Homework No. 5-Solutions

Problem 1-(10 points) (Problem 6.2-8 of A\&H)
A two-stage, Miller-compensated CMOS op amp has a RHP zero at 20GB, a dominant pole due to the Miller compensation, a second pole at p_{2} and a mirror pole at $-3 G B$. (a) If $G B$ is 1 MHz , find the location of p_{2} corresponding to a 45° phase margin. (b) Assume that in part (a) that $\left|p_{2}\right|=2 G B$ and a nulling resistor is used to cancel p_{2}. What is the new phase margin assuming that $G B=1 \mathrm{MHz}$? (c) Using the conditions of (b), what is the phase margin if C_{L} is increased by a factor of 4 ?

Solution

a.) Since the magnitude of the op amp is unity at GB , then let $\omega=\mathrm{GB}$ to evaluate the phase.

$$
\text { Phase margin }=P M=180^{\circ}-\tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{p}_{1}\right|}\right)-\tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{p}_{2}\right|}\right)-\tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{p}_{3}\right|}\right)-\tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{z}_{1}\right|}\right)
$$

But, $\mathrm{p}_{1}=\mathrm{GB} / \mathrm{A}_{\mathrm{o}}, \mathrm{p}_{3}=-3 \mathrm{~GB}$ and $\mathrm{z}_{1}=-20 \mathrm{~GB}$ which gives

$$
\begin{gathered}
\mathrm{PM}=45^{\circ}=180^{\circ}-\tan ^{-1}\left(\mathrm{~A}_{\mathrm{o}}\right)-\tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{p}_{2}\right|}\right)-\tan ^{-1}(0.33)-\tan ^{-1}(0.05) \\
45^{\circ} \approx 90^{\circ}-\tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{p}_{2}\right|}\right)-\tan ^{-1}(0.33)-\tan ^{-1}(0.05)=90^{\circ}-\tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{p}_{2}\right|}\right)-18.26^{\circ}-2.86^{\circ} \\
\therefore \tan ^{-1}\left(\frac{\mathrm{~GB}}{\left|\mathrm{p}_{2}\right|}\right)=45^{\circ}-18.26^{\circ}-2.86^{\circ}=23.48^{\circ} \rightarrow \frac{\mathrm{GB}}{\left|\mathrm{p}_{2}\right|}=\tan \left(23.84^{\circ}\right)=0.442 \\
\mathrm{p}_{2}=-2.26 \cdot \mathrm{~GB}=-14.2 \times 10^{6} \mathrm{rads} / \mathrm{sec}
\end{gathered}
$$

b.) The only roots now are p_{1} and p_{3}. Thus,

$$
\mathrm{PM}=180^{\circ}-90^{\circ}-\tan ^{-1}(0.33)=90^{\circ}-18.3^{\circ}=71.7^{\circ}
$$

c.) In this case, z_{1} is at -2 GB and p_{2} moves to -0.5 GB . Thus the phase margin is now,

$$
\text { PM }=90^{\circ}-\tan ^{-1}(2)+\tan ^{-1}(0.5)-\tan ^{-1}(0.33)=90^{\circ}-63.43^{\circ}+26.57^{\circ}-18.3^{\circ}=34.4^{\circ}
$$

Problem 2 - (Problem 6.2-10 of A\&H)

For the two-stage op amp of Fig. 6.2-8, find $W_{1} / L_{1}, W_{6} / L_{6}$, and C_{c} if $G B=1 \mathrm{MHz},\left|p_{2}\right|=$ $5 G B, z=3 G B$ and $C_{L}=C_{2}=20 \mathrm{pF}$. Use the parameter values of Table 3.1-2 and consider only the two-pole model of the op amp. The bias current in M5 is $40 \mu \mathrm{~A}$ and in M7 is $320 \mu \mathrm{~A}$.

Solution

Given

$$
\begin{aligned}
& G B=1 \mathrm{MHz} . \\
& p_{2}=5 G B \\
& z=3 G B \\
& C_{L}=C_{2}=20 \mathrm{pF}
\end{aligned}
$$

Now, $\quad p_{2}=\frac{g_{m 6}}{C_{2}}$
or,

$$
g_{m 6}=628.3 \mu \mathrm{~S}
$$

or,
$\left(\frac{W}{L}\right)_{6}=\frac{g_{m 6}{ }^{2}}{2 K_{P}^{\prime} I_{D 6}} \cong 12.33$

Figure 6.2-8 A two-stage op amp with various parasitic and circuit capacitances shown.

RHP zero is given by

$$
z=\frac{g_{m 6}}{C_{C}}
$$

or,

$$
C_{C}=\frac{g_{m 6}}{z}=33.3 \mathrm{pF}
$$

Finally, Gain-bandwidth is given by

$$
G B=\frac{g_{m \mathrm{l}}}{C_{C}}
$$

or, $\quad g_{m 1}=209.4 \mu S$
or, $\left(\frac{W}{L}\right)_{1}=\frac{g_{m 1}{ }^{2}}{2 K_{N}^{\prime} I_{D 1}} \cong 10$

Problem 3- (10 points) (Problem 6.2-11 of A\&H)

In the figure shown, assume that $R_{I}=150 \mathrm{k} \Omega, \mathrm{R}_{I I}=100 \mathrm{k} \Omega, g_{m I I}=500 \mu \mathrm{~S}, C_{I}=1 \mathrm{pF}$, $C_{I I}=5 \mathrm{pF}$, and $C_{c}=30 \mathrm{pF}$. Find the value of R_{z} and the locations of all roots for (a) the case where the zero is moved to infinity and (b) the case where the zero cancels the highest pole.

Soluiton

(a.) Zero at infinity.

$$
\begin{aligned}
& R_{z}=\frac{1}{g_{m I I}}=\frac{1}{500 \mu \mathrm{~S}} \\
& R_{z}=2 \mathrm{k} \Omega
\end{aligned}
$$

Check pole due to R_{z}.

$$
p_{4}=\frac{-1}{R_{z} C_{I}}=\frac{-1}{2 \mathrm{k} \Omega \cdot 1 \mathrm{pF}}=-500 \times 10^{6} \mathrm{rps} \text { or } 79.58 \mathrm{MHz}
$$

The pole at p_{2} is

$$
p_{2} \approx \frac{-g_{m I I} C_{c}}{C_{I} C_{I I}+C_{c} C_{I}+C_{c} C_{I I}} \approx \frac{-g_{m I I}}{C_{I I}}=\frac{-500 \mu \mathrm{~S}}{5 \mathrm{pF}}=100 \times 10^{6} \mathrm{rps} \text { or } 15.9 \mathrm{MHz}
$$

Therefore, p_{2} is the next highest pole.
(b.) Zero at p_{2}.

$$
\begin{aligned}
& R_{z}=\left(\frac{C_{c}+C_{I I}}{C_{c}}\right)\left(1 / g_{m I I}\right)=\left(\frac{30+5}{30}\right) \frac{1}{500 \mu \mathrm{~S}}=2.33 \mathrm{k}_{-} \\
& R_{z}=2.33 \mathrm{k} \Omega
\end{aligned}
$$

Problem 4-(10 points)

The poles and zeros of a Miller compensated, two-stage op amp are shown below.
(a.) If the influence of p_{3} and z_{1} are ignored, what is the $G B$ in MHz of this op amp for 60° phase margin?
(b.) What is the value of $A_{v}(0)$? What is the value of C_{c} if $g_{m 1}=g_{m 2}=500 \mu \mathrm{~S}$?
(c.) If p_{2} is moved to p_{3}, what is the new $G B$ in MHz for 60° phase margin? What is the new C_{c} if the input transconductances are the same as in (b.)?

Solution

(a.) The phase margin, PM, can be written as

$$
\begin{aligned}
& \quad \mathrm{PM}=180-\tan ^{-1}\left(\frac{G B}{\left|p_{2}\right|}\right)-\tan ^{-1}\left(\frac{G B}{\left|p_{3}\right|}\right)-\tan ^{-1}\left(\frac{G B}{z_{1}}\right) \approx 90^{\circ}-\tan ^{-1}\left(\frac{G B}{\left|p_{2}\right|}\right)=60^{\circ} \\
& \therefore \quad \tan ^{-1}\left(\frac{G B}{\left|p_{2}\right|}\right)=30^{\circ} \quad \rightarrow \quad G B=0.5774 \cdot\left|p_{2}\right|=\underline{\underline{5.774 M H z}} \\
& \text { (b.) } A_{v}(0)=\frac{G B}{\left|p_{1}\right|}=\frac{5.774 \mathrm{MHz}}{1 \mathrm{kHz}}=\underline{\underline{5,774 \mathrm{~V} / \mathrm{V}}} \\
& \quad \frac{g_{m 1}}{C_{c}}=G B \quad \rightarrow \quad C_{c}=\frac{g_{m 1}}{G B}=\frac{500 \mu \mathrm{~S}}{2 \pi \cdot 5.774 \times 10^{6}}=\underline{\underline{13.78 \mathrm{pF}}}
\end{aligned}
$$

(c.) The phase margin, PM, can be written as

$$
\begin{aligned}
& \mathrm{PM}=180-\tan ^{-1}\left(\frac{G B}{\left|p_{2}\right|}\right)-\tan ^{-1}\left(\frac{G B}{\left|p_{3}\right|}\right)-\tan ^{-1}\left(\frac{G B}{z_{1}}\right) \approx 90^{\circ}-3 \cdot \tan ^{-1}\left(\frac{G B}{\left|p_{2}\right|}\right)=60^{\circ} \\
\therefore \quad & \tan ^{-1}\left(\frac{G B}{\left|p_{2}\right|}\right)=10^{\circ} \quad \rightarrow \quad G B=0.1763 \cdot\left|p_{2}\right|=0.01763 \cdot 100 \mathrm{MHz}=\underline{\underline{17.63 \mathrm{MHz}}} \\
& C_{c}=\frac{g_{m 1}}{G B}=\frac{500 \mu \mathrm{~S}}{2 \mathrm{p} \cdot 17.63 \times 10^{6}}=\underline{\underline{4.514 \mathrm{pF}}}
\end{aligned}
$$

