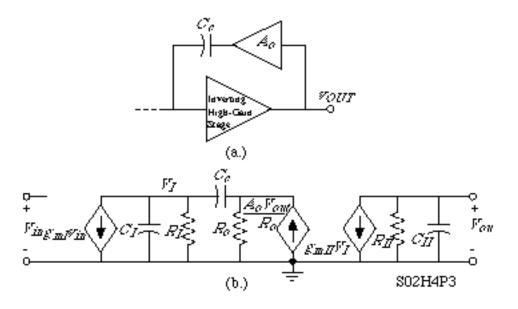
Homework Assignment No. 5

Due Monday, February 9, 2004 in class

Problem 1 - (10 points - Problem 6.2-8 of A&H)


A two-stage, Miller-compensated CMOS op amp has a RHP zero at 20*GB*, a dominant pole due to the Miller compensation, a second pole at p_2 and a mirror pole at -3*GB*. (a) If *GB* is 1MHz, find the location of p_2 corresponding to a 45° phase margin. (b) Assume that in part (a) that $|p_2| = 2GB$ and a nulling resistor is used to cancel p_2 . What is the new phase margin assuming that GB = 1MHz? (c) Using the conditions of (b), what is the phase margin if C_L is increased by a factor of 4?

Problem 2 - (10 points - Problem 6.2-10 of A&H)

For the two-stage op amp of Fig. 6.2-8, find W_1/L_1 , W_6/L_6 , and C_c if GB = 1 MHz, $|p_2| = 5 GB$, z = 3 GB and $C_L = C_2 = 20$ pF. Use the parameter values of Table 3.1-2 and consider only the two-pole model of the op amp. The bias current in M5 is 40 μ A and in M7 is 320 μ A.

Problem 3 - (10 points - Problem 6.2-11 of A&H)

In the figure shown, assume that $R_I = 150 \text{ k}$, $R_{II} = 100 \text{ k}$, $g_{mII} = 500 \text{ }\mu\text{S}$, $C_I = 1 \text{ }p\text{F}$, $C_{II} = 5 \text{ }p\text{F}$, and $C_c = 30 \text{ }p\text{F}$. Find the value of R_z and the locations of all roots for (a) the case where the zero is moved to infinity and (b) the case where the zero cancels the highest pole.

Problem 4 – (10 points)

The poles and zeros of a Miller compensated, two-stage op amp are shown below.

(a.) If the influence of p_3 and z_1 are ignored, what is the *GB* in MHz of this op amp for 60° phase margin?

(b.) What is the value of $A_v(0)$? What is the value of C_c if $g_{m1}=g_{m2}=500\mu$ S?

(c.) If p_2 is moved to p_3 , what is the new *GB* in MHz for 60° phase margin? What is the new C_c if the input transconductances are the same as in (b.)?

$$\xrightarrow{j\omega} C_{\rho}$$

$$\xrightarrow{p_3=-200M\pi} p_2=-20M\pi \left(\begin{array}{c} & & \\ p_2=-2K\pi \end{array} \right) \left(\begin{array}{c} & & \\ p$$