Homework Assignment No. 8 - Solutions

Problem 1-(10 points)

This problem deals with the op amp shown in Fig. P6.5-15. All device lengths are $1 \mu \mathrm{~m}$, the slew rate is $\pm 10 \mathrm{~V} / \mu \mathrm{s}$, the GB is 10 MHz , the maximum output voltage is +2 V , the minimum output voltage is -2 V , and the input common mode range is from -1 V to +2 V .
Design all W values of all transistors in this op amp. Your design must meet or

Figure P6.5-15
exceed the specifications. When calculating the maximum or minimum output voltages, divide the voltage drop across series transistors equally. Ignore bulk effects in this problem. When you have completed your design, find the value of the small signal differential voltage gain, $A_{v d}=v_{\text {out }} / v_{i d}$, where $v_{i d}=v_{1}-v_{2}$ and the small signal output resistance, $\mathrm{R}_{\text {out }}$.

Solution

1.) The slew rate will specify $I . \quad \therefore \quad I=C \cdot S R=10^{-11} \cdot 10^{7}=10^{-4}=100 \mu \mathrm{~A}$.
2.) Use $G B$ to define W_{1} and W_{2}.

$$
\begin{aligned}
& G B=\frac{g_{m 1}}{C} \quad \rightarrow \quad g_{m 1}=G B \cdot C=2 \pi \times 10^{7} \cdot 10^{-11}=628 \mu \mathrm{~S} \\
& \therefore W_{1}=\frac{g_{m 1}^{2}}{2 K_{N}(0.5 I)}=\frac{(628)^{2}}{2 \cdot 110 \cdot 50}=35.85 \quad \Rightarrow \quad W_{1}=W_{2}=36 \mu \mathrm{~m}
\end{aligned}
$$

3.) Design W_{15} to give $V_{T}+2 V_{O N}$ bias for M6 and M7. $V_{O N}=0.5 \mathrm{~V}$ will meet the desired maximum output voltage specification. Therefore,

$$
\begin{array}{ll}
V_{S G 15}=V_{O N 15}+\left|V_{T}\right|=2(0.5 \mathrm{~V})+\left|V_{T}\right| & \rightarrow V_{O N 15}=1 \mathrm{~V}=\sqrt{\frac{2 I}{K_{P} W_{15}}} \\
\therefore W_{15}=\frac{2 I}{K_{P} V_{O N 15}^{2}}=\frac{2 \cdot 100}{50 \cdot 1^{2}}=4 \mu \mathrm{~m} & \Rightarrow \quad \underline{\underline{W}} \underline{\underline{15}}=4 \mu \mathrm{~m}
\end{array}
$$

4.) Design W_{3}, W_{4}, W_{6} and W_{7} to have a saturation voltage of 0.5 V with 1.5 I current.

$$
W_{3}=W_{4}=W_{6}=W_{7}=\frac{2(1.5 I)}{K_{P} V_{O N}^{2}}=\frac{2 \cdot 150}{50 \cdot 0.5^{2}}=24 \mu \mathrm{~m} \quad \Rightarrow \underline{\underline{W}} \underline{\underline{3}}=\underline{\underline{W}}_{\underline{4}}^{\underline{=}} \underline{\underline{W}} \underline{\underline{6}}=W_{7}=24 \mu \mathrm{~m}
$$

Problem 6.5-15 - Continued

5.) Next design W_{8}, W_{9}, W_{10} and W_{11} to meet the minimum output voltage specification. Note that we have not taken advantage of smallest minimum output voltage because a normal cascode current mirror is used which has a minimum voltage across it of $V_{T}{ }^{+}$ $2 V_{O N}$. Therefore, setting $V_{T}+2 V_{O N}=1 \mathrm{~V}$ gives $V_{O N}=0.15 \mathrm{~V}$. Using worst case current, we choose 1.5I. Therefore,
$W_{8}=W_{9}=W_{10}=W_{11}=\frac{2(1.51)}{K_{N} V_{O N}{ }^{2}}=\frac{2 \cdot 150}{110 \cdot 0.15^{2}}=121 \mu \mathrm{~m} \Rightarrow \underline{\underline{W}} \underline{\underline{8}} \underline{\underline{W}} \underline{\underline{9}} \underline{\underline{W}} \underline{\underline{\underline{W}}} \underline{\underline{\underline{1}}}=$ $\underline{\underline{121 \mu \mathrm{~m}}}$
6.) Check the maximum ICM voltage.

$$
V_{i c}(\max)=V_{D D}+V_{S D 3}(\mathrm{sat})+V_{T N}=3 \mathrm{~V}-0.5+0.7=3.2 \mathrm{~V} \text { which exceeds spec. }
$$

7.) Use the minimum ICM voltage to design W_{5}.

$$
\begin{aligned}
& V_{i c}(\min)=V_{S S}+V_{D S 5}(\mathrm{sat})+V_{G S 1}=-3+V_{D S 5}(\mathrm{sat})+\left(\sqrt{\frac{2 \cdot 50}{110 \cdot 36}}+0.7\right)=-1 \mathrm{~V} \\
\therefore & V_{D S 5}(\mathrm{sat})=1.141 \rightarrow W_{5}=\frac{2 I}{K_{N} V_{D S 5}(\mathrm{sat})^{2}}=1.39 \mu \mathrm{~m}=1.4 \mu \mathrm{~m}
\end{aligned}
$$

$$
\text { Also, let } W_{12}=W_{13}=W_{5} \quad \Rightarrow \quad W_{12}=W^{13}=W_{5}=1.4 \mu \mathrm{~m}
$$

8.) W_{14} is designed as

$$
W_{14}=W_{3} \frac{I_{14}}{I_{3}}=24 \mu \mathrm{~m} \frac{I}{1.5 I}=16 \mu \mathrm{~m} \quad \Rightarrow \quad \underline{\underline{W}} \underline{\underline{14}}=16 \mu \mathrm{~m}
$$

Now, calculate the op amp small-signal performance.

$$
\begin{gathered}
R_{\text {out }} \approx r_{d s 11} g_{m 9} r_{d s 9} \| g_{m 7} r_{d s 7}\left(r_{d s 2} \| r_{d s 4}\right) \\
g_{m 9}=\sqrt{2 K_{N} \cdot \cdot \cdot W_{9}}=1632 \mu \mathrm{~S}, r_{d s 9}=r_{d s 11}=\frac{25 \mathrm{~V}}{100 \mu \mathrm{~A}}=0.25 \mathrm{M} \Omega, \\
g_{m 7}=\sqrt{2 K_{P} \cdot I \cdot W_{7}}=490 \mu \mathrm{~S}, r_{d s 7}=\frac{20 \mathrm{~V}}{100 \mu \mathrm{~A}}=0.2 \mathrm{M} \Omega, r_{d 2}=\frac{25 \mathrm{~V}}{50 \mu \mathrm{~A}}=0.5 \mathrm{M} \Omega \\
\\
r_{d s 4}=\frac{20 \mathrm{~V}}{150 \mu \mathrm{~A}}=0.1333 \mathrm{M} \Omega \quad \therefore \quad \therefore \quad \therefore \quad \underline{\underline{R_{o u t}}} \approx 102 \mathrm{M} \Omega \| 10.31 \mathrm{M} \Omega=9.3682 \mathrm{M} \Omega \\
A_{v d}=\left(\frac{2+\mathrm{k}}{2+2 \mathrm{k}}\right) g_{m 1} R_{\text {out },}, \mathrm{k}=\frac{102 \mathrm{M} \Omega}{\left(r_{d s 2} \| r_{d s 4}\right) g_{m 7} r_{d s 7}}=9.888, \quad g_{m 1}=\sqrt{K_{N} \cdot I \cdot W_{1}}=629 \mu \mathrm{~S} \\
\therefore \quad A_{v d}=(0.5459)(629 \mu \mathrm{~S})(9.3682 \mathrm{M} \Omega)=3,217 \mathrm{~V} / \mathrm{V} \quad \Rightarrow \quad \quad \underline{\underline{A_{v d}}}=3,217 \mathrm{~V} / \mathrm{V}
\end{gathered}
$$

t** BIPOLAR JUNCTION TRAMSISTORS

SUBCKT

$6-28$
If the bias current level of 741
input stage is doubled, then
from (6.134), $G_{m_{1}}=\frac{1}{2.7 \mathrm{k} \Omega}$
From (6.138).

$$
\begin{aligned}
& R_{01}=\left.R_{\text {out }}\right|_{Q_{4}} \|\left. R_{\text {OUT }}\right|_{Q_{6}} \\
&=2 r_{04} \| r_{06}\left(1+g_{m_{6}}(1 \mathrm{k} \Omega)\right) \\
& \text { Using } \eta_{n p n}=2 \times 10^{-4}, \eta_{p n p}=5 \times 10^{-4} \\
& \text { and }\left|I_{c}\right|=194 \mathrm{~A}, \text { we have } \\
& r_{04}=\frac{1}{\eta g_{m}}=\frac{10^{4}}{5} \frac{26}{19 \times 10^{-3}}=2.74 \mathrm{M} \Omega \\
& r_{06}=\frac{10^{4}}{2} \frac{26}{19 \times 10^{-3}}=6.84 \mathrm{M} \Omega \\
& g_{m_{6}} \times 1 \mathrm{k} \Omega=0.73 \\
& \therefore R_{01}=(5.48) \|(6.84 \times 1.73) \mathrm{M} \Omega \\
&=3.75 \mathrm{~m} \Omega
\end{aligned}
$$

741 equivalent

$3.75\|5.7 \quad 2.26 \mathrm{M} \Omega ; 83 \mathrm{~K}\| 9.1 \mathrm{M}=82 \mathrm{~K} \Omega$

$$
\begin{aligned}
A_{v} & =\frac{2260}{2.7} \cdot \frac{82}{0.147}=838 \times 558 \\
& =468,000
\end{aligned}
$$

6.29

If the 100Ω emitter resistor of Q_{17} is removed, then in (6.142) we have,

$$
\begin{aligned}
R_{e q_{1}} & =\gamma_{\pi_{17}} \pm \frac{\beta}{g_{m}}=250 \times \frac{26}{0.55}=11.8 \mathrm{k} \Omega \\
R_{i_{2}} & =\gamma_{\pi_{16}}+\left(1+\beta_{0}\right)\left(\gamma_{\pi_{17}} \| 50 \mathrm{k} \Omega\right) \\
& =406 \mathrm{k} \Omega+251 \times 9.55 \mathrm{k} \Omega \\
& =2.8 \mathrm{M} \Omega
\end{aligned}
$$

From (6.146)

$$
G m_{2} \simeq g m_{17}=\frac{0.55}{26}=\frac{1}{47.3 \Omega}
$$

From (6.147)

$$
\begin{aligned}
& R_{02}=\gamma_{013 \mathrm{p}} \| \gamma_{017} \\
& \gamma_{0 / 3 \beta}=\frac{1}{\eta g_{m}}=\frac{10^{4}}{5} \frac{26}{0.55}=94.5 \mathrm{k} \Omega \\
& \gamma_{017}=\frac{1}{\eta g_{m}}=\frac{10^{4}}{2} \frac{26}{0.55}=236 \mathrm{k} \Omega \\
& \therefore R_{02}=67.5 \mathrm{k} \Omega \\
& A_{v}=\frac{1980}{5.4} \times \frac{67 .}{0.047} \\
& =523,000
\end{aligned}
$$

6.30

Minimum CM input voltage:
The circuit ceases to function correctly when Q_{3} and Q_{4} saturate.
Q_{3} and Q_{4} operate in the F.A.R. when,

$$
\begin{aligned}
& V_{E C_{3}}>V_{C E(\text { sat })} \\
& V_{E_{3}}=V_{I C}-V_{B E_{1}} \quad \text { neglect } \\
& V_{C_{3}}=-V_{E E}+V_{B E_{5}}+V_{B E_{7}}+\overbrace{I_{3}}(1 K) \\
& V_{E C_{3}}=V_{1 C}-V_{B E_{1}}-\left(-V_{E E)}-V_{B E_{5}}-V_{B E_{7}}>V_{C E(\text { sat })}\right. \\
& V_{I C}>-V_{E E}+V_{B E_{1}}+V_{B E_{5}}+V_{B E_{7}}+V_{C E(\text { sat })}
\end{aligned}
$$

Maximum CM input voltage:
Q_{1} and Q_{2} operate in the F.A.R. when

$$
\begin{aligned}
& V_{C E_{1}}>V_{C E}(\text { sat }) \\
& V_{C 1}=V_{C C}-\left|V_{B E_{8}}\right| \\
& V_{E_{1}}=V_{1 C}-V_{B E_{1}} \\
& V_{C E_{1}}=V_{C C}-\left|V_{B E_{g}}\right|-V_{1 C}+V_{B E_{1}}>V_{C E(\text { sat. })}
\end{aligned}
$$

Assume $V_{B E_{1}}=\left|V_{B E_{8}}\right|$ Then $V_{1 C}<V_{C C}-V_{C E}$ (sat.)

- ponitr supplies				
vec	100	01		
VEE	200	0		
- intot stage				
01	7	8	10	189
Q2	7	9	11	LTP
Q3	12	6	10	PRP
94	16	6	11	PRP
Q5	12	13	14	1P88
Q6	16	13	15	H29
Q7	100	12	13	HPR
Q8	7	7	100	PRP
Q9	6	7	100	P3P
810	6	4	5	${ }_{4 T H}$
911	4	4	200	HPY
012	3	3	100	PAP
R1	14	200	18	
R2	15	200	12	
83	13	200	50 K	
R5	3	4	39x	
R4	5	200	5K	

DARLTICTCOA CAM ETLCE					
Q13B	19	3	100	PRPB	
016	100	16	17	ETPA	
017	19	17	18	BPM $^{\text {P }}$	
88	18	200	100		
R	17	200	50X		
* OUTPGT ETAGE					
0138	20	3	100	0 PSPA	
Q14	100	20	25	EFP	
Q18	20	21	22	${ }_{2 T P 3}$	
019	20	20	21	LPE	
Q20	200	22	23	Ptap	
$\mathbf{2 3}$	200	19	22	PRTP	
86	25	9	21		
R7	23	9	22		
R10	21	22	40K		
 .OPTIOES BOPACE BOMOD .WIDTH OOT=80 . OP .DC VII -15 150.5 * ters mind calculantors pridict a conalos-mode range of * $-12.7 \mathrm{~V}<\mathrm{VIC}<14.8 \mathrm{~V}$ * In tir volutce-polioner configonation, vo = VI = VIC * as lonio as the huplifitir is morkiso corpectuy. - the results of tais sindation show that * Vo = VI FOR thE FOLLOWING Rages: - $-13 \mathrm{~V}<\mathrm{VI}<14.5 \mathrm{~V}$ - thicesfore, this simmaticen ghows that the - comear mode mipot ramer 1s: - $-13 \mathrm{v}<(\mathrm{VO}=\mathrm{VI}=\mathrm{VIC})<14.5 \mathrm{~V}$ - veich is closs to the result - predicted by hard caiculations.					

*	OPERATING POİFT	InPOR	T30\% $=$	27.000	TEEP= 27.000
sodr	3 =VOLTAGE	nods	= VOLTAGB	nods	=VOLThes
+0:3	$=1.4318+01$	0:4	$=-1.433 \mathrm{~B}+01$	0:5	$=-1.490 \mathrm{E}+01$
+0:6	$=-1.107 \mathrm{~B}+00$	0:7	= $1.4418+01$	0:8	$=0$.
+0:9	2.7448-04	$0: 10$	$=-5.439 \mathrm{~B}-01$	0:11	$=-5.4378-01$
+0:12	=-1.3898+01	0:13	$=-1.446 \mathrm{~B}+01$	0:14	1.499E+01
+0:15	$=-1.499 \mathrm{E}+01$	0:16	$=-1.370 \mathrm{~B}+01$	0:17	$=-1.426 \mathrm{E}+01$
+0:18	$=-1.493 \mathrm{E}+01$	0:19	$=-1.260 \mathrm{~B}+00$	0:20	5.9048-01
+0:21	$=2.345 \mathrm{E}-02$	0:22	$=-6.088 \mathrm{E}-01$	0:23	$=-2.3618-03$
+0:25	$=3.509 \mathrm{E}-03$	0:100	$=1.500 \mathrm{~B}+01$	0:200	$-1.500 \mathrm{~B}+01$

Problem 5 - (10 points)

A two-stage, BiCMOS op amp is shown. For the PMOS transistors, the model parameters are $K_{P}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T P}=-0.7 \mathrm{~V}$ and $\lambda_{P}=0.05 \mathrm{~V}^{-1}$. For the NPN BJTs, the model parameters are $\beta_{F}=100, V_{C E}($ sat $)=$ $0.2 \mathrm{~V}, V_{A}=25 \mathrm{~V}, V_{t}=26 \mathrm{mV}, I_{s}=10 \mathrm{fA}$ and $n=1$. (a.) Identify which input is positive and which input is negative. (b.) Find the numerical values of differential voltage gain magnitude, $\left|A_{v}(0)\right|, G B$ (in Hertz), the slew rate, $S R$, and the location of the RHP zero. (c.) Find the numerical value of the maximum and minimum input common mode voltages.

Solution

(a.) The plus and minus signs on the schematic show which input is positive and negative.
(b.) The differential voltage gain, $A_{v}(0)$, is given as

$$
\begin{aligned}
& A_{v}(0)=\frac{g_{m 1}}{g_{d s 2}+g_{o 4}+g_{\pi 6}} \cdot \frac{g_{m 6}}{g_{d s 7^{7}+g_{o 6}}} \quad g_{m 1}=g_{m 2}=\sqrt{2 \cdot 50 \cdot 25 \cdot 10}=158.1 \mu \mathrm{~S} \\
& r_{d s 2}=\frac{1}{\lambda_{P} I_{D}}=\frac{20}{25 \mu \mathrm{~A}}=0.8 \mathrm{M} \Omega, r_{o 4}=\frac{V_{A}}{I_{C}}=\frac{25 \mathrm{~V}}{25 \mu \mathrm{~A}}=1 \mathrm{M} \Omega, g_{m 6}=\frac{I_{C}}{V_{t}}=\frac{100 \mu \mathrm{~A}}{26 \mathrm{mV}}=3846 \mu \mathrm{~S} \\
& r_{\pi 6}=\frac{\beta_{F}}{g_{m 6}}=26 \mathrm{k} \Omega, \quad r_{d s 7}=\frac{1}{\lambda_{P} I_{D}}=\frac{20}{100 \mu \mathrm{~A}}=0.2 \mathrm{M} \Omega \text { and } r_{o 6}=\frac{V_{A}}{I_{C}}=\frac{25 \mathrm{~V}}{100 \mu \mathrm{~A}}=0.25 \mathrm{M} \Omega \\
& \therefore \quad\left|A_{\nu}(0)\right|=[158.1(0.8\|1\| 0.026)][3846(0.2 \| 0.25)]=3.888 \cdot 427.36=\underline{\underline{1,659.6 \mathrm{~V} / \mathrm{V}}} \\
& G B=\frac{g_{m 1}}{C_{c}}=\frac{158.1 \mu \mathrm{~S}}{5 \mathrm{pF}}=31.62 \times 10^{6} \mathrm{rads} / \mathrm{sec} \rightarrow \underline{\underline{G B}=5.0325 \mathrm{MHz}} \\
& S R=\frac{50 \mu \mathrm{~A}}{5 \mathrm{pF}}=\underline{\underline{10 \mathrm{~V} / \mu \mathrm{s}}}
\end{aligned}
$$

$$
\text { RHP zero }=\frac{g_{m 6}}{C_{c}}=\frac{3.846 \mathrm{mS}}{5 \mathrm{pF}}=\underline{\underline{769.24 \times 10^{6} \mathrm{rads} / \mathrm{sec}} .(122 \mathrm{MHz}) ~}
$$

(c.) The maximum input common mode voltage is given as

$$
\begin{aligned}
& v_{i c m^{+}}=V_{C C^{-}} V_{D S 5}(\mathrm{sat})-V_{S G 1}=1.5-\sqrt{\frac{2 \cdot 50}{50 \cdot 10}}-0.7-\sqrt{\frac{2 \cdot 25}{50 \cdot 10}}=0.8-0.447-0.316= \\
& \therefore \quad v_{i c m^{+}}=\underline{\underline{0.0367 \mathrm{~V}}} \\
& v_{i c m^{-}}=-1.5+V_{B E 3}-V_{T 1}=-1.5+V_{t} \ln \left(\frac{25 \mu \mathrm{~A}}{10 \mathrm{fA}}\right)-0.7=-2.2+0.5626=\underline{\underline{-1.6374 \mathrm{~V}}}
\end{aligned}
$$

