## Homework Assignment No. 12

## Problem 1-(10 points)

Find the $G B$ of a two-stage op amp using Miller compensation using a nulling resistor that has $60^{\circ}$ phase margin where the second pole is $-10 \times 10^{6} \mathrm{rads} / \mathrm{sec}$ and two higher poles both at $-100 \times 10^{6} \mathrm{rads} / \mathrm{sec}$. Assume that the RHP zero is used to cancel the second pole and that the load capacitance stays constant. If the input transconductance is $500 \mu \mathrm{~A} / \mathrm{V}$, what is the value of $C_{c}$ ?

## Solution

The resulting higher-order poles are two at $-100 \times 10^{6}$ radians $/ \mathrm{sec}$. The resulting phase margin expression is,

$$
\begin{aligned}
\mathrm{PM}=180^{\circ}-\tan ^{-1}\left(A_{v}(0)\right)-2 \tan ^{-1}\left(\frac{G B}{10^{7}}\right)=90^{\circ}-2 \tan ^{-1}\left(\frac{G B}{10^{7}}\right)=60^{\circ} \\
\therefore 30^{\circ}=2 \tan ^{-1}\left(\frac{G B}{10^{7}}\right) \rightarrow \quad\left(\frac{G B}{10^{7}}\right)=\tan \left(15^{\circ}\right)=0.2679 \\
G B=2.679 \times 10^{7}=\frac{g_{m 1}}{C_{c}} \quad \rightarrow \quad C_{c}=\frac{500 \times 10^{-6}}{26.79 \times 10^{7}}=\underline{18.66 \mathrm{pF}}
\end{aligned}
$$

## Problem 2 - P7.2-4

Use the technique of Ex. 7.2-2 to extend the $G B$ of the cascode op amp of Ex. 6.5-2 as much as possible that will maintain $60^{\circ}$ phase margin. What is the minimum value of $C_{L}$ for the maximum $G B$ ?

## Solution

Assuming all channel lengths to be $1 \mu m$, the total capacitance at the source of M 7 is

$$
C_{7}=C_{g s 7}+C_{b d 7}+C_{g d 6}+C_{b d 6}
$$

or,

$$
C_{7}=75+51+9+51=186 \mathrm{fF}
$$

$$
g_{m 7}=707 \mu \mathrm{~S}
$$

Thus, the pole at the source of M7 is

$$
p_{S 7}=-\frac{g_{m 7}}{C_{7}}=-605 \mathrm{MHz} .
$$

The total capacitance at the source of M12 is

$$
\begin{aligned}
& C_{12}=C_{g s 12}+C_{b d 12}+C_{g d 11}^{\prime}+C_{b d 11}^{\prime} \\
& \text { or, } \quad C_{12}=34+29+4+29=96 \mathrm{fF} \\
& g_{m 12}=707 \mu \mathrm{~s}
\end{aligned}
$$

Thus, the pole at the source of M12 is

$$
p_{S 12}=-\frac{g_{m 12}}{C_{12}}=-1170 \mathrm{MHz}
$$

The total capacitance at the drain of M4 is
$C_{4}=C_{g s 4}+C_{g s 6}+C_{b d 4}+C_{g d 2}+C_{b d 2}$
or,

$$
\begin{aligned}
& C_{4}=43+75+21+3+19=161 \mathrm{fF} \\
& g_{m 4}=283 \mu \mathrm{~S}
\end{aligned}
$$

## Problem 2-Continued

Thus, the pole at the drain of M4 is

$$
p_{D 4}=-\frac{g_{m 4}}{C_{4}}=-280 \mathrm{MHz}
$$

The total capacitance at the drain of M8 is

$$
C_{8}=C_{g d 8}+C_{b d 8}+C_{g s 10}+C_{g s 12}
$$

or,

$$
C_{8}=9+51+34+34=128 \mathrm{fF}
$$

$$
R_{2}+\frac{1}{g_{m 10}}=3.4 \mathrm{~K} \Omega
$$

Thus, the pole at the drain of M8 is

$$
p_{D 8}=-\frac{1}{\left(R_{2}+\frac{1}{g_{m 10}}\right) C_{8}}=-366 \mathrm{MHz}
$$

For a phase margin of $60^{\circ}$, we have
$P M=180^{\circ}-\left[90^{\circ}-\left\{\tan ^{-1}\left(\frac{G B}{p_{S 7}}\right)+\tan ^{-1}\left(\frac{G B}{p_{S 12}}\right)+\tan ^{-1}\left(\frac{G B}{p_{D 4}}\right)+\tan ^{-1}\left(\frac{G B}{p_{D 8}}\right)\right\}\right]$
Solving the above equation

$$
G B \cong 65 \mathrm{MHz} .
$$

And, $A_{v}=6925 \mathrm{~V} / \mathrm{V}$
Thus, $p_{1}=9.39 \mathrm{KHz}$, and $C_{L} \geq 1.54 \mathrm{pF}$

## Problem 3 - Problem 7.3-1

Compare the differential output op amps of Fig. 7.3-3, 7.3-5, 7.3-6, 7.3-7, 7.3-8 and 7.310 from the viewpoint of (a.) noise, (b.) $P S R R$, (c.) $I C M R\left[V_{i c}(\max )\right.$ and $\left.V_{i c}(\mathrm{~min})\right]$, (d.) $O C M R\left[V_{o}\right) \max$ ) and $\left.V_{o}(\min )\right]$, (e.) $S R$ assuming all input differential currents are identical, and (f.) power dissipation if all current of the input differential amplifiers are identical and power supplies are equal.
Solution

|  | Fig. 7.3-3 | Fig. 7.3-5 | Fig. 7.3-6 | Fig. 7.3-7 | Fig. 7.3-8 | Fig. 7.3-10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noise | Good | Poor | Good | Poor | Okay | Poor |
| PSRR | Poor | Good | Poor | Good | Good | Good |
| $\begin{aligned} & I C M R \\ & V_{i c}(\max ) \\ & V_{i c}(\min ) \end{aligned}$ | $\begin{aligned} & V_{D D^{-}} V_{O N} \\ & \mathrm{~V}_{\mathrm{SS}^{+}} \\ & 2 V_{O N^{+}} \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{D D^{+}} V_{T} \\ & V_{S S^{+}} \\ & 2 V_{O N^{+}} V_{T} \end{aligned}$ | $\begin{aligned} & V_{D D^{-}} V_{O N} \\ & V_{S S^{+}} \\ & 2 V_{O N^{+}} V_{T} \end{aligned}$ | $\begin{aligned} & V_{D D^{+}} V_{T} \\ & V_{S S^{+}} \\ & 2 V_{O N^{+}} V_{T} \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{D D^{-}} V_{O N} \\ & V_{S S^{+}} \\ & 2 V_{O N^{+}} V_{T} \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{D D^{-}} V_{O N} \\ & \mathrm{~V}_{S S^{+}} \\ & 3 V_{O N^{+}}+V_{T} \end{aligned}$ |
| $\begin{aligned} & \text { OCMR } \\ & V_{o}(\max ) \\ & V_{o}(\min ) \\ & \hline \end{aligned}$ | $\begin{gathered} V_{D D^{-}-V_{O N}} \\ V_{S S^{+}} V_{O N} \\ \hline \end{gathered}$ | $\begin{aligned} & V_{D D}-2 V_{O N} \\ & V_{S S}+2 V_{O N} \end{aligned}$ | $\begin{aligned} & V_{D D^{-}-V_{O N}} \\ & V_{S S^{+}} V_{O N} \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{D D^{-}-V_{O N}} \\ & V_{S S^{+}} V_{O N} \\ & \hline \end{aligned}$ | $\begin{array}{\|l} V_{D D^{-}-2 V_{O N}} \\ V_{S S^{+}} V_{O N} \\ \hline \end{array}$ | $\begin{aligned} & V_{D D^{-}-2 V_{O N}} \\ & V_{S S}+2 V_{O N} \\ & \hline \end{aligned}$ |
| SR | $I_{S S} / C_{c}$ | $I_{S S} / C_{L}$ | $I_{S S} / C_{c}$ | $I_{S S} / C_{L}$ | $I_{S S} / C_{L}$ | $I_{S S} / C_{L}$ |

## Problem 4 - Problem 7.3-7

(a.) If all transistors in Fig. 7.3-12 have a dc current of $50 \mu \mathrm{~A}$ and a $W / L$ of $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$, find the gain of the common mode feedback loop. (b.) If the output of this amplifier is cascoded, then repeat part (a.).

## Solution



Figure 7.3-12 Two-stage, Miller, differential-in, differential-out op amp with common-mode stabilization.

The loop gain of the common-mode feedback loop is,
CMFB Loop gain $\approx-\frac{g_{m 10}}{g_{d s} 9}=-g_{m 10} r_{d s} 9 \quad$ or $\quad-\frac{g_{m 11}}{g_{d s 8}}=-g_{m 11} r_{d s 8}$
With $I_{D}=50 \mu \mathrm{~A}$ and $\left.W / L=10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}, \quad g_{m 10}=\sqrt{\frac{2 K_{P}{ }^{\prime} W I_{D}}{L}}=\sqrt{2 \cdot 50 \cdot 10 \cdot 50}\right)=$ $223.6 \mu \mathrm{~S}$,
$r_{d s N}=\frac{1}{\lambda_{N} I_{D}}=\frac{25}{50 \mu \mathrm{~A}}=0.5 \mathrm{M} \Omega \quad$ and $\quad r_{d s P}=\frac{1}{\lambda_{P} I_{D}}=\frac{20}{50 \mu \mathrm{~A}}=0.4 \mathrm{M} \Omega$
$\therefore \quad$ CMFB Loop gain $\approx-g_{m 10} r_{d s} 9=-223.6(0.5)=-111.8 \mathrm{~V} / \mathrm{V}$
If the output is cascoded, the gain becomes,

$$
\begin{array}{ll} 
& \text { CMFB Loop gain with cascoding } \approx-\frac{g_{m 10}}{g_{d s 9}} g_{m}(\text { cascode }) r_{d s}(\text { cascode }) \\
& =-g_{m 10}\left\{\left[r_{d s 9} g_{m}(\text { cascode }) r_{d s}(\text { cascode })\right] \|\left[g_{m 7} r_{d s 7}\left(r_{d s 10} \| r_{d s 10}\right]\right\}\right. \\
& \left.g_{m P}=\sqrt{\frac{2 K_{N}{ }^{\prime W I_{D}}}{L}}=\sqrt{2 \cdot 110 \cdot 10 \cdot 50}\right)=331.67 \mu \mathrm{~S} \\
\therefore \quad & \text { CMFB Loop gain with cascoding } \approx-3.290 \mathrm{~V} / \mathrm{V}
\end{array}
$$

## Problem 5 - Problem 7.4-1

Calculate the gain, $G B, S R$ and $P_{\text {diss }}$ for the folded cascode op amp of Fig. 6.5-7b if $V_{D D}$ $=-V_{S S}=1.5 \mathrm{~V}$, the current in the differential amplifier pair is 50 nA each and the current in the sources, M4 and M5, is 150 nA . Assume the transistors are all $10 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$, the load capacitor is 2 pF and that $n_{1}$ is 2.5 for NMOS and 1.5 for PMOS.

(a)

(b)

Figure 6.5-7 (a) Simplified version of an N -channel input, folded cascode op amp. (b) Practical version (a).

## Solution

$$
\begin{aligned}
& g_{m 1}=g_{m 2}=\frac{I_{D}}{n_{1}(k T / q)}=\frac{50 \mathrm{nA}}{2.5 \cdot 25.9 \mathrm{mV}}=0.772 \mu \mathrm{~S} \\
& g_{m 4}=g_{m 5}=\frac{I_{D}}{n_{1}(k T / q)}=\frac{150 \mathrm{nA}}{1.5 \cdot 25.9 \mathrm{mV}} r_{d s 1}=r_{d s 2}=\frac{1}{I_{D} \lambda_{N}}=500 \mathrm{M} \Omega \\
& g_{m 6}=g_{m 7}=\frac{I_{D}}{n_{1}(k T / q)}=\frac{100 \mathrm{nA}}{1.5 \cdot 25.9 \mathrm{mV}}=2.574 \mu \mathrm{~S} \quad \text { and } r_{d s 4}=r_{d s 5}=\frac{1}{I_{D} \lambda_{N}}=133 \mathrm{M} \Omega \\
& g_{m 8}=g_{m 9}=g_{m 10}=g_{m 11}=\frac{I_{D}}{n_{1}(k T / q)}=\frac{100 \mathrm{nA}}{2.5 \cdot 25.9 \mathrm{mV}}=1.544 \mu \mathrm{~S} \\
& \text { and } r_{d s 8}=r_{d s 9}=r_{d s 10}=r_{d s 11}=\frac{1}{I_{D} \lambda_{N}}=200 \mathrm{M} \Omega \\
&
\end{aligned}
$$

Gain: $A_{v}(0)=g_{m 1} R_{\text {out }}$,

$$
R_{\text {out }} \approx r_{d s 11} g_{m 9} r_{d s 9}\left\|\left[g_{m 7} r_{d s} 7\left(r_{d s 5} \| r_{d s 2}\right)\right]=96.5 \mathrm{G} \Omega\right\| 34.23 \mathrm{G} \Omega=25.269 \mathrm{G} \Omega
$$

$$
\therefore \quad A_{V}(0)=0.772 \mu \mathrm{~S} \cdot 25.269 \mathrm{G} \Omega=\underline{\underline{19,508} \mathrm{~V} / \mathrm{V}}
$$

$$
G B=g_{m 1} / C_{L}=386 \mathrm{krads} / \mathrm{sec}=61.43 \mathrm{kHz} \text { (this assumes all other poles are greater than }
$$

$G B$ which is the case if $C_{L}$ makes $R_{B}$ approximately the same as $R_{A}$ at $\omega=G B$.)
$S R=100 \mathrm{nA} / 2 \mathrm{pF}=\underline{\underline{0.05 \mathrm{~V}} / \mu \mathrm{s}} \quad P_{\text {diss }}=3 \mathrm{~V} \cdot(3 \cdot 150 \mathrm{nA})=\underline{\underline{1.35 \mu \mathrm{~W}}}$

