Homework Assignment No. 12

Problem 1 - (10 points)

Find the GB of a two-stage op amp using Miller compensation using a nulling resistor that has 60° phase margin where the second pole is -10×10^{6} rads/sec and two higher poles both at -100×10^{6} rads/sec. Assume that the RHP zero is used to cancel the second pole and that the load capacitance stays constant. If the input transconductance is $500\mu A/V$, what is the value of C_c ?

Solution

The resulting higher-order poles are two at -100×10^6 radians/sec. The resulting phase margin expression is,

$$PM = 180^{\circ} - \tan^{-1}(A_{\nu}(0)) - 2\tan^{-1}\left(\frac{GB}{10^{7}}\right) = 90^{\circ} - 2\tan^{-1}\left(\frac{GB}{10^{7}}\right) = 60^{\circ}$$

$$\therefore 30^{\circ} = 2\tan^{-1}\left(\frac{GB}{10^{7}}\right) \rightarrow \left(\frac{GB}{10^{7}}\right) = \tan(15^{\circ}) = 0.2679$$

$$GB = 2.679 \times 10^{7} = \frac{g_{m1}}{C_{c}} \rightarrow C_{c} = \frac{500 \times 10^{-6}}{26.79 \times 10^{7}} = \underline{18.66pF}$$

Problem 2 – P7.2-4

Use the technique of Ex. 7.2-2 to extend the *GB* of the cascode op amp of Ex. 6.5-2 as much as possible that will maintain 60° phase margin. What is the minimum value of C_L for the maximum *GB*?

Solution

Assuming all channel lengths to be 1 μm , the total capacitance at the source of M7 is $C_7 = C_{gs7} + C_{bd7} + C_{gd6} + C_{bd6}$

or.

$$C_7 = 75 + 51 + 9 + 51 = 186$$
 fF
 $g_{m7} = 707 \ \mu S$

Thus, the pole at the source of M7 is

$$p_{S7} = -\frac{g_{m7}}{C_7} = -605$$
 MHz.

The total capacitance at the source of M12 is $C_{12} = C_{gs12} + C_{bd12} + C_{gd11} + C_{bd11}$

or,
$$C_{12} = 34 + 29 + 4 + 29 = 96$$
 fF
 $g_{m12} = 707 \ \mu S$

Thus, the pole at the source of M12 is

$$p_{S12} = -\frac{g_{m12}}{C_{12}} = -1170$$
 MHz.

The total capacitance at the drain of M4 is $C_{bd4} + C_{bd4} + C_{bd4} + C_{bd2}$

$$C_4 = C_{gs4} + C_{gs6} + C_{bd4} + C_{gd2} + C_{bd2}$$

or,
$$C_4 = 43 + 75 + 21 + 3 + 19 = 161$$
 fF
 $g_{m4} = 283 \ \mu s$

Problem 2 - Continued

Thus, the pole at the drain of M4 is

$$p_{D4} = -\frac{g_{m4}}{C_4} = -280$$
 MHz.

The total capacitance at the drain of M8 is

$$C_8 = C_{gd8} + C_{bd8} + C_{gs10} + C_{gs12}$$

 $C_8 = 9 + 51 + 34 + 34 = 128$ fF

or,

$$R_2 + \frac{1}{g_{m10}} = 3.4 \quad K\Omega$$

Thus, the pole at the drain of M8 is

$$p_{D8} = -\frac{1}{\left(R_2 + \frac{1}{g_{m10}}\right)C_8} = -366 \text{ MHz}$$

For a phase margin of 60° , we have

$$PM = 180^{\circ} - \left[90^{\circ} - \left\{\tan^{-1}\left(\frac{GB}{p_{S7}}\right) + \tan^{-1}\left(\frac{GB}{p_{S12}}\right) + \tan^{-1}\left(\frac{GB}{p_{D4}}\right) + \tan^{-1}\left(\frac{GB}{p_{D8}}\right)\right\}\right]$$

Solving the above equation

 $GB \cong 65$ MHz.

And,
$$A_v = 6925 \text{ V/V}$$

Thus, $p_1 = 9.39$ KHz, and $C_L \ge 1.54$ pF

Problem 3 - Problem 7.3-1

Compare the differential output op amps of Fig. 7.3-3, 7.3-5, 7.3-6, 7.3-7, 7.3-8 and 7.3-10 from the viewpoint of (a.) noise, (b.) *PSRR*, (c.) *ICMR* [V_{ic} (max) and V_{ic} (min)], (d.) *OCMR* [V_o)max) and V_o (min)], (e.) *SR* assuming all input differential currents are identical, and (f.) power dissipation if all current of the input differential amplifiers are identical and power supplies are equal.

<u>Solution</u>

	Fig. 7.3-3	Fig. 7.3-5	Fig. 7.3-6	Fig. 7.3-7	Fig. 7.3-8	Fig. 7.3-10
Noise	Good	Poor	Good	Poor	Okay	Poor
PSRR	Poor	Good	Poor	Good	Good	Good
ICMR						
$V_{ic}(\max)$	V_{DD} - V_{ON} V_{SS} +	$V_{DD} + V_T$ $V_{SS} +$	V_{DD} - V_{ON} V_{SS} +	$V_{DD} + V_T$ $V_{SS} +$	V_{DD} - V_{ON} V_{SS} +	V_{DD} - V_{ON} V_{SS} +
$V_{ic}(\min)$	$2V_{ON}+V_T$	$2V_{ON}+V_T$	$2V_{ON}+V_T$	$2V_{ON}+V_T$	$2V_{ON}+V_T$	$3V_{ON}+2V_T$
OCMR						
$V_o(\max)$ $V_o(\min)$	$V_{DD}-V_{ON}$ $V_{SS}+V_{ON}$	V_{DD} - $2V_{ON}$ V_{SS} + $2V_{ON}$	V_{DD} - V_{ON} V_{SS} + V_{ON}	$V_{DD}-V_{ON}$ $V_{SS}+V_{ON}$	$\begin{array}{c} V_{DD} - 2V_{ON} \\ V_{SS} + 2V_{ON} \end{array}$	$\begin{array}{c} V_{DD} - 2V_{ON} \\ V_{SS} + 2V_{ON} \end{array}$
SR	I_{SS}/C_c	I_{SS}/C_L	I_{SS}/C_c	I_{SS}/C_L	I_{SS}/C_L	I_{SS}/C_L

Problem 4 - Problem 7.3-7

(a.) If all transistors in Fig. 7.3-12 have a dc current of $50\mu A$ and a *W/L* of $10\mu m/1\mu m$, find the gain of the common mode feedback loop. (b.) If the output of this amplifier is cascoded, then repeat part (a.).

<u>Solution</u>

Figure 7.3-12 Two-stage, Miller, differential-in, differential-out op amp with common-mode stabilization.

The loop gain of the common-mode feedback loop is,

CMFB Loop gain
$$\approx -\frac{g_{m10}}{g_{ds9}} = -g_{m10}r_{ds9}$$
 or $-\frac{g_{m11}}{g_{ds8}} = -g_{m11}r_{ds8}$
With $I_D = 50\mu$ A and $W/L = 10\mu$ m/1 μ m, $g_{m10} = \sqrt{\frac{2K_P WI_D}{L}} = \sqrt{2 \cdot 50 \cdot 10 \cdot 50} = 223.6\mu$ S,
 $r_{dsN} = \frac{1}{\lambda_N I_D} = \frac{25}{50\mu A} = 0.5M\Omega$ and $r_{dsP} = \frac{1}{\lambda_P I_D} = \frac{20}{50\mu A} = 0.4M\Omega$
 \therefore [CMFB Loop gain $\approx -g_{m10}r_{ds9} = -223.6(0.5) = -111.8$ V/V]

If the output is cascoded, the gain becomes,

CMFB Loop gain with cascoding ≈
$$-\frac{g_{m10}}{g_{ds9}} g_m(\text{cascode})r_{ds}(\text{cascode})$$

= $-g_{m10}\{[r_{ds9} g_m(\text{cascode})r_{ds}(\text{cascode})]||[g_{m7}r_{ds7} (r_{ds10}||r_{ds10}]\}$
 $g_{mP} = \sqrt{\frac{2K_N WI_D}{L}} = \sqrt{2 \cdot 110 \cdot 10 \cdot 50} = 331.67 \mu \text{S}$
= $-(223.6)[(0.5 \cdot 331.67 \cdot 0.5)||(223.6)(0.4)(0.2)] = 223.6(14.7) = -3,290 \text{ V/V}$
 \therefore CMFB Loop gain with cascoding ≈ -3.290 V/V

Calculate the gain, *GB*, *SR* and P_{diss} for the folded cascode op amp of Fig. 6.5-7b if $V_{DD} = -V_{SS} = 1.5$ V, the current in the differential amplifier pair is 50nA each and the current in the sources, M4 and M5, is 150nA. Assume the transistors are all 10µm/1µm, the load capacitor is 2pF and that n_1 is 2.5 for NMOS and 1.5 for PMOS.

Figure 6.5-7 (a) Simplified version of an N-channel input, folded cascode op amp. (b) Practical version (a).

<u>Solution</u>

$$g_{m1} = g_{m2} = \frac{I_D}{n_1(kT/q)} = \frac{50nA}{2.5 \cdot 25.9 \text{mV}} = 0.772 \mu \text{S} \text{ and } r_{ds1} = r_{ds2} = \frac{1}{I_D \lambda_N} = 500 \text{M}\Omega$$

$$g_{m4} = g_{m5} = \frac{I_D}{n_1(kT/q)} = \frac{150nA}{1.5 \cdot 25.9 \text{mV}} = 3.861 \mu \text{S} \text{ and } r_{ds4} = r_{ds5} = \frac{1}{I_D \lambda_N} = 133 \text{M}\Omega$$

$$g_{m6} = g_{m7} = \frac{I_D}{n_1(kT/q)} = \frac{100nA}{1.5 \cdot 25.9 \text{mV}} = 2.574 \mu \text{S} \text{ and } r_{ds6} = r_{ds5} = \frac{1}{I_D \lambda_N} = 200 \text{M}\Omega$$

$$g_{m8} = g_{m9} = g_{m10} = g_{m11} = \frac{I_D}{n_1(kT/q)} = \frac{100nA}{2.5 \cdot 25.9 \text{mV}} = 1.544 \mu \text{S}$$
and $r_{ds8} = r_{ds9} = r_{ds10} = r_{ds11} = \frac{1}{I_D \lambda_N} = 250 \text{M}\Omega$
Gain: $A_v(0) = g_{m1}R_{out}$,
 $R_{out} \approx r_{ds11}g_{m9}r_{ds9} \text{H}[g_{m7}r_{ds7}(r_{ds5} \text{H}r_{ds2})] = 96.5 \text{G}\Omega \text{H}34.23 \text{G}\Omega = 25.269 \text{G}\Omega$
 $\therefore A_v(0) = 0.772 \mu \text{S} \cdot 25.269 \text{G}\Omega = \underline{19,508 \text{ V/V}}$
GB $= g_{m1}/C_L = 386 \text{krads/sec} = \underline{61.43 \text{kHz}}$ (this assumes all other poles are greater than

GB which is the case if C_L makes R_B approximately the same as R_A at $\omega = GB$.) $SR = 100nA/2pF = 0.05V/\mu s$ $P_{diss} = 3V \cdot (3.150nA) = 1.35\mu W$