Homework Assignment No. 11 - Solutions
Problem 1-(10 points)
Problem 8.26 of GHLM
(a) $g_{m 2}$ is the controlled source.

$$
\begin{aligned}
& R_{\text {out }}\left(g_{m 2}=0\right)=r_{01}+r_{02} \\
& R(\text { short })=\left(r_{01} \| r_{02}\right)(a+1) g_{m 2} \\
& R \text { (open })=0 \\
& R_{\text {out }}=R_{\text {out }}\left(g_{m 2}=0\right) \frac{1+R(\text { short })}{1+R(\text { open })} \\
& =\left(r_{01}+r_{02}\right) \frac{1+\left(r_{01 l} r_{02}\right)(a+1) g_{m 2}}{1+0} \\
& =r_{01}+r_{02}+(a+1) g_{m 2} r_{01} r_{02} \\
& \approx a g_{m 2} r_{01} r_{02}
\end{aligned}
$$

(b). a is the controlled source.

$$
\begin{aligned}
& \frac{v_{x}}{r_{01}}=g_{m 2} v_{x}+\frac{v_{x}-v}{r_{02}} \\
& R_{o u t}(a=0)=\frac{v}{i}=\frac{v}{v_{x} / r_{01}} \\
& =g_{m 2} r_{01} r_{02}+r_{01}-r_{02} \\
& \approx g_{m 2} r_{01} r_{02}
\end{aligned}
$$

The output is short

$$
\begin{aligned}
& v_{x}=g_{m 2}\left(v_{t}-v_{x}\right)\left(r_{01} \| r_{o 2}\right) \\
& v_{x}=\frac{g_{m 2}\left(r_{01} \| r_{02}\right)}{1+g_{m 2}\left(r_{01} \| r_{02}\right)} v_{t}
\end{aligned}
$$

R (short $)=a_{-} \frac{g_{m_{2}}\left(r_{01} \| r_{02}\right)}{1+g_{m_{2}}\left(r_{01} \| r_{02}\right)}$
$Q($ open $)=O \quad\left(v_{x}=0\right.$ when the output is open.)

$$
\begin{aligned}
R_{\text {out }} & =R_{\text {out }}(a=0) \frac{1+R(\text { short })}{1+R(\text { open })} \\
& \approx g_{m_{2} r_{01} r_{02}} \frac{1+a_{1+g_{m 2}\left(r_{011}\left(r_{01} 1 \mid r_{02}\right)\right.}^{g_{02}}}{1+0} \\
& \approx a_{g_{m 2} r_{01} r_{02}}
\end{aligned}
$$

(c) The results are the same, as they should be, even though the terms $\operatorname{Rout}(k=0), R$ (open), and R (short) differ in (a) and (b).

Problem 2-(10 points)

The simplified schematic of a feedback amplifier is shown. Use the method of feedback analysis to find $V_{2} / V_{1}, R_{\text {in }}=V_{1} / I_{1}$, and $R_{\text {out }}=V_{2} / I_{2}$. Assume that all transistors are matched and that $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{d s}=$ ∞.

Solution

This feedback circuit is shunt-series. We begin with the open-loop, quasi-ac model shown below.

The small-signal, open-loop model is:

$$
\begin{aligned}
& \frac{I_{o}^{\bullet}}{I_{s}^{\star}}=\left(\frac{I_{o}^{\bullet}}{V_{g s 2}}\right)\left(\frac{V_{g s 2}}{V_{g s 1}}\right)\left(\frac{V_{g s 1}}{I_{s}^{\bullet}}\right) \\
& V_{g s 2}= \\
& \quad-g_{m 1} V_{g s 1} R_{2}-g_{m 2} V_{g s 2} R_{4}
\end{aligned}
$$

or
$\frac{V_{g s 2}}{V_{g s 1}}=\frac{-g_{m 1} R_{2}}{1+g_{m 2} R_{4}}=-\frac{50}{2}=-25 \quad \therefore a=\frac{I_{o}^{\bullet}}{I_{s}^{\bullet}}=\left(g_{m 2}\right)(-25)\left(\frac{-1}{g_{m 1}}\right)=25 \mathrm{~A} / \mathrm{A}$
$f=\frac{I_{f}^{\iota}}{I_{o}^{\bullet}}=\left(\frac{I_{f}^{\leftarrow}}{V_{g s 3}}\right)\left(\frac{V_{g s 3}}{I_{o}^{\iota}}\right)=\left(g_{m 3}\right)\left(\frac{R_{4}}{1+g_{m 3} R_{1}}\right)=(1 \mathrm{~mA} / \mathrm{V})(0.5 \mathrm{k} \Omega)=0.5$
$\therefore a f=25 \cdot 0.5=12.5$
$R_{i}=\frac{v_{1}^{\leftarrow}}{I_{s}^{\star}}=\frac{1}{g_{m 1}}=1 \mathrm{k} \Omega \rightarrow \quad R_{i n}=R_{i f}=\frac{R_{i}}{1+a f}=\frac{1000}{13.5}=74.07 \Omega$
$R_{\text {out }}=50 \mathrm{k} \Omega\left(R_{3}\right.$ is outside the feedback loop)
$\frac{I_{o}}{I_{s}}=\frac{a}{1+a f}=\frac{25}{1+12.5}=1.852 \mathrm{~A} / \mathrm{A} \rightarrow \frac{v_{2}}{v_{1}}=\frac{I_{o}(-50 \mathrm{k} \Omega)}{I_{s}(74.07 \Omega)}=-1240.1 \mathrm{~V} / \mathrm{V}$

Problem 3-(10 points)

(a)

The basic amplifier without the feedback signal inserted at the inverting input of the opamp

$$
g_{m}=\sqrt{2 K \frac{W}{L} I_{D}}=\sqrt{2 \times 180 \times 10^{-6} \times 100 \times 0.5 \times 10^{-3}}
$$

$$
=4.2 \times 10^{-3} \mathrm{~A} \mathrm{~V}
$$

$$
g_{m b}=\frac{\gamma}{2 \sqrt{2 \phi_{f}}+k_{s 8}} g_{m}=\frac{\gamma}{2 \sqrt{2 \phi_{5}}} g_{m}
$$

$$
=\frac{0.3}{2 \sqrt{2 \times 0.3}} 4.2 \times 10^{-3}=8.1 \times 10^{-4} \mathrm{AN}
$$

$$
v_{0}=g_{m}\left(a_{v} v_{i}-v_{0}\right) \frac{1}{g_{m b}}
$$

$$
a=\frac{v_{0}}{v_{i}}=a_{v} \frac{g_{m}}{g_{m}+g_{m b}}
$$

$$
f=1
$$

$$
a f=a_{v} \frac{g_{m}}{g_{m}+g_{m b}}=1000 \frac{4.2}{4.2+0.81}=838
$$

$$
A=\frac{a}{1+a f}=\frac{838}{1+838}=0,999
$$

$\Gamma_{i a}=R_{i}$
$\operatorname{Rin}_{\text {in }}=r_{i a}\left(1+a_{f}\right)=R_{i}\left(1+a_{f}\right)$

$$
=1 \mathrm{M}(1+838)=839 \mathrm{M} \Omega
$$

$r_{00}=\frac{1}{g_{m}} \| \frac{1}{g_{m b}}=\frac{1}{g_{m}+g_{m b}}$
$R_{\text {out }}=\frac{r_{\text {Da }}}{1+a_{f}}=\frac{1}{g_{m}+g_{m b}} \frac{1}{1+a_{f}}$

$$
\begin{aligned}
& =\frac{1}{4.2 \times 10^{-3}+8.1 \times 10^{-4}} \frac{1}{1+838} \\
& =0.238 \Omega
\end{aligned}
$$

(b)

$v_{0}=g_{m}\left(v_{t}-v_{0}\right)\left(\frac{1}{g_{m b}} \| R_{i}\right)$
$V_{0}=\frac{g_{m}}{\frac{1}{R_{i}}+g_{m}+g_{m b}}$

$$
\begin{aligned}
R & =a_{v} \frac{g_{m}}{\frac{1}{R_{i}}+g_{m}+c} \\
& \approx a_{v g_{m}}^{g_{m}+g_{m b}}
\end{aligned}
$$

$$
R=a_{v} \frac{g_{m}}{\frac{1}{R_{i}}+g_{m}+g_{m b}}
$$

$$
=838
$$

$$
A_{001}=\left.\frac{V_{0}}{V_{i}}\right|_{a_{v}=\infty}=1 \quad\left(V_{1}=0 \text { and } V_{0}=V_{i}\right)
$$

$$
d=\frac{U_{0} \|_{V_{i n}}}{V_{i}}=\frac{\frac{1}{q_{m}} \| \frac{1}{g_{m b}}}{R_{i}+\frac{1}{y_{m}} \| \frac{1}{g_{m b}}}
$$

$$
=\frac{\frac{1}{g_{m}+g_{m b}}}{R_{i}+\frac{1}{g_{m}+g_{m b}}}
$$

$$
\approx \frac{1}{\left(g_{m}+g_{m i}\right) R_{i}}
$$

$$
=\frac{1}{\left(4.2 \times 10^{-3}+8.1 \times 10^{-4}\right) 10^{6}}
$$

$$
=2,00 \times 10^{-4}
$$

$$
A=A \infty \frac{R}{1+R}+\frac{d}{1+R}
$$

$$
=1 \frac{838}{1+838}+\frac{2000 \times 10^{-4}}{1+838}
$$

$$
=0.999
$$

Problem 3-Continued

$$
\operatorname{Rin}\left(a_{v}=0\right)=R_{i}+\frac{1}{g_{m}} \| \frac{1}{g_{m b}} \approx R_{i}=\ln \Omega
$$

$$
R(\text { short })=R=838
$$

$$
R(\text { open })=0 \quad\left(v_{1}=0\right)
$$

$$
\left.R_{\text {in }}=R_{\text {in }\left(a_{v}\right.}=0\right) \frac{1+R(\text { short })}{1+R(\text { open })} \approx R_{i} \frac{1+R}{1+0}
$$

$$
=R_{i}(1+R)=1 \mathrm{M}(1+838)=839 \mathrm{M} \Omega
$$

$$
\operatorname{Rout}\left(a_{u}=0\right)=R_{i}\left\|\frac{1}{g_{m}}\right\| \frac{1}{g_{m b}} \approx \frac{1}{g_{m}} \| \frac{1}{g_{m b}}
$$

$$
=\frac{1}{g_{m}+g_{m b}}=\frac{1}{4.2 \times 10^{-3}+8.1 \times 10^{-4}}=200 \Omega
$$

$$
R(\text { short })=0\left(v_{0}=0\right)
$$

$$
R(\text { open })=\mathbb{R}
$$

$$
R_{\text {out }}=\operatorname{Rout}\left(a_{v}=0\right) \frac{1+R(\text { short })}{1+R \text { (open) }}
$$

$$
\approx \frac{1}{g_{m}+g_{m b}} \frac{1+0}{1+R}=\frac{1}{g_{m}+g_{m b}} \frac{1}{1+R}
$$

$$
=200 \frac{1}{1+838}=0.238 \Omega
$$

Problem 4-(10 points)

Use the Blackman's formula (see below) to calculate the smallsignal output resistance of the stacked MOSFET configuration having identical drain-source drops for both transistors. Express your answer in terms of all the pertinent small-signal parameters and then simplify your answer if $g_{m}>g_{d s}>(1 / R)$. Assume the MOSFETs are identical.

$$
R_{\text {out }}=R_{\text {out }}\left(g_{m}=0\right)\left[\frac{1+R R(\text { output port shorted })}{1+R R(\text { output port open })}\right]
$$

(You may use small-signal analysis if you wish but this circuit seems to be one of the rare cases where feedback analysis is more efficient.)

$$
R_{\text {out }}\left(g_{m 2}=0\right)=2 R \|\left(r_{d s 1}+r_{d s 2}\right)=\frac{2 R\left(r_{d s 1}+r_{d s 2}\right)}{2 R+r_{d s 1}+r_{d s 2}}
$$

$R R($ port shorted $)=?$

$$
\begin{aligned}
& v_{r}=0-v_{s 2}=-g_{m 2} v_{t}\left(\frac{r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}}\right) \\
& \Rightarrow \quad R R(\text { port shorted })=\frac{g_{m 2} r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}}
\end{aligned}
$$

$R R($ port open $)=$?

$$
\begin{aligned}
& v_{r}=-g_{m 2} v_{t}\left(\frac{r_{d s 2}\left(r_{d s 1}+R\right)}{r_{d s 1}+r_{d s 2}+2 R}\right) \\
& \Rightarrow \quad R R(\text { port open })=\frac{g_{m 2} r_{d s 2}\left(r_{d s 1}+R\right)}{r_{d s 1}+r_{d s 2}+2 R} \\
& \therefore \quad R_{\text {out }}= \\
&\left.2 R+r_{d s 1}+r_{d s 2}\right)
\end{aligned}\left[\frac{1+\frac{g_{m 2} r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}}}{1+\frac{g_{m 2} r_{d s 2}\left(r_{d s 1}+R\right)}{r_{d s 1}+r_{d s 2}+2 R}}\right]=2 R\left(\frac{r_{d s 1}+r_{d s 2}+g_{m 2} r_{d s 1} r_{d s 2}}{r_{d s 1}+r_{d s 2}+2 R+g_{m 2} r_{d s 2}\left(r_{d s 1}+R\right)}\right)
$$

Using the assumptions of $g_{m}>g_{d s}>(1 / R)$ we can simplify $R_{\text {out }}$ as

$$
R_{\text {out }} \approx 2 R\left(\frac{g_{m 2} r_{d s 1} r_{d s 2}}{g_{m 2} d s 2^{R}}\right)=\underline{\underline{2 r}} \underline{\underline{\underline{r_{1 s}}}}
$$

What is the insight? Well there are two feedback loops, one a series (the normal cascode) and one a shunt. Apparently they are working against each other and the effective output resistance is pretty much what it would be if there were two transistors in series without any feedback.

Problem 5-(10 points)

Find the dominant roots of the MOS follower and the BJT follower for the buffered, class-A op amp of Ex. 7.1-2. Use the capacitances of Table 3.2-1. Compare these root locations with the fact that $G B=5 \mathrm{MHz}$? Assume the capacitances of the BJT are $C_{\pi}=10 \mathrm{pf}$ and $C_{\mu}=1 \mathrm{pF}$.

Solution

The model of just the output buffer of Ex. 7.1-2 is shown.

Fig. S7.1-10
The nodal equations can be written as,

$$
\begin{aligned}
g_{m 9} V_{i} & =\left(g_{m 9}+G_{1}+g_{\pi 10}+s C_{\pi 10}+s C_{1}\right) V_{1}-\left(g_{\pi 10}+s C_{\pi 10}\right) V_{o} \\
0 & =-\left(g_{m 10}+g_{\pi 10}+s C_{\pi 10}\right) V_{1}+\left(g_{m 10}+G_{2}+g_{\pi 10}+s C_{\pi 10}+s C_{2}\right) V_{o}
\end{aligned}
$$

Solving for V_{o} / V_{i} gives,
$\frac{V_{o}}{V_{i}}=$
$\frac{g_{m 9}\left(g_{m 10}+g_{\pi 10}+s C_{\pi 10}\right)}{\left(g_{\pi 10}+s C_{\pi 10}\right)\left(g_{m 9}+G_{1}+G_{2}+s C_{1}+s C_{2}\right)+\left(g_{m 10}+G_{2}+s C_{2}\right)\left(g_{m 9}+G_{1}+s C_{1}\right)}$
$\frac{V_{o}}{V_{i}}=\frac{g_{m 9}\left(g_{m 10}+g_{\pi 10}+s C_{\pi 10}\right)}{a_{0}+s a_{1}+s^{2} a_{2}}$
where

$$
\begin{aligned}
& a_{0}=g_{m 9} g_{\pi 10}+g_{\pi 10} G_{1}+g_{\pi 10} G_{2}+g_{m 9} g_{m 10}+g_{m 10} G_{1}+g_{m 9} G_{2}+G_{1} G_{2} \\
& a_{1}=g_{m 9} C_{\pi 10}+G_{1} C_{\pi 10}+G_{2} C_{\pi 10}+g_{\pi 10} C_{1}+g_{\pi 10} C_{2}+g_{m 10} C_{1}+G_{2} C_{1}+g_{m 9} C_{2}+G_{1} C_{2} \\
& a_{2}=C_{\pi 10} C_{1}+C_{\pi 10} C_{2}+C_{1} C_{2}
\end{aligned}
$$

The numerical value of the small signal parameters are:

$$
\begin{aligned}
& g_{m 10}=\frac{1 \mathrm{~mA}}{25.9 \mathrm{mV}}=38.6 \mathrm{mS}, G_{2}=2 \mathrm{mS}, g_{\pi 10}=386 \mu \mathrm{~S}, g_{m 9}=\sqrt{2 \cdot 50 \cdot 10 \cdot 90}=300 \mu \mathrm{~S}, \\
& G_{1}=g_{d s 8}+g_{d s 9}=0.05 \cdot 100 \mu \mathrm{~A}+0.05 \cdot 90 \mu \mathrm{~A}=9.5 \mu \mathrm{~S} \\
& \quad C_{2}=100 \mathrm{pF}, C_{\pi 10}=10 \mathrm{pF}, C_{1}=C_{g s 9}+C_{b s 9}+C_{b d 8}+C_{g d 8}+C_{\mu 10} \\
& C_{g s 9}=C_{o v}+0.667 C_{o x} W_{9} L_{9}=\left(220 \times 10^{-12}\right)\left(10 \times 10^{-6}\right)+0.667\left(24.7 \times 10^{-4}\right)\left(10 \times 10^{-12}\right)=18.7 \mathrm{fF}
\end{aligned}
$$

Problem 5 - Continued

$$
C_{b s 9}=560 \times 10^{-6}\left(30 \times 10^{-12}\right)+350 \times 10^{-12}\left(26 \times 10^{-6}\right)=25.9 \mathrm{fF}
$$

(Assumed area $=3 \mu \mathrm{mx} 10 \mu \mathrm{~m}=30 \mu \mathrm{~m}$ and perimeter is $3 \mu \mathrm{~m}+10 \mu \mathrm{~m}+3 \mu \mathrm{~m}+10 \mu \mathrm{~m}=26 \mu \mathrm{~m}$)

$$
\begin{array}{ll}
& C_{b d 8}=560 \times 10^{-6}\left(438 \times 10^{-12}\right)+350 \times 10^{-12}\left(298 \times 10^{-6}\right)=349 \mathrm{fF} \\
& C_{g d 8}=C_{o v}=\left(220 \times 10^{-12}\right)\left(146 \times 10^{-6}\right)=32.1 \mathrm{fF} \\
\therefore \quad & C_{1}=18.7 \mathrm{fF}+25.9 \mathrm{fF}+349 \mathrm{fF}+32.1 \mathrm{fF}+1000 \mathrm{fF}=1.43 \mathrm{pF}
\end{array}
$$

(We have ignored any reverse bias influence on pn junction capacitors.)
The dominant terms of a_{0}, a_{1}, and a_{2} based on these values are shown in boldface above.
$\therefore \frac{V_{o}}{V_{i}} \approx \frac{g_{m 9}\left(g_{m 10}+g_{\pi 10}+s C_{\pi 10}\right)}{g_{m 9} g_{m 10}+g_{\pi 10} G_{2}+s\left(G_{2} C_{\pi 10}+g_{\pi 10} C_{2}+g_{m 10} C_{1}+g_{m 9} C_{2}\right)+s^{2} C_{2} C_{\pi 10}}$
$\frac{V_{o}}{V_{i}}=\frac{g_{m 9} g_{m 10}}{g_{m 9} g_{m 10^{+}} g_{\pi 10} G_{2}}\left[\begin{array}{c}1+\frac{s C_{\pi 10}}{g_{m 10}} \\ 1+s\left(\frac{G_{2} C_{\pi 10}+g_{\pi 10} C_{2}+g_{m 10} C_{1}+g_{m 9} C_{2}}{g_{m 9} g_{m 10}+g_{\pi 10} G_{2}}\right)+s^{2} \frac{C_{2} C_{\pi 10}}{g_{m 9} g_{m 10}+g_{\pi 10} G_{2}}\end{array}\right]$
Assuming negative real axis roots widely spaced gives,
$p_{1}=-\frac{1}{\mathrm{a}}=\frac{-\left(g_{m 9} g_{m 10}+g_{\pi 10} G_{2}\right)}{G_{2} C_{\pi 10^{+}}+g_{\pi 10} C_{2}+g_{m 10} C_{1}+g_{m 9} C_{2}}=-\frac{1.235 \times 10^{-5}}{1.465 \times 10^{-13}}=\underline{-84.3 \times 10^{6} \mathrm{rads} / \mathrm{sec}}$.
$=-13.4 \mathrm{MHz}$

$$
\begin{aligned}
& p_{2}=-\frac{\mathrm{a}}{\mathrm{~b}}=\frac{-\left(G_{2} C_{\left.\pi 10^{+}+g_{\pi 10} C_{2}+g_{m 10} C_{1}+g_{m 9} C_{2}\right)}^{C_{2} C_{\pi 10}}=-\frac{1.465 \times 10^{-13}}{100 \times 10^{-12} \cdot 10 \times 10^{-12}}\right.}{} \\
&=-\underline{ } \\
& z_{1}=-\frac{g_{m 10}}{C_{\pi 10}}=-\frac{38.6 \times 10^{-3}}{10 \times 10^{-12}}=-3.86 \times 10^{6} \mathrm{rads} / \mathrm{sec} .
\end{aligned}-23.32 \mathrm{MHz} \mathrm{rads} / \mathrm{sec} . \rightarrow-614 \mathrm{MHz}
$$

We see that neither p_{1} or p_{2} is greater than $10 G B$ if $G B=5 \mathrm{MHz}$ so they will deteriorate the phase margin of the amplifier of Ex. 7.1-2.

