Analog Integrated Circuit Design: Why?

Abstract: What is analog? Everything we see, hear, and perceive in life is analog, from voice, music, and seismic activity to visual perception, voice recognition, and energy conversion and transfer. As a result, all electronic systems must interface with the world via analog electronics. Conforming these functions to today's and tomorrow's relentless demand for small, chip-integrated, mobile, battery-operated devices challenges analog engineers and researchers to design and create smart, robot-like solutions with state-of-the-art accuracy, speed, and extended battery life, which demands and requires training. Examples of the types of applications the field enjoys range from biologically inspired devices (e.g., pacemakers, nanotechnology probes, and so on) and commercial products (e.g., laptops, cellular phones, microsensors, and more) to military hardware (e.g., unmanned aerial vehicles, light-weight electronic equipment, etc.) and space exploration (e.g., remote meters, robots, and so forth). It is impossible to imagine engineering real-life solutions without the help and support of analog microelectronics.
Analog Integrated Circuit Design: Why?

Outline

What is the difference between analog and digital signals?

Why analog?

What is the difference between analog and digital IC design?

What is the design process really like?

Why do I have a passion for analog IC design?

What is the difference between analog and digital signals?

Definitions

Analog Signal: Continuous over time and space.

→ "Analogous" to the physical signal it represents.

Digital Signal: Sampled at discrete points in time and discrete values (amplitude).

→ Signal is quantized, so it is an approximation.

Infinite versus finite number of states → Analog = Digital + Every point in between.
Analog Integrated Circuit Design: Why?

Why analog?
Fact: Physical signals are continuous in time and amplitude \rightarrow Analog.
E.g.: Seismic, audio, video, biological, and so on.
But: Digital signals are easier to process and more robust.
I.e.: More room for error \rightarrow Higher noise immunity.
So: Interface and process analog signals,
and when possible, convert into and process digital stream.

Power Management
Front-End Interface
Back-End Interface

> Bias circuits
> References
> Regulators
> Watch-dog functions
> Protection Circuits

> Sensors
> Filters
> Amplifiers
> A/D Converters
> ...

> D/A Converters
> Filters
> Amplifiers
> Power Drivers
> ...

What is the difference between analog and digital IC design?

Analog Design Process
- Specification
- System Design
- Circuit Design
- Component Design
- Circuit Simulations
- Worst-Case Ckt. Simulations (Temp. & Process)
- System Simulations
- Worst-Case Sys. Simulations (Temp. & Process)
- Circuit Layout Design
- Top-Level Layout/Interconnect
- Verification
- Fabrication
- Device Debug
- Circuit Debug
- System Debug

Digital Design Process
- Specification
- System Design
 Ckt. = Autogenerated

- System Simulations

 Ckt. Layout = Autogenerated
 Top-level = Autorouted
- Verification

- Fabrication

- System Debug
 * Designer's major tasks

Digital circuit and layout design can be automated
with computer-aided design (CAD) tools.
Analog Integrated Circuit Design: Why?

What is the difference between analog and digital IC design?

Trend: On-chip integration \rightarrow Mixed-signal design

Digital circuits inject switching noise via substrate, supplies, circuits, and traces.

Trend: 50%–90% of chip is digital and 10%–50% is analog.

Die is mostly digital \therefore Engineers optimize technologies for digital circuits.

Design-Time Syndrome:

In a 10% analog–90% digital die, 10% analog requires 90% of total design time.

Pass(attempts)-to-Success Ratio: Digital Designs ≈ 1 and Analog Designs $\approx 2–3$.

High-performance analog design cannot be automated \therefore No standard cell libraries.

E.g.: Operational Amplifier \rightarrow Optimizing *all* possible parameters is impossible,

And not all parameters are equally important \therefore Continually redesigned.

Analog design is difficult, challenging, and always new, so good analog IC designers are always in high demand.

What is the design process really like?

Brainstorm Ideas \rightarrow Design Block-Level System \rightarrow Design Component-Level Circuit \rightarrow Verify Design (with Simulations) \rightarrow Design Physical Translation (Layout)
Analog Integrated Circuit Design: Why?

What is the design process really like?

Fabricate IC

Characterize IC

Prototype

Evaluation Board

Package IC

Test and Debug IC

Commercial Products

‘Why do I have a passion for analog IC design?’

It is *challenging*:

Analog circuits are sensitive
to noise, supplies, loads, temperature, process, and others factors.

It is a *creative* process:

There is no unique logical method to design a circuit.
It is like painting a portrait and writing a poem,
except we use semiconductors to create our art.

It must be *insightful* and *intuitive*:

Cannot design complex analog systems from equations or truth tables.

Must understand how to condition and process real-life continuous-time
signals under extreme conditions (e.g., temperatures, voltages, noise, etc.).
Why do I have a passion for analog IC design?

It is state-of-the-art work:

Use and master latest technologies.

It is a difficult, yet simple process:

Basic requirements are

pencil, paper, and a skilled engineer.

Best designs: Often conceived and drawn on a small piece of paper.

Computer: As good as the user \(\rightarrow \) Like with software, "Garbage in, garbage out."

\(\therefore \) Good to verify, tweak, and document, but not to design.

Ultimately, the circuit and the end product are rewarding, but not as much as
the design process, the sense of accomplishment, and the eventual impact.