ECE6604
PERSONAL & MOBILE COMMUNICATIONS

Week 4

Envelope Correlation
Space-time Correlation

Reading: Chapter 2, 2.1.1, 2.1.2, 2.1.6



Autocorrelation of a Bandpass Random Process

e Consider again the received band-pass random process

r(t) = gr(t)cos2mfit — go(t)sin2mfit

where
N
gr(t) = 2::1 C', cos ¢y, (1)
N
9Q (t) = n; C,sin ¢n(t)

e Assuming that r(t) is wide-sense stationary, the autocorrelation of r(t) is
Grr(T) = Elr(t)r(t +7)]
= Elgr(t)g1(t + 7)] cos 2m for + Elgg(t)gr(t + 7)] sin 2 for
— gbglgl (7_> COS 27 foT — ¢gng (7_) sin 2 f.1

where E| - | is the ensemble average operator, and

Pg19:(T) Elgr(¢)g:(t + 7)]
Por9o(T) = Elgr(t)go(t +7)] -
Note that the wide-sense stationarity of () imposes the condition

Ggrg,(T) = %QQQ(T)
¢919Q(7-) = _¢9Q91(7—) :

> e



Auto- and Cross-correlation of Quadrature Components

e The phases ¢,(t) are statistically independent random variables at any time ¢, uniformly
distributed over the interval [—m, 7).

e The azimuth angles of arrival, 6,, are all independent due to the random placement of scat-
terers. Also, in the limit N — oo, the discrete azimuth angles of arrival ,, can be replaced
by a continuous random variable 6 having the probability density function p(6).

e By using the above properties, the auto- and cross-correlation functions can be obtained as
follows:

Q)
gnggI(T) = ¢9Q9Q<7) = lim ET,H,qb[gf(t)gI(t +7)] = ?pEQ[COS@meT cos 0)]

N—oo

Q
Dyrgo(T) = —Pyog,(T) = lim ET,H,qb[gI(t)gQ(t +7)] = ?pEg[SiIl(Q?TfmT cos 6)]

N—00
T = (7'1,7'2,...,7']\[)
0 = (61,05, ...,0y)
¢ — <¢17¢27"'7¢N)

0, = Elgi(t) + Elgh(t)] = & C

and (2, is the total received envelope power.




2-D Isotropic Scattering

e Evaluation of the expectations for the auto- and cross-correlation functions requires the
azimuth distribution of arriving plane waves p(6), and the receiver antenna gain pattern
G(6), as a function of the azimuth angle 6.

e With 2-D isotropic scattering, the plane waves are confined to the x — y plane and arrive
uniformly distributed angle of incidence, i.e.,

pd)=—, —7m<0<nm

e With 2-D isotropic scattering and an isotropic receiver antenna with gain G(0) = 1,0 €
|—7, ), the auto- and cross-correlation functions become

€2
Gupar(T) = =~ Io(27 )

%19@ (1) = 0

where

1 /x
Jo(x) = —/0 cos(x cos 6)d0

T
is the zero-order Bessel function of the first kind.
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Normalized autocorrelation function of the quadrature components of the received complex
envelope with 2-D isotropic scattering and an isotropic receiver antenna.



Doppler Spectrum

e The autocorrelation function and power spectral density (psd) are Fourier transform pairs.

- / . Dgy(T) e_jzwadT
%9 / Sgg(f ej%def

e The autocorrelation of the received complex envelope g(t) = gr(t) + jgo(t) is

buo(r) = SElg (D)g(t +7)

- ngIQI(T) + jgnggQ (7)
e The Fourier transform of ¢4,(7) gives the Doppler psd

Sgg(f) - nggj(f) + jSQIQQ(f) :
Sometimes Sy,(f) is just called the “Doppler spectrum.”



Bandpass Doppler Spectrum

e We can also relate the power spectrum of the complex envelope g(t) to that of the band-pass
process r(t). We have

¢r(T) = Re [%Q(T)ej%fﬂ} :

e By using the identity

Re[z] = © J;Z
and the property ¢,,(7) = ¢;,(—7), it follows that the band-pass Doppler psd is
1
Srr(f) - 5 [Sgg(f - fc) + Sgg<_f - fc)] :

e Since ¢uy(7) = ¢},

frequency, but not necessarily even. However, the band-pass Doppler spectrum S,,.(f) is

(—7), the Doppler spectrum Sy, (f) is always a real-valued function of

always real-valued and even.



Isotropic Scattering

e For 2-D isotropic scattering, the psd and cross psd of gI(t) and go(t) are
oS S

, otherwise

Sglgl(f ) = nggl - Qﬂfm\/ fi
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Normalized psd of the quadrature components of the received complex envelope with 2-D
isotropic scattering and an isotropic receiver antenna. Sometimes this is called the

CLASSICAL Doppler power spectrum.



Non-isotropic Scattering — Rician Fading

e Suppose that the propagation environment consisting of a strong specular component plus a
scatter component. The azimuth distribution p(6) might have the form
1 K
0) = ——p)+——=00—-0
p(O) = —l6) + - 0(0 — )
where p(f) is the continuous AoA distribution of the scatter component, 6, is the AoA of
the specular component, and K is the ratio of the received specular to scattered power.
e One such scattering environment, assumes that the scatter component exhibits 2-D isotropic
scattering, i.e., p(f) = 1/(2x),0 € [—m, 7).
e The correlation functions ¢,,,,(7) and ¢4, (7) are

1 Q K Q

= S
Ggr91(T)= 119 JO(QmeT)+K+1 5 cos(27 fr, T cos b))
K Q, .
qbg]gQ(T) :TH? Slﬂ<27Tfm7' COS 90) .
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Plot of p(0) vs. 0 with 2-D isotropic scattering plus a LoS or specular component arriving
at angle 0y = 7 /2.
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e The azimuth distribution

1 . K
p(0) = THP(Q) + K7+15<9 — 6
yields a complex envelope having a Doppler spectrum of the form
1 c K d
Sye(f) = msgg(f) + ﬁsgg(f) (1)

where Sgg( f) is the discrete portion of the Doppler spectrum due to the specular component
and Sgg( f) is the continuous portion of the Doppler spectrum due to the scatter component.

e For the case when p(8) = 1/(27),60 € |—m, 7], the power spectrum of g(t) = g:(t) + jgo(?)
IS

1 Y 1
KAl 20 fin /1= (F ] fim)?
Q
Seo(f) = KLJrl?pé(f — fmcosth)  0<|f| < fmm
0 otherwise

e Note the discrete tone at frequency f. + f,,, cos 6y due to the line-of-sight or specular compo-
nent arriving from angle 6.
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Non-isotropic scattering — Other Cases

e Sometimes the azimuth distribution p(#) may not be uniform, a condition commonly called
non-isotropic scattering. Several distributions have been suggested to model non-isotropic
scattering.

e Once possibility is the Gaussian distribution

0= |t

where 1 is the mean AoA, and og is the rms AoA spread.

e Another possibility is the von Mises distribution

1
PO) = 5

where 0 € |—m, ), Iy( - ) is the zeroth-order modified Bessel function of the first kind,
@ € |—m, ) is the mean AoA, and k controls the spread of scatterers around the mean.

oxp [k cos(f — p)]

12
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Plot of p(0) vs. 0 for the von Mises distribution with a mean angle-to-arrival pn = 7/2.
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Calculating the Doppler Spectrum

e The Doppler spectrum can be derived by using a different approach that is sometimes very
useful because it can avoid the need to evaluate integrals. The Doppler spectrum can be
expressed as

9
Sog(NIdf| = 5 (G(O)p(0) + G(=0)p(=0))|db] -
e The Doppler frequency associated with the incident plane wave arriving at angle 6 is

f=1In COS<¢9) )

|df| = fun| = sin(0)dB| = \/f5, — f* |df] .

and, hence,

e Therefore,

S,(f) = %(G@p(e) £ G(=0)p(—0)) .

=cos™ (f/fm) -
e Hence, if p(f) and G(0) are known, the Doppler spectrum can be easily calculated. For

where

example, with 2-D isotropic scattering and an isotropic antenna G(0)p(0) = 1/(2x).
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Space-time Correlation Functions

e Many mobile radio systems use antenna diversity, where spatially separated receiver antennas
provide multiple faded replicas of the same information bearing signal.

e The spatial decorrelation of the channel tell us the required spatial separation between an-
tenna elements so that they will be “sufficiently” decorrelated.

e Sometimes it is desirable to simultaneously characterize both the spatial and temporal corre-
lation characteristics of the channel, e,g, when using space-time coding. This can be described
by the space-time correlation function.

e To obtain the spatial or space-time correlation functions, we must specify some kind of radio
scattering geometry.

15



Spatial Correlation at the Mobile Station

A
o)
A\ 4

Single-ring scattering model for NLoS propagation on the forward link of a cellular
system. The MS is surrounded by a scattering ring of radius R and s at distance D from
the BS, where R < D.
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Model Parameters

e Op: base station location

e O,;: mobile station location

e D: LoS distance from base station to mobile station

e R: scattering radius

e 7): mobile station moving direction w.r.t x-axis

e v: mobile station speed

e ), mobile station array orientation w.r.t. x-axis

o AE\?: location of ¢th mobile station antenna element

e 0, distance between mobile station antenna elements
° S(Mn): location of nth scatterer.

° ag\?: angle of arrival from the nth scatterer.

e ¢, distance Op — Sg\?.

e ¢,;: distance S](\Z) — AE\Z}.

17



Received Complex Envelope

e The channel from Op to Aﬁ has the complex envelope

Go(t) = 3 Cruedon=i2mlentaan) Degiznmteos(al)—ns) g — 1 9

n=1
where €, and €,, denote the distances Op — S(Mn) and S(Mn) — Ag\?, q = 1, 2, respectively, and
¢, is a uniform random phase on the interval [—m, 7).

e [rom the Law of Cosines, the distances €, and €,, can be expressed as a function of the

angle-of-arrival ag\? as follows:

¢ = D?+ R* 4 2DRcos 045\7}) Note sign change since the angle is m — ag\?
eiq = [(1.5— q)du])* + R* — 2(1.5 — q)5MRcos(oz§\7}) —0y) ,q=1,2 .

e Assuming that R/D < 1 (local scattering), 0y < R and /1 £ 2 ~ 1+ 2/2 for small z,
we have

Q

€n D + Rcos 045\7})

R—(1.5—q)bu Cos(ozg\? —0y) ,q=1,2 .

)

Q

e Hence,

g (t) _ Jz\f: C €j¢n—j27r(D+RcosQEQ)+R—(1.5—Q)5MCos(a%})—HM)>/)\c
! n=1 "
(n)

XejQﬁfmtcos(ozﬁ —YM) = 1’ 9
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Space-time Correlation Function

e The space-time correlation function between the two complex faded envelopes gy (t) and go(?)
IS |
91,001, T) = SE [91(£)a(t +7)]
e The space-time correlation function between g(t) and go(¢) can be written as
)

¢g1,92(5M7 7') — & % E[ejQﬂ'((S]\/[/)\c) COS(aE\Z)_HJV[)e—jQmeTCOS(QE\Z

—WV[)] .
2N n=1

e Since the number of scatters is infinite, the discrete angles-of-arrival ag\? can be replaced
with a continuous random variable a;; with probability density function p(ayy).

e Hence, the space-time correlation function becomes

Q, or ‘
¢g1,g2(5M;7—) = 7P 02 e]bcos(aM—QM)e—]acos(aM—yM)p(@M)d@M .

where a = 27 f,,7 and b = 27w/ M.
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2-D Isotropic Scattering

e For the case of 2-D isotropic scattering with an isotropic receive antennas, p(ay,) = 1/(27), —m <
ayr < m, and the space-time correlation function becomes

Q)
%1,92(5]\4, 7') = ?p

Jo <\/a2 + b2 — 2abcos(0y; — ’YM)>

e The spatial and temporal correlation functions can be obtained by setting 7 = 0 and d;; = 0,
respectively. This gives

Q)
%1,92(5]\4) - %1,92(5]\4,0) — ?pJO(27T5M/)‘c)

Q)
Ggg(T) = Dgrg(0,7) = EPJO(QmeT)

e Finally, we note that
f VT 5M
mT = —
Ae Ae

For this scattering environment, the normalized time f,,7 is equivalent to the normalized
distance dy7/ .

e The antenna branches are uncorrelated if they are separated by 0y ~ 0.5\

20



1.0

08 | ]
_. 06 ]
N f ,
S 04 ]
= 02 - f
9: L
< 00 - |
S f |
&
v 02 |
é 04 :
S f ,
< -06 ]

0.8 :

700 05 10 15 20 25 30 35 40
TimeDelay, f 1

Temporal and spatial correlation functions at the MS with 2-D isotropic scattering and an
isotropic receiver antenna. Note that fi,m = dn/Ac.
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Spatial Correlation at the Base Station

A
S
A 4

Single-ring scattering model for NLoS propagation on the reverse link of a cellular system.
The MS is surrounded by a scattering ring of radius R and is at distance D from the BS,
where R < D.
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Model Parameters

e Op: base station location

e O,;: mobile station location

e D: LoS distance from base station to mobile station
e R: scattering radius

e 7): mobile station moving direction w.r.t x-axis

e v: mobile station speed

e 0 base station array orientation w.r.t. z-axis

o Ag: location of ¢th base station antenna element

e 0p: distance between mobile station antenna elements
° S](\Zl): location of mth scatterer.

° 045\74”): angle of departure to the nth scatterer.

o ¢,,. distance SﬁZ’” — Ogp.

e ¢,,;: distance S](\Zl) — A%).

23



Received Complex Envelope

e The channel from O); to Ag) has the complex envelope

gq(t) = JXV: Cm6j¢m_j2ﬂ-(R+€mq)/)\Cej27rfmtCOS(QSVT)
m=1

Mg =1,2 (2)

where €,,, denote the distance S](\Zl) — Ag), g = 1,2, and ¢,, is a uniform random phase on

(—m, m]. To proceed further, we need to express €,,, as a function of ag\?).

e Applying the Law of Cosines to the triangle AS}W O BA?, the distance €, can be expressed
as a function of the angle Hj(gm — O as follows:
e, = (15— q)dp)" + €&, — 2(1.5 — q)dpen cos(85” — 0p) ;g =1,2 . (3)
where ¢, 1s the distance Sg\gl) — Ogp.

e By applying the Law of Sines to the triangle AO MS](\ZL) Op we obtain following identity
€m R D

snal  sin <7T ~ 9%m>> <in <7T ol (W _ 9<Bm>>> .
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Received Complex Envelope

(m)

e Since the angle m — 05" is small, we can apply the small angle approximations sinx ~ x
and cos x ~ 1 for small x, to the second equality in the above identity. This gives

R D

a4

(m — Qj(gm)) - sin (7T — oz%?)

or

(m — ngm)) ~ (R/D)sin(m — ag\?)) :
e [t follows that the cosine term in (2) becomes
cos(@%m) —0g) = cos(m —Op — (m — an)))
cos(m — Op) cos(m — ngm)) + sin(m — Op) sin(m — an))
~ cos(m — 0p) +sin(r — 0p)(R/D)sin(m — @E\?))
= —cos(0p) + (R/D)sin(05) sin(a|) (4)

e Using the approximation in (4) in (2), along with dp/€,, < 1, gives
0B

€m

e e |1—-2(1.5—q)

mq

[(R/D) sin(p) sin(al™) — cos(eB)]

25



Received Complex Envelope

e Applying the approximation /1 + x ~ 1 4+ x/2 for small x, we have
my % e — (15— )35 |(R/D) sin(0) sin(aly’) — cos(01)

e Applying the Law of Cosines to the triangle AO MS](\?)O B we have
¢ = D*+R*—2DR Cos(ozg\?))
~ D’ [1 —2(R/D) cos(ay;))] ,

and again using the approximation v/1 & x &~ 1 4 /2 for small =, we have
€m ~ D — Rcos(ozg\?))
e Finally, using (5) in (4) gives
€mg = D — RCOS(&E\?)) — (1.5 —q)dp l(R/D) sin(6p) sin(aﬁ\}n)) — COS(HB)]

e Substituting (7) into (2) gives the result
I m=1
(oI (R+D—Rcos(a§$))—(1.5—q)53 (R/D)sin(65) sin(aggl))—cos(eB)D /e

Y

(m)

which no longer depends on the €,,, and is a function of the angle of departure ;.
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Space-time Correlation Function

e The space-time correlation function between the two complex faded envelopes g1 (t) and gs(?)
at the BS is once again given by

bprnl0,7) = SE L (gl + 7)

Using (8), the space-time correlation function between g1(¢) and go(t) can be written as

vy i27(0p/ M) |(R/D) sin(0) sin(a (7)) —cos(05)
Dg1.9:(0, T) Z Ele
91,92 ) T 2N 1

> 6—]27rfm7‘ COS(CEE\ZL) —VM)} .

(m)

e Since the number of scatters around the MS is infinite, the discrete angles-of-departure o,
can be replaced with a continuous random variable a;; with probability density function

plan).

e Hence, the space-time correlation function becomes.

¢g1,92 53’ _ p/ —jacos ap— ’}/M)ejb[(R/D)SIH(QB)SIH(O(M) cos(@B)]p(aM)daM ’

where a = 27 f,,,7 and b = 27/ ..
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2-D Isotropic Scattering

e For the case of 2-D isotropic scattering with an isotropic MS transmit antenna, p(ays) =
1/(2m), —m < aypy < m, and the space-time correlation function becomes

O
¢91792(5B>7) = ?pe_]bcos(eB)

x Jo(\/a? + V2(R/D)?sin(0) — 2ab(R/D) sin(0) sin(yar)) -

e The spatial and temporal correlation functions can be obtained by setting 7 = 0 and and
0p = 0, respectively.

e The temporal correlation function ¢u,(7) = ¢g4,.4,(0,7) = %J()(Q?T fmT) which matches our

result for the received signal at a mobile station.

e The spatial correlation function is

Y —1bcos :
%1,92(53) = %1,92(5&0) = ?pe 7 (QB)JO(b(R/D) sin(fp))

_ %e—jbcoS(eB)JO <(27T5B/)\C)(R/D> SiIl(‘gB))

e Observe that a much greater spatial separation is required to achieve a given degree of
envelope decorrelation at the BS as compared to the MS. This can be readily seen by the
term R/D < 1 in the argument of the Bessel function.
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Normalized Spatial Crosscovariane, | (pg . (68) |
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Envelope crosscorrelation magnitude at the base station for different base station antenna
orientation angles, Og; D = 3000 m, R = 60 m. Broadside base station antennas have the
lowest crosscorrelation.
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BS Antenna Separation, 68/)\0

Envelope crosscorrelation magnitude at the base station for Op = 7/3 and various
scattering radii, R; D = 3000 m. Smaller scattering radic will result in larger a
crosscorrelations.
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