sum T_{0}}=1.28 \mathrm{MHz}
\end{aligned}
\end{aligned}
$$

227

$$
\begin{aligned}
I_{C 6} & =\frac{9.4}{20}=470 \mu \mathrm{~A} \\
I_{C 5} & =\frac{V_{T}}{R_{G}} \ln \frac{I_{C S}}{I_{C 5}}=2.6 \ln \frac{470}{I_{C 5}} \mu \mathrm{~A} \\
& =10 \mu \mathrm{~A}
\end{aligned}
$$

$$
\therefore I_{c 1}=I_{c 3}=I_{c 5 / 2}=5 \mu \mathrm{~A}
$$

$\frac{Q_{1}}{r_{A 1}}=\frac{V_{A}}{I_{A}}=\frac{120}{5}=24 \mathrm{M} \Omega$
$r_{x 1}=\frac{\beta}{g_{m 1}}=200 \times \frac{26}{0.005}=1.04 \mathrm{M} \Omega$
$C_{\mu_{1}}=\frac{0.7}{\sqrt{1+\frac{5}{0.55}}}=0.22 \mathrm{pF}$
$C_{c s 1}=\frac{2}{\sqrt{1+\frac{15}{0.55}}}=0.38 \mathrm{pF}$
$C_{\pi 1}+C_{\mu 1}=\frac{g_{m}}{2 \pi f_{T}}=\frac{1}{2 \pi \times 26 \times 500 \times 10^{6}}$

$$
=12.2 \mathrm{pF} \text { at } 1 \mathrm{~mA}
$$

$\therefore C_{\pi 1}=12 \mathrm{PF}$ at 1 mA
$C_{b l}=9 \mathrm{PF}$ at 1 mA

$$
\simeq 0 \text { at } 5 \mu \mathrm{~A}
$$

$\therefore C_{\pi I}=3$ PF at $5 \mu \mathrm{~A}$

$$
\begin{aligned}
& \frac{Q_{3}}{r_{03}}=\frac{50}{5}=10 \mathrm{M} \Omega \\
& C_{\mu 3}=\frac{1}{\sqrt{1+\frac{4.4}{0.55}}}=0.33 \mathrm{pF}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{v_{0}}{v_{i}}=-\frac{r_{\pi 1}}{r_{k 1}+R_{s}} \gamma_{m 1} r_{0} \\
& r_{0}=r_{11}\left\|r_{03}=24\right\| 10=7.06 \mathrm{M} \Omega \\
& \frac{v_{0}}{v_{i}}=-\frac{1.04}{1.06} \times \frac{0.005}{26} \times 7.06 \times 10^{6} \\
& =-1332 \\
& R_{\pi 01}=r_{\pi}\left\|R_{s}=\mid M\right\| 20 \mathrm{~K}=19.6 \mathrm{k} \Omega \\
& \therefore C_{\pi 1} R_{\pi 01}=3 \times 19.6=59 \mathrm{~ns} \\
& R_{\mu 01}=R_{\pi=1}+r_{0}+g_{m 1} R_{\pi 01} r_{0} \\
& R_{\mu O 1}=19.6 \mathrm{~K}+7.06 \mathrm{M}+\frac{0.005}{26} \times 19,600 \times 7.06 \mathrm{M} \\
& =33.7 \mathrm{M} \Omega \\
& \therefore C_{\mu 1} R_{\mu 01}=0.22 \times 33.7=7.41 \mu \mathrm{~s} \\
& \left(C_{c \beta}+C_{\mu 3}\right) r_{0}=0.71 \times 7.06=5.0 \mu \mathrm{~s} \\
& \therefore \Sigma T_{0}=0.06+7.41+5=12.47 \mu \mathrm{~s} \\
& \therefore f_{-3 d B}=\frac{1}{2 \pi \sum T_{0}}=12.8 \mathrm{kHz}
\end{aligned}
$$

137 (a)
$V_{0}=2.5 \mathrm{Vdc}$
$V_{G S_{2}}=2.5 \mathrm{~V}$
$v_{t_{2}}=v_{t_{0}}+\gamma\left(\sqrt{2 \phi_{f}+v_{S B}}-\sqrt{2 \phi_{f}}\right.$

$$
=0.7+0.4(\sqrt{0.6+2.5}-\sqrt{0.6})
$$

$$
=1.09 \mathrm{~V}
$$

$$
I_{D}=\frac{\mu_{n} C_{0 x}}{2}\left(\frac{W}{L}\right)_{2}\left(V_{G S_{2}}-V_{t_{2}}\right)^{2}
$$

$$
=\frac{60 \mu}{2} \frac{4}{1}(2.5-1.09)^{2}
$$

$$
=237 \mu \mathrm{~A}
$$

$$
\frac{V_{0}}{V_{i}}=\frac{-g m_{1}}{g m_{2}+g m_{b_{2}}}=\frac{-1.69 m}{337 \mu+38.3 \mu}
$$

$$
=-4.5
$$

$$
\begin{aligned}
g m_{1} & =\sqrt{2 I_{D} \mu C_{0 \times \frac{w}{L}}} \\
& =\sqrt{2(237 \mu)(60 \mu)(100)} \\
& =1.69 \mathrm{~mA} / \mathrm{V} \\
g m_{2} & =\sqrt{2(237 \mu)(60 \mu)(4)} \\
& =337 \mu \mathrm{~A} / \mathrm{V} \\
g m_{b_{2}} & =\frac{g m_{2} \gamma}{2 \sqrt{2 \phi_{f}+V_{s B}}}=\frac{g m_{2} 0.4}{2 \sqrt{0.6+2.5}} \\
& =38.3 \mu \mathrm{~A} / \mathrm{V}
\end{aligned}
$$

$$
C_{0 x}=1.73 \frac{f F}{\mu^{2}}
$$

$$
\begin{aligned}
& C_{g s 1}=\frac{2}{3} W L C_{0 x}+C_{01} W \\
& =115 \mathrm{fF}+30 \mathrm{fF}=145 \mathrm{fF} \\
& C_{g s_{2}}=\frac{2}{3} W L C_{0 x}+C_{01} W \\
& =4.61 \mathrm{fF}+1.2 \mathrm{fF} \\
& =5.8 \mathrm{fF} \\
& c_{d_{1}}=\frac{0.8(100)}{\sqrt{1+\frac{2.5}{0.6}}}=35.2 \mathrm{fF} \\
& C_{g} d_{1}=C_{01} W=30 f F \\
& c_{s b_{2}}=\frac{0.8(4)}{\sqrt{1+\frac{2.5}{0.6}}}=1.41 \mathrm{fF} \\
& C_{1}=C_{951}=145 \mathrm{fF} \\
& C_{2}=C_{d b_{1}}+C_{s b_{2}}+C_{g s_{2}}+C_{L} \\
& =142 \mathrm{fF} \\
& C_{1} R_{s}=145 \mathrm{ps} \\
& C_{2} R_{L}=142 \mathrm{fF}(2665 \Omega) \\
& =378 \mathrm{ps} \\
& C_{g d_{1}}\left(R_{S}+R_{L}+g m R_{s} R_{L}\right) \\
& =30(1 k+2665+1.69 m(1 k)(2665)) f \\
& =245 \mathrm{ps} \\
& f_{-3 d B}=\frac{1}{2 \pi} \frac{10^{12}}{145+378+245} \\
& =207 \mathrm{MHz}
\end{aligned}
$$

(b)

$$
\begin{aligned}
R_{s x} & =\frac{1}{\varepsilon_{c} \mu C_{0 x} W} \\
m 1 R_{s x} & =\frac{1}{1.5 \mathrm{M} 60 \mu 100 \mu} \\
& =111 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { m2 } R_{s x}=\frac{1}{1.5 M 60 \mu 4 \mu} \\
& =2.78 \mathrm{~K} \\
& R_{L}^{\prime}=R_{s \times 2}+\frac{1}{g m_{2}+g m_{b 2}} \\
& =2.78 k+2.66 k \\
& =5.44 k \\
& g m_{1}^{\prime}=\frac{g m_{1}}{1+g m_{1} R_{s x_{1}}} \\
& =1.42 \mathrm{~mA} / \mathrm{V} \\
& \frac{V_{0}}{V_{i}}=-g m_{1}^{\prime} R_{L}^{\prime}=-7.74 \\
& C_{1} R_{s}=145 p s \text { unchanged } \\
& C_{2} R_{L}^{\prime}=C_{2} R_{L} \frac{R_{L}{ }^{\prime}}{R_{L}} \\
& =378 \mathrm{ps} \text { (2.04) } \\
& =772 \mathrm{ps} \\
& C_{g} d_{1}\left(R_{s}+R_{L}^{\prime}+g m_{1}^{\prime} R_{L}^{\prime} R_{s}\right) \\
& =30 f(1 k+5.44 k+1.42 m(5.44 k)(1 k)) \\
& =425 \mathrm{ps} \\
& f_{-3 d B}=\frac{1}{2 \pi} \frac{10^{12}}{145+772+425} \\
& =119 \mathrm{MHz}
\end{aligned}
$$

$112300 \mathrm{ESOS} \mathrm{N}=1000 \mathrm{~L}=10$					
CLOAD 20100 F					
R8 4312					
VI 400.5 VaC					
.PLOT MC VDB(2)					
. PLOT AC VP(2)					
. AC DEC 15 IMEC 2GIC					
+ TOX $=201 \mathrm{FA}$ CG80 $=300 \mathrm{PF}$ CGDO $=300 \mathrm{PF} \mathrm{CBD}=80 \mathrm{FF}$ CBS=80FP 					
$+\mathrm{TOX}=20 \mathrm{FI}$ COSO=300PF CEDO=300PF CBD=3.2FI CBS $=3.2 F T$					
. OPTIOEAB EDOPACE H0MOD					
.WIDIE OUT=80					
. OPTICEES SPICE					
. OP					
. ETD					
AC AmLYSIS		TRONT		27.000 TEAP:	27.000
FRDP TDB(2)					
(1) $1-2.0008+01$	$-1.800 \mathrm{E}+01$	-1.6008+01	-1.4008 001	-1.2008+01	
+	-	-	+	+	
3.9818+07-1.508+01 +	+ *	,	${ }^{\text {A }}$	+ +	
4.6413+07-1.508+01 *	+ *	+ +	A+	+ +	
5.1118+07-1.508+01 *	- •	+ +	${ }^{\text {a }}$	* *	
6.3098+07-1.50E+01 *	+ *	+ +	${ }^{\text {a }}$	-	
7.3568+07-1.508+01 +	+ *	+ +	${ }^{\text {A }}$	+ *	
8.5778+07-1.508+01 +	+ +	+ *	A.	+ *	
$1.0008+08-1.518+01-+$					
1.1658+08-1.511+01 +	+ *	- +	${ }^{1}$	+ +	
1.3598+08-1.518+01 +	+ *	+ +	A+	+	
1.544E+08-1.515+01 *	* *	+ +	${ }^{\text {a }}$	+ •	
1.8178+08-1.518.01 *	* *	+ +	${ }^{\text {a }}$	+ *	
$2.154 \mathrm{E}+0 \mathrm{8}-1.51 \mathrm{~B}+0 \mathrm{l}$ +	+ *	+ +	${ }^{\text {a }}$	+ *	
2.5118-08-1.525+01 +	+ *	+ *	${ }^{\text {A }}$	+ +	
$2.928 \mathrm{E}+08-1.52 \mathrm{E}+01+$	+ *	+	A.	+ +	
3.1188+08-1.528+01 +	+ +	*	A.	+ +	
3.9818+08-1.538+01 +	* *	- +	λ	+ +	
5.4118+08-1.568+01 *	+	+ ${ }^{1}$	+ *	* +	
$6.3098+08-1.578+01$ *	+ +	+ ${ }^{\text {a }}$	* *	+ +	
$7.3561+08-1.608+01$ +	+ +	λ	* *	+ +	
8. $577 \mathrm{~T}+08-1.62 \mathrm{t}+01$ +	+ *	λ,	+ +	+ +	
1.0008+09-1.668+01 *	* *	- λ	+ *	+ *	
$1.1658+09-1.718+01$.	+	${ }^{\text {A }}$	+ *	* *	

$$
7-46
$$

Hos ANP

VDD 10 5V
21120 Eios $W=0 \quad L=10$
12300 MOS $W=1000 \mathrm{~L}=10$
CLOAD 20 100FF
RS 3 IR
VI 40 SV AC
. PLOT AC VDP(2)
. PLOT AC VP(2)
.AC DEC 15 IMES 2GIG

$+70 X=20 \mathrm{FI}$ CGSO=3008F CGDO=300PF CBD=80FF CBS=80FF

+ TOX=201: CGSO=300PF CGDO=300PF CBD=3.2FP CBS=3.2FF
+ TOX=201: CGSO $=300 \mathrm{PF} \mathrm{CCDO}=300 \mathrm{PF} \mathrm{CBD}=3.2 \mathrm{FF} \mathrm{CBS}=3.2 \mathrm{FF}$
.OPRIOAS ROPAGE BOUDD
. WIDIR OVI $=80$
.OPTIOXS SPICE
.OP
. EOD

FRE)	VIs (2)				
(A 1	$-3.0008+01$	$-2.8008+3 \pm$	$-2.6008+01$	$-2.4008+01$	-2,2008 01
	+	*	*	-	-
4.641E+07	$-2.388+01+$	+ *	* •	+	+ +
$5.1118+07$	$-2.38 \mathrm{E}+01+$	+ *	* *	+ ${ }^{\text {a }}$	* *
$6.3098+07$	-2.388+01 +	+ *	* *	+	* +
7.3568+07	-2.38E+01 +	+ +	+ +	+ ${ }^{\text {a }}$	+ *
8.5771 +07	-2.38t+01 +	+	+ +	+	+ *
1.0008+08-2.388+01-+					
$1.1658+08$	-2.38E+01 +	+ +	+ +	- ${ }^{\text {A }}$	- +
$1.3598+08$	-2.398+01 +	+ +	* *	* ${ }^{\text {a }}$	- +
1.5818 +08	$-2.39 \mathrm{E}+01+$	+ *	* *	λ	+ +
1.8478+08	$-2.408+01+$	+ -	- +	+ λ	+ +
$2.1518+08$	-2.112+01 *	* *	+ +	${ }^{\text {a }}$	* *
$2.5118+08$	-2.12E-01 +	+ *	+ +	+ 1 +	+ +
$2.9288+08$	-2.138+01 +	+ +	+ +	+ 1	- +
1.1118+08	-2.158+01 +	+ +	+ +	$+1$	* *
$3.9818+08$	$-2.47 \mathrm{~B}+01+$	+ +	+ *	+ 1	+ *
1.6418+08-2.501+01-4					
$5.1118+08$	$-2.53 \mathrm{E}+01+$	+ *	- +	+ +	+ +
$6.309 \mathrm{~B}+09$	-2.578+01 -	+ +	+ ${ }^{\text {a }}$	+ +	+ *
$7.3568+08$	$-2.61 \mathrm{~L}+01$ +	+ +	A+	+ *	+
$8.5778+08$	$-2.65 \mathrm{E}+01+$	+ +	+ 1	* *	+ +
$1.000 \mathrm{~B}+09$	$-2.708+01+$	+ *	λ	* *	+ +

HMOS MP
VID 105 V
M2 1120 mos2 $\mathrm{H}=40 \mathrm{~L}=10$
M1 230 HOS $\mathrm{N}=1000 \mathrm{~L}=10$
CLAAD 2 O 100FF
RS 43 IR
VI 40 iV ac
. PLOT AC VDB(2)
.PLOT AC VP(2)
.AC Dex 15 1vise 2 GIG

$+701=20 \mathrm{FI}$ CGSO=300P7 CCDO=300PF CBD=30FT CBS $=80 \mathrm{FP}$

. OPTICNS HOPACE BOMOD
.WIWIH OUT=80
.OPTIONS SPICE
. OP
**Et* AC MaLYSIS \quad THON= $27.000 \mathrm{TEP}=27.000$

	7028	VDe (2)				
1	1	$-3.8008+01$	$-3.6008+01$	-3.4008+01	-3.2008+01	$-3.0008+01$

	.8008+01								
	+		+		,		-		+
1.6118+07	-3.008+91 +	*	+	*	+	+	*		+ A
$5.1118+07$	$-3.008+01+$	-	*	+	-	*	+		+ $\boldsymbol{1}$
6.3098+07	-3.008+01 -	*	*	*	+	+	+		+ \boldsymbol{A}
1.3562+07	-3.002-01 +	*	+	+	+	+	+		+ a
8.5778+07	-3.002+01 +	*	+	+	+	+	+		${ }^{\text {a }}$
1.0008 .08	-3.001+01-+								
$1.1658+08$	-3.015+01 +	+	+	+	+	+	,		${ }^{\text {a }}$
$1.3598+08$	-3.018+01 +	+	+	+	+	*	-		${ }^{\text {a }}$ +
$1.5848+08$	-3.018+01 +	*	*	-	+	*	+		${ }^{\text {a }}$
$1.817 \mathrm{E}+08$	-3.015+01 +	*	*	*	+	+	*		A*
$2.154 \mathrm{E}+08$	-3.025-01	*	+	+	+	+	*		+ \boldsymbol{A}.
$2.5112+08$	-3.025-01 *	*	*	+	+	-	+		1.
$2.9285 \cdot 08$	-3.03E+01 +	+	+	+	+	*	*		+ 1
$3.4168+08$	-3.045+01 +	+	+	+	+	*	*		+ 1
$3.9818+08$	-3.058+01 +	+	+	*	+	*	*		λ
1.60115+08	-3.075+01-+								
$5.4112+08$	$-3.081+01+$	*	+	+	+	+	+		+
$6.3098+08$	$-3.108+02$,	*	*	+	+	+	+		1 *
$7.3568+08$	-3.12E+01 *	*	+	+	*	+	+	A^{*}	*
8.5778008	-3.118+01 +	+	*	+	*	*	+	${ }^{\text {A }}$	+ +
$1.0008+09$	$-3.16 \mathrm{E}+01+$	+	+	+	*	*	+ ${ }^{+}$		+ +
$1.165 \mathrm{E}+09$	$-3.18 \mathrm{~B}+01+$	+	*	*	-	*	+ ${ }^{\text {d }}$		+ +
$1.359 \mathrm{E}+09$	-3.198+01 +	*	*	*	*	+	λ		+ +
$1.581 \mathrm{~L}+09$	-3.218+01	*	*	+	+	+	${ }^{1+}$		+ +
$1.8478+09$	-3.228+01	+	*	+	+	+	A		* *
$2.1518+09$	-3.238+01-+						- ${ }^{\text {- }}$		-
$2.511 \mathrm{E}+09$	$-3.218+01+$	+	+	*	*		A		+ +
$2.9238+69$	$-3.258+01+$	+	+	*	*		1		+ +
$3.4148+09$	$-3.268+01$	+	*	*	-		+		+ +
$3.9818+09$	-3.288+01	*	+	*	*	+1	+		+ *
4.5428+69	-3.298+01 -	*	+	+	*	A	+		* *
$5.4118+09$	-3.318+21	-	+	*	+	${ }^{\text {a }}$	*		+ *
$6.3098+98$	$-3.338+01+$	+	+	+	*		-		* *
$-.3568+09$	$-3.358+01+$	*	+	+			*		+ +

EiNS ANP
VDD 105 V
K2 1120 mase $W=4 \mathrm{~L} L=10$

CLOAD 2 O 100FF
RS 431 K
VI 40 FV Ac
. PLot Ac VDP(2)
. PLor AC VP(2)
AC DEC 15 IMEG 2GIG

+ TOX=20M CESO $=300 \mathrm{PF}$ CCDO $=300 \mathrm{PF}$ CBD=80FF CBS $=80 \mathrm{FF}$

$+T O X=20 \mathrm{FI}$ CGSO=300PF CEDO=3008F CBD=3.2FF CBS=3.2FT

. OPTIORS MOPAG
OPTIORS SPICE
.OP
. EF D

******	AC Andrsis		T30\%		27.000 TEAP=	27.000
FREP	vpe (2)					
(A)	$-6.0008+01$	$-5.0008+01$	$-4.000 \mathrm{E}+01$	$-3.900 \mathrm{~B}+01$	$-2.000 \mathrm{~B}+61$	
	-	+	+	+	+	
$3.1118+08$	$-3.168+01$ *	+ +	,	+ ${ }^{\text {a }}$	*	
3.9818 +08	-3.46E+01 +	+ +	+ +	+	- *	
$4.6418+08$	-3.468+01-+			+ 1	-..+-	
$5.6118+08$	-3.468+01 +	- *	-	+	+ +	
$6.3098+08$	$-3.468+01$ -	- *	+ *	A	+ +	
$7.3568+08$	$-3.46 \mathrm{E}+01+$	- +	+ +	λ	+ +	
8.5778 .08	$-3.46 \mathrm{P}+01+$	+ +	+ +	λ	* *	
$1.0008+09$	$-3.46 \mathrm{~B}+01+$	* +	+	λ	* *	
$1.1658+09$	$-3.47 \mathrm{~B}+01+$	- +	+	λ	+ *	
$1.359 \mathrm{t}+09$	$-3.678+01$ +	- *	-	λ	+ *	
$1.5868+09$	$-3.47 \mathrm{~B}+01+$	- *	-	λ	+ *	
$1.817 \mathrm{t}+09$	$-3.471+01+$	- *	+ *	A +	$+$	
2.1548 +09	-3.478+01-+-			A-	+------*	
$2.5118+09$	$-3.478+01$ +	+ +	+	1	* *	
$2.9288 \cdot 09$	$-3.488+01+$	+ +	+	λ	* *	
3.1168+09	$-3.68 \mathrm{E}+01+$	+ +	+ *	λ	* *	
$3.9818+09$	$-3.49 \mathrm{E}+01+$	+	+	λ	* *	
$1.6118+09$	$-3.508+01+$	-	+	A	+ *	
$5.1118+09$	-3.518+01.	+	+ +	A +	+	
$6.3098+09$	$-3.52 \mathrm{E}+01+$	+	+ +	1 +	+ +	
$7.356 \mathbf{+}+09$	$-3.548+01$ +	+	+ +	${ }^{1}$	- +	
8.5718+09	$-3.56 \mathrm{~B}+01+$	$+\quad+$	+ +	A *	* *	
1.0008+10	-3.598+01-+-			- $\boldsymbol{\lambda}+\cdots$....-*		
$1.165 \mathrm{E}+10$	$-3.62 \mathrm{E}+01$ -	+ *	+ +	A *	-	
$1.359 \mathrm{x}+10$	-3.678+01-	-	*	A ${ }^{\text {a }}$	* *	
$1.584 \mathrm{~L}+10$	-3.728+02 -	+ *	+ A	* +	+ *	
$1.8478+10$	-3.798+01 *	*	- ${ }^{1}$	+	* *	
$2.151 \mathrm{E}+10$	-3.86E+01 +	+	+ λ	+ -	+	
$2.511 \mathrm{E}+10$	-3.95E+01 +	*	+A	+ *	+ +	

