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Analysis and Design of Symbol Mappers for
Iteratively Decoded BICM
Jun Tan, Member, IEEE, Gordon L. Stüber, Fellow, IEEE

Abstract— Iterative decoding and demodulation of bit-
interleaved coded modulation (BICM) is investigated. The union
bound on the error probability of BICM with maximum-
likelihood (ML) decoding is derived with the assumption of a
uniform interleaver. Based on the union bound, it is shown that an
interleaving gain is achievable for BICM at high SNR. The design
rules on the symbol mapper for optimal asymptotic performance
at high SNR are derived and a new symbol mapper, called the
maximum squared Euclidean weight (MSEW) symbol mapper,
is proposed with examples given for 8-PSK and 16-QAM. The
MSEW mapper is shown by means of an extrinsic information
transfer (EXIT) chart to provide the best error-floor performance
for BICM at high SNR. At low SNR, a mapper doping technique
is proposed that combines the MSEW mapper with Gray mapper
to provide a good match to a given outer code. Simulation results
are also presented to confirm our analysis.

Index Terms— bit-interleaved coded modulation (BICM), iter-
ative decoding, Turbo codes

I. INTRODUCTION

Trellis coded modulation (TCM) [1] uses mapping by set
partitioning to maximize the free Euclidean distance, thus
providing good performance on AWGN channels. When TCM
is applied on flat fading channels with symbol-by-symbol
interleaving we try to maximize the minimum built-in time
diversity (or shortest error event path) of the code. This is
because the code performance on fading channels depends
more strongly on the minimum Hamming distance between
coded symbol sequences than on the minimum Euclidean
distance. However, the Hamming distance can be increased
further by using bit-by-bit interleaving of the code bits prior to
symbol mapping rather than symbol-by-symbol interleaving of
the code symbols after symbol mapping. The former approach
is called bit-interleaved coded modulation (BICM), and has
been shown to outperform symbol-interleaved TCM on fading
channels [2], [3].

The bit interleaver in the BICM system serves as a channel
interleaver to permute the coded bit stream for the purpose of
achieving time diversity on fading channels. It concatenates the
encoder and the symbol mapper and makes the BICM system
to resemble a serial concatenated convolutional code (SCCC)
[4]. This suggests that iterative demapping/decoding of BICM
can yield a turbo-like performance, as shown for 8-PSK [5],
[6] and 16-QAM modulation [7]. For iteratively decoded
BICM, the channel interleaver which is designed to provide
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time diversity also serves as a code interleaver to provide
interleaving gain, similar to the interleavers used in turbo
encoders. Maximum likelihood (ML) decoding of BICM is
infeasible because of the large number of states introduced by
the interleaver. However, iterative demodulation and decoding
serves as an effective, yet sub-optimal, decoding method for
BICM that may approach the ML decoding performance.

In [6], [8], an error probability bounding technique is
applied to 8-PSK-BICM based on the theory by Caire et al. [3].
This bounding technique is also applied to 16-QAM-BICM
in [7]. These error probability bounds are derived under the
assumption of error-free feedback (EFF), that is, there is no-
error in the iterative decoding process. Based on the EFF
bound, the “optimal” mapper is found for both 8-PSK [6],
[8] and 16-QAM [7] that maximizes the harmonic mean, a
concept introduced in [3]. However, the error-free feedback
assumption is an idealized assumption for iterative decoding
of BICM; decoding errors always exist in reality.

BICM can be viewed as a special type of SCCC, and
the ML error probability bound for SCCC in [4] can be
extended to BICM. The “inner code” for BICM is the symbol
mapper, which can be considered as a non-recursive single-
state encoder. Unlike the inner code in a SCCC system that
is recursive and outputs binary code bits, the symbol mapper
is non-recursive and outputs complex symbols chosen from a
modulation alphabet. Therefore, the error probability bounding
techniques for SCCC cannot be directly applied to BICM.
However, through appropriate analysis of the symbol mapper,
we derive the ML error probability bound for BICM with a
uniform interleaver assumption. Based on the ML decoding
bound, a new symbol mapper, called the maximum squared
Euclidean weight (MSEW) symbol mapper, is developed and
applied to 8-PSK and 16-QAM. By using the density evolution
approach [9]–[11] for BICM, we establish that there is no one
mapper having the best performance over all SNR regions.
In the high SNR region, our proposed MSEW mapper can
provide the best performance. At low SNR region, we propose
a “doping” technique, motivated by the doping concept of
turbo codes [9], [12], to match the mapper to a given outer
code to optimize the performance at a given channel SNR.

The remainder of this paper is organized as follows.
Section II, briefly discusses the BICM system along with
the necessary soft-input soft-output (SISO) modules needed
for iterative decoding. Section III presents the performance
analysis and design rules for the symbol mapper based on
bit error rate (BER) union bounds for convolutionally coded
and uniformly interleaved BICM systems. Density evolution
techniques are briefly reviewed and the role of the MSEW
mapper is discussed in Section IV. Simulation results are
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presented in Section V to confirm our analytical results.
Section VI wraps up with a summary of conclusions.

II. BICM SYSTEM AND ITERATIVE DECODING

A general bit-interleaved coded modulation (BICM) system
consists of the interleaved concatenation of an encoder and a
symbol mapper. The outer encoder encodes the information
sequence {uk} into a coded sequence. The coded binary
sequence is then bit interleaved by the interleaver π to become
the interleaved sequence {ck}, which is applied to the symbol
mapper. The output of the symbol mapper is the modulating
symbol sequence {xk}, comprised of complex symbols chosen
from an M -ary signal constellation such as M -PSK or M -
QAM.

For M -ary modulation, where M = 2m, a symbol mapper
generates baseband complex symbols based on m-bit binary
input sequences. The mapper can be represented by the one-
to-one mapping f : {0, 1}m → X , x = f(c), where the
input binary sequence is c = (c0, · · · , cm−1), cj ∈ {0, 1}, and
x is chosen from the set X = {x} consisting of M = 2m

complex signal points. For a length-N binary input sequence
c, the mapper produces a length-N/m output symbol sequence
x, where each symbol xk represents the corresponding m-bit
sub-sequence (c(k−1)m, c(k−1)m−1, · · · , ckm−1) in c. We may
denote x = f(c).

A. SISO Modules and Iterative Decoding of BICM

For convolutional coded BICM, the structure of the corre-
sponding iterative decoder is similar to the iterative decoder for
SCCC in [13]. The SISO module corresponding to the outer
convolutional encoder can be based on the MAP, Max-Log-
MAP, SOVA and other such algorithms. The SISO module
corresponding to the symbol mapper can use the MAP algo-
rithm, since the symbol mapper is a single-state finite-state
machine. This SISO module is called the SISO demapper.

The SISO demapper can be implemented in the log-
likelihood ratio (LLR) domain. For each signal point x =
f(c), there is an m-bit sequence c = (c0, · · · , cm−1) with
associated a priori information L(c0), · · · , L(cm−1), where

L(cj)
�
= log P (cj=1)

P (cj=0) , j = 0, · · · ,m − 1.
The channel can be modeled as yk = akxk +nk, where nk

is the complex zero-mean Gaussian noise with variance N0/2
in each dimension, and ak is the complex time-variant fading
gain. For coherent receivers with perfect channel knowledge,
the conditional pdf of the observation y is p(y|x, a) =

1
πN0

exp(−Es

N0
‖ y − ax ‖2). The log-probability becomes

log p(y|x) = log
1

πN0
− Es

N0
‖y‖2 − ‖ a ‖2 Es

N0
‖x‖2

+2 ‖ a ‖ Es

N0
(yIxI + yQxQ), (1)

where y = yI + jyQ, x = xI + jxQ, and Es/N0 is the mod-
ulated symbol energy-to-noise ratio. The receiver’s estimate
of x is represented as x̂ and ĉ = (ĉ0, · · · , ĉm−1) denotes its
corresponding binary representation where x̂ = f(ĉ). The soft

output is

L(ĉj)
�
= log

P (cj = 1|y)
P (cj = 0|y)

= log

∑
x:cj=1

exp [log p(y|x, a) + log P (x)]

∑
x:cj=0

exp [log p(y|x, a) + log P (x)]
. (2)

If all coordinates cj in c are independent, then

log P (x) = log P (c) = log P (c0)P (c1) · · ·P (cm−1). (3)

Multiplying both the numerator and denominator in (2) by the

term
m−1∏
j=0

1/P (cj = 0) and using the relation log P (cj)
P (cj=0) =

cjL(cj), yields

L(ĉj) = log

∑
x:cj=1

exp [λ(y, x)]

∑
x:cj=0

exp [λ(y, x)]
, (4)

where

λ(y, x)
�
= − ‖ a ‖2 Es

N0
‖x‖2 +2 ‖ a ‖ Es

N0
(yIxI + yQxQ)

+
m−1∑
j=0

cjL(cj). (5)

The actual output of the SISO demapper is the extrinsic
information, given by Le(ĉj) = L(ĉj) − L(cj).

III. CONVOLUTIONALLY CODED BICM

In this section, BER union bounds on maximum likelihood
(ML) demapping/decoding of convolutionally encoded BICM
are derived. The bounds are used to study the performance of
BICM with different symbol mapping approaches. A design
criterion for the symbol mapper is then introduced that can
be used to optimize the asymptotic performance at high bit
energy-to-noise ratios.

A. Transfer Functions of Mapper

To analyze BICM as a concatenated coding system, the sym-
bol mapper is treated as a coding entity that is characterized
by its input Hamming distance and output Euclidean distance.
The symbol mapper is a single-state encoder that generates
encoded symbols corresponding to its input binary sequence.
For example, the QPSK Gray symbol mapper shown in Fig. 1
has a one-state trellis with four parallel transitions, where
each state transition is characterized by a 2-bit input sequence
and an output signal point. Throughout our development we
assume normalized constellations, i.e., Es = 1. For QPSK
there are two squared Euclidean distances (SED) in the signal
constellation, denoted as α1 = 4 and α2 = 8 = 2α1,
where α1 = ‖x00 − x10‖2 and α2 = ‖x00 − x11‖2. The
transfer function approach can be used to enumerate the
possible state transitions and their distance properties. For this
purpose, we introduce two dummy variables L and H , whose
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exponents indicate the input Hamming distance and output
SED, respectively, from a reference symbol. For example, if
x00 is the reference symbol, the state transition with input
sequence (11) can be denoted as L2H2α1 , indicating that the
input Hamming distance from (00) is 2, and the output SED
from x00 is 2α1, shown in Fig. 1.
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Fig. 1. Gray symbol mapping for QPSK.

Assigning x00 as the reference symbol, the transfer function
of the QPSK Gray mapper is

T (L,H) = 1 + 2LHα1 + L2H2α1 = (1 + LHα1)2 . (6)

For QPSK, the transfer function is invariant to the choice of
reference symbol. Such symbol mappers are called uniform
symbol mappers.

For 8-PSK mappers, the relations between the input Ham-
ming weights and output SEDs are more complicated. The
8-PSK Gray mapper is shown in Fig. 2-(a). The list of all
possible SEDs between the 8-PSK symbols is as follows:

α1 = ‖ x001 − x000 ‖2= 2 −
√

2,

α2 = ‖ x011 − x000 ‖2= 2,

α3 = ‖ x010 − x000 ‖2= 2 +
√

2,

α4 = ‖ x110 − x000 ‖2= 4. (7)

The corresponding mapper transfer function is

TGray(L,H) = 1 + L(2Hα1 + Hα3) + L2(2Hα2 + Hα4)
+L3Hα3 . (8)

Note that the 8-PSK Gray mapper is a uniform mapper.
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Fig. 2. 8-PSK Symbol Mappers.

For conciseness, we use the eight-element vector
(p0, · · · , p7) to represent an 8-PSK mapper, where pn

is the decimal number of the binary representation at
the 8-PSK constellation point ejnπ/4. For example, the
Gray mapping shown in Fig. 2-(a), can be represented as
(0, 1, 3, 2, 6, 7, 5, 4).

The 8-PSK set-partition (SP) mapper (0, 1, 2, 3, 4, 5, 6, 7) is
shown in Fig. 2-(b). The SP mapper is a mapper used for

trellis coded modulation and is obtained through the principle
of mapping by set partitioning [1]. The SP mapper is non-
uniform and, thus, the transfer function depends on the choice
of reference symbol. For example, choosing the reference
symbol x000 gives

T (L,H)|x000 = 1 + L(Hα1 + Hα2 + Hα4)
+L2(Hα2 + 2Hα3) + L3Hα1 . (9)

while choosing the reference symbol x001 gives

T (L,H)|x001 = 1 + L(Hα1 + Hα2 + Hα4)
+L2(Hα1 + Hα2 + Hα3) + L3Hα3 .(10)

If all points in the signal constellation are transmitted with
equal probability, then averaging the transfer function over all
possible reference symbols yields

TSP(L,H) = 1 + L(Hα1 + Hα2 + Hα4)

+L2(
1
2
Hα1 + Hα2 +

3
2
Hα3)

+
1
2
L3(Hα1 + Hα3).

(11)

The average transfer function is independent of the choice of
reference symbol.

Finally, another 8-PSK symbol mapping, called MSEW
mapper in our later discussion, is also shown in Fig. 2-(c).
The MSEW mapper is non-uniform as well, but its transfer
function averaged over all possible equally likely reference
symbols is

TN(L,H) = 1 + L(Hα2 + Hα3 + Hα4)

+L2(
3
2
Hα1 + Hα2 +

1
2
Hα3)

+L3(
1
2
Hα1 +

1
2
Hα3). (12)

B. Performance of BICM

By treating BICM as a serial concatenated convolutional
code (SCCC), the analysis of SCCC in [4], [14] can be applied
directly to BICM. With a uniform interleaver (which maps to
any possible permutation with equal probability), the union
bound on the bit error probability of BICM with ML decoding
is

Pb ≤
k∑

w=1

w

k

N∑
l=0

A
(c)
w,l(
N
l

) A(i)(l,H)|
H=e− 1

4 mRγb

=
N∑

l=0

1(
N
l

)
[

1
k

k∑
w=1

wA
(c)
w,l

]
A(i)(l,H)|

H=e− 1
4 mRγb

,(13)

where γb = Eb/N0 is the bit energy-to-noise ratio, R = k/N
is the code rate with code bit length N , information bit length
k, and m is the number of bits per modulated symbol. In
(13), A

(c)
w,l is the number of codewords in the outer code having

input/output Hamming weights w and l, respectively, A(i)(l, h)
is the number of modulating symbol sequences generated by
the symbol mapper with input Hamming weight l and output
squared Euclidean weight (SEW) h, and A(i)(l,H) is the
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conditional weight enumerating function (CWEF) defined as
A(i)(l,H) =

∑
h A(i)(l, h)Hh, which can be obtained from

the input-output weight enumeration function (IOWEF) of the
mapper.

To analyze the BER performance of BICM we use an
approach similar to that used in the analysis of PCCC and
SCCC [4], [15]. In the decoding of BICM, errors occur when
the decoded symbol sequence is not the transmitted sequence.
Such error events are the concatenation of length-1 error events
in the mapper trellis. For an error symbol sequence of length-
N/m, the number of error events can range from 1 to N/m.
Denote n

(i)
M as the maximum number of error events. The

CWEF can be further represented as [4], [15]

A(i)(l,H) =
n

(i)
M∑

j=1

(
N/m

j

)
A(i)(l,H, j), (14)

where A(i)(l,H, j) is the weight enumerating function of
sequences that concatenate j error events with input weight
l. A similar approach can be taken for the outer convolutional
code. After some manipulation, the BER upper bound becomes

Pb <
k∑

w=1

N∑
l=0

n
(c)
M∑

n(c)=1

n
(i)
M∑

n(i)=1

Nn(c)+n(i)−l−1 lll!Rn(c)−1

n(c)!n(i)!mn(i)

×A
(c)

w,l,n(c)A
(i)(l,H, n(i))|

H=e− 1
4 mRγb

, (15)

where n(c) and n(i) are the number of error events in the
convolutional encoder trellis and symbol mapper trellis, re-
spectively.

The exponent n(c) + n(i) − l − 1 of N in (15) determines
the interleaving gain, where for a given SEW h the coefficients
of the exponent depend on the input weight w, code weight
l, and block length N , among other parameters. Define the

maximum exponent as [4] α(h)
�
= maxw,l{n(c)+n(i)−l−1},

which is the dominant coefficient among all coefficients for a

sequence with SEW h. Define q
�
= �d(c)

f /m�, where d
(c)
f is

the free Hamming distance of the convolutional code. The
minimum SEW of BICM signal sequences is, therefore, qhi,
where hi is the minimum SEW of the symbol mapper. For
8-PSK, hi = α1 = 2 −√

2 from (7).
At high SNR, the performance of the BICM system is

dominated by the sequence having minimum SEW h = qhi.
When h = qhi, the number of error events in the symbol
mapper trellis is n(i) = q, the code weight is l = d

(c)
f , and the

maximum number of error events of the convolutional code is

n
(c)
M ≤ �d

(c)
f

d
(c)
f

	 = 1. The exponent becomes

α(qhi) ≤ q − d
(c)
f . (16)

For M = 2m-ary modulation, where m > 1, q < d
(c)
f

meaning that α(qhi) < 0. Therefore, an interleaving gain can
be achieved at high SNR for the minimum SEW sequence, and
the gain is determined by the exponent q − d

(c)
f . For example,

an 8-PSK BICM system with a convolutional code of free
distance df = 5 has α(qhi) = −3. Note that when m = 1,
i.e., binary modulation such an interleaving gain does not exist.

When the block length N → ∞, the asymptotic BER is

dominated by the largest α(h) term in (15). Define αM
�
=

maxh{α(h)} = maxw,l,h{n(c) +n(i)− l−1} as the dominant
contribution to the BER performance. Since n(i) = l, the
maximum number of error events of the symbol mapper equals
the Hamming weight of the code sequence l. Hence, the
maximum exponent is αM = maxw,l,h{n(c)−1} = n

(c)
M −1 ≥

0, which shows that an interleaving gain does not exist at
high SNR. This conclusion is consistent with the results for
SCCC with non-recursive inner codes [4]. Because the symbol
mapper can be considered as a memoryless non-recursive
encoder, no interleaving gain can be achieved for large code
lengths N .

At high SNR where the BER performance is dominated
by the minimum SEW sequence (qhi sequence), the BICM
system has interleaving gain in the sense that the BER
contribution from the minimum SEW sequence decreases as
code length N increases since α(qhi) < 0. However, when
N → ∞, the BER is not dominated by the minimum SEW
sequence and the BICM system cannot provide interleaving
gain because αM ≥ 0. This means that there exists some
block size NM , such that for N ≤ NM the BER performance
can be improved by increasing N , i.e., there is interleaving
gain. But for N > NM the performance cannot be improved
by increasing N and there is no interleaving gain. Simulation
results show that NM is usually very large for practical
systems. For 8-PSK BICM with a rate-2/3 convolutional code
having free distance df = 5, NM > 5000. This means that
8-PSK BICM can obtain an “interleaving gain” by increasing
block length N , as long as N < 5000.

C. 8-PSK MSEW Mapper

In the analysis of the ML decoding bound of BICM in
(13), we assume a uniform interleaver that permutes any
Hamming weight l sequence to any of its permutations with
equal probability 1/

(
N
l

)
. Considering the outer code, the most

probable error event is the error sequence with minimum
Hamming weight, i.e., having the free distance df for con-
volutional codes. Given the minimum weight error sequence
there is a very small chance that the df error bits after they
are interleaved will be mapped to the same symbol since
N � df . With high probability the df bits will be scattered
throughout the permuted length-N sequence, such that the
df bits will provide df Hamming weight-1 inputs that are
mapped onto df different symbols. Consequently, the SEW of
the Hamming weight-1 symbols is critical to the asymptotic
BER performance. A low asymptotic BER can be achieved
by maximizing the corresponding SEW of Hamming weight-
1 input sequences to the symbol mapper.

The input-output weight enumeration function of the map-
per can be represented as A(i)(L,H) = TN (L,H), where
N is the number of modulating symbols per block, and
T (L,H) is the transfer function of the mapper. For symbols
mappers having m bits per symbol, the transfer function can
be represented as

T (L,H) = 1 + T (1,H)L + T (2,H)L2

+ · · · + T (m,H)Lm, (17)



5

where T (l,H) is the coefficient of the term Ll in T (L,H).
Given a codeword with Hamming weight df , when the inter-
leaver permutes the codeword so that all df bits are at least
m bits apart, the CWEF at l = df becomes A(i)(l,H) =
[T (1,H)]df . Based on the ML decoding bound of (13), we
need to minimize

A(i)(df ,H)|
H=e− 1

4 mRγb
= T df (1,H)|

H=e− 1
4 mRγb

. (18)

The 8-PSK Gray mapping in (8) has T (1,H) = 2Hα1 +
Hα3 , which indicates two Hamming weight-1 symbols with
SEW α1 and one Hamming weight-1 symbol with SEW
α3. The minimum SEW for Hamming weight-1 inputs is
α1. For the 8-PSK SP symbol mapping in (11), T (1,H) =
Hα1 +Hα2 +Hα4 , and there is only one Hamming weight-1
symbol with SEW α1. Because α1 < α2 < α3 < α4, the
RHS of (18) for SP mapping is smaller than that for Gray
mapping. This indicates that the asymptotic BER with SP
mapping should be lower than that with Gray mapping, since
the dominant term in the error probability upper bound has
an negative exponential dependency on the minimum SEW
term, Hα1 . The MSEW symbol mapping shown in Fig. 2-
(c) has a minimum SEW of α2 for Hamming weight-1 input
sequences. The asymptotic BER with this mapping should be
lower than that achieved with either the Gray or SP mappings.
The MSEW symbol mapper maximizes the minimum SEW
for Hamming weight-1 input sequences, hence its acronym
MSEW (maximum squared Euclidean weight).

The MSEW mapper is not unique. We have conducted an
exhaustive search for all 8-PSK MSEW mappers, and have
obtained the 14 distinct mappers listed in Tab. I. Equivalent
mappers that are obtained through constellation rotation or
mirror-mapping have been excluded. The MSEW mappers can
provide optimal asymptotic performance because the minimum
SEW for Hamming weight-1 symbols is maximized. Among
the MSEW mappers, different mappers may have different
performance due to differences in their transfer functions.
The performance can be further optimized by minimizing the
multiplicity of symbol pairs with minimum Euclidean distance,
i.e., minimize the coefficient of the term of LHαm , where αm

is the minimum SEW. Such MSEW mappers are called optimal
MSEW mappers. For 8-PSK, the optimal MSEW mappers are
the first 12 mappers listed in Tab. I. The last two mappers are
not optimal MSEW mappers.

D. 16-QAM MSEW Mapper

Our methodology can be readily applied to other signal
constellations, and here we consider 16-QAM. We use a 16-
element vector to represent the 16-QAM mappers, labelling
the constellation symbols with the decimal representation
of 4-bit binary numbers from upper-left to bottom-right.
For example, the Gray mapper shown in Fig. 3-(a) can be
represented as (15, 11, 3, 7, 14, 10, 2, 6, 12, 8, 0, 4, 13, 9, 1, 5),
where 15 = (1111)2 is the label for the upper-left sym-
bol, 11 = (1011)2 is the label for the second symbol
in the first row, and so on. The SP symbol mappings
for 16-QAM are shown in Fig. 3-(b), with representa-
tion (8, 13, 12, 9, 15, 10, 11, 14, 4, 1, 0, 5, 3, 6, 7, 2). The possi-
ble squared Euclidean distances (SEDs) between 16-QAM

TABLE I

8-PSK MSEW MAPPERS

8-PSK Mappers Transfer function terms of L
(0, 3, 4, 7, 1, 2, 5, 6) Hα2 + Hα3 + Hα4

(0, 3, 4, 7, 2, 1, 6, 5) Hα2 + Hα3 + Hα4

(0, 3, 5, 2, 4, 7, 1, 6) Hα2 + Hα3 + Hα4

(0, 3, 5, 6, 1, 2, 4, 7) Hα2 + Hα3 + Hα4

(0, 3, 6, 1, 4, 7, 2, 5) Hα2 + Hα3 + Hα4

(0, 3, 6, 5, 2, 1, 4, 7) Hα2 + Hα3 + Hα4

(0, 3, 4, 1, 7, 2, 5, 6) Hα2 + 3
2
Hα3 + 1

2
Hα4

(0, 3, 4, 2, 7, 1, 6, 5) Hα2 + 3
2
Hα3 + 1

2
Hα4

(0, 3, 5, 2, 7, 4, 1, 6) Hα2 + 3
2
Hα3 + 1

2
Hα4

(0, 3, 5, 6, 1, 4, 2, 7) Hα2 + 3
2
Hα3 + 1

2
Hα4

(0, 3, 6, 1, 7, 4, 2, 5) Hα2 + 3
2
Hα3 + 1

2
Hα4

(0, 3, 6, 5, 2, 4, 1, 7) Hα2 + 3
2
Hα3 + 1

2
Hα4

(0, 3, 4, 1, 6, 5, 2, 7) 2Hα2 + Hα3

(0, 3, 4, 2, 5, 6, 1, 7) 2Hα2 + Hα3

symbols are α, 2α, 4α, 5α, 8α, 9α, 10α, 13α, and 18α, where
α is the minimum SED of 16-QAM. From the Gray and SP
symbol mapping, the minimum SEW corresponding to Ham-
ming weight-1 input sequences is α. Like the case of 8-PSK,
these symbol mappings are not optimal for BICM. In [7], a dif-
ferent mapper called a modified SP symbol mapper (shown in
Fig. 3-(c)) with (15, 11, 3, 7, 14, 10, 2, 6, 12, 8, 0, 4, 13, 9, 1, 5)
is applied to 16-QAM BICM systems to provide better perfor-
mance than the SP mapper. However, this symbol mapper is
still not optimal in the sense that the minimum SEW between
Hamming weight-1 symbols is not maximized; in this case
the minimum SEW is equal to 2α. A MSEW symbol mapper
shown in Fig. 3-(d) has been identified through computer
search and provides a minimum SEW of 5α for Hamming
weight-1 input sequences.

TABLE II

SOME 16-QAM MSEW MAPPERS

16-QAM Mappers Transfer function
terms of L

(2, 1, 7, 4, 8, 11, 13, 14, 5, 6, 0, 3, 15, 12, 10, 9) 2H5α + H8α + H13α

(1, 2, 7, 4, 8, 11, 14, 13, 6, 5, 0, 3, 15, 12, 9, 10) 2H5α + H8α + H13α

(2, 1, 11, 8, 4, 7, 13, 14, 9, 10, 0, 3, 15, 12, 6, 5) 2H5α + H8α + H13α

(1, 2, 11, 8, 4, 7, 14, 13, 10, 9, 0, 3, 15, 12, 5, 6) 2H5α + H8α + H13α

(1, 2, 12, 15, 4, 7, 9, 10, 13, 14, 0, 3, 8, 11, 5, 6) 2H5α + H8α + H13α

(1, 2, 12, 15, 8, 11, 5, 6, 13, 14, 0, 3, 4, 7, 9, 10) 2H5α + H8α + H13α

(2, 1, 12, 15, 4, 7, 10, 9, 14, 13, 0, 3, 8, 11, 6, 5) 2H5α + H8α + H13α

(2, 1, 12, 15, 8, 11, 6, 5, 14, 13, 0, 3, 4, 7, 10, 9) 2H5α + H8α + H13α

(4, 1, 7, 2, 8, 13, 11, 14, 3, 6, 0, 5, 15, 10, 12, 9) 2H5α + H8α + H13α

(1, 4, 7, 2, 8, 13, 14, 11, 6, 3, 0, 5, 15, 10, 9, 12) 2H5α + H8α + H13α

(8, 1, 11, 2, 15, 6, 12, 5, 3, 10, 0, 9, 4, 13, 7, 14) 5
2
H5α + H8α + 1

2
H13α

(8, 2, 11, 1, 15, 5, 12, 6, 3, 9, 0, 10, 4, 14, 7, 13) 5
2
H5α + H8α + 1

2
H13α

(8, 1, 13, 4, 15, 6, 10, 3, 5, 12, 0, 9, 2, 11, 7, 14) 5
2
H5α + H8α + 1

2
H13α

(8, 4, 13, 1, 15, 3, 10, 6, 5, 9, 0, 12, 2, 14, 7, 11) 5
2
H5α + H8α + 1

2
H13α

(8, 2, 14, 4, 15, 5, 9, 3, 6, 12, 0, 10, 1, 11, 7, 13) 5
2
H5α + H8α + 1

2
H13α

(8, 4, 14, 2, 15, 3, 9, 5, 6, 10, 0, 12, 1, 13, 7, 11) 5
2
H5α + H8α + 1

2
H13α

(1, 8, 11, 2, 15, 6, 5, 12, 10, 3, 0, 9, 4, 13, 14, 7) 5
2
H5α + H8α + 1

2
H13α

(15, 8, 6, 1, 4, 3, 13, 10, 9, 14, 0, 7, 2, 5, 11, 12) 3H5α + H13α

(15, 8, 6, 1, 2, 5, 11, 12, 9, 14, 0, 7, 4, 3, 13, 10) 3H5α + H13α

(15, 8, 5, 2, 4, 3, 14, 9, 10, 13, 0, 7, 1, 6, 11, 12) 3H5α + H13α

(15, 8, 5, 2, 1, 6, 11, 12, 10, 13, 0, 7, 4, 3, 14, 9) 3H5α + H13α

(15, 8, 3, 4, 2, 5, 14, 9, 12, 11, 0, 7, 1, 6, 13, 10) 3H5α + H13α

An exhaustive computer search for 16-QAM MSEW map-
pers yielded 84 distinct MSEW mappers, where those with
rotational symmetries are excluded. Some of the 84 MSEW
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Fig. 3. 16-QAM Mappers: Gray, SP, MSP, MSEW.

mappers are listed in Tab. II, together with their transfer
function term with input Hamming weight-1. All 84 mappers
can be classified into three types according to the multiplicity
of the transfer function term with minimum SEW, i.e., the
coefficient of H5α. Among the 84 MSEW mappers, the
minimal coefficient of H5α is 2 and, therefore, the mappers
with the term 2LH5α in their transfer functions are optimal
MSEW mappers. There are total of 48 distinct optimal MSEW
mappers for 16-QAM.

When the constellation size is not very large, such as
the 8-PSK 16-QAM examples considered in this paper, an
exhaustive computer search can be used to find all MSEW
mappers. However, when the constellation size is large such
as 64-QAM, an exhaustive search is time consuming although
it is feasible if we just need to find one optimal MSEW
mapper rather than all of them. However, unlike the Gray
or SP mappers, there is no simple heuristic approach to
generalize the design procedure of MSEW mappers. By using
edge profile concepts, it might be possible to obtain general
procedure to construct an MSEW mapper for an arbitrary
constellation, such as the symmetric-ultracomposite labelling
structure [16]. However, the problem is still open.

IV. DENSITY EVOLUTION ANALYSIS OF BICM

To investigate the convergence properties of BICM and to
illustrate the effects of the MSEW mapper on BICM perfor-
mance, density evolution techniques can be used to track the
extrinsic information exchange in the iterative demodulation
and decoding process of BICM. We use the mutual information

measurement for the extrinsic information transfer (EXIT)
chart as proposed by ten Brink [11], [17]. This approach has
been applied to the SCCC [18] and BICM in [19].

A. EXIT Characteristics of Mappers

Following the similar approach for EXIT chart in [19], we
can obtain the EXIT characteristics for the various mappers
using a Monte Carlo approach. We consider several 8-PSK
and 16-QAM BICM mappers in our analysis. Mapper A
is an arbitary 8-PSK mapper (0, 5, 6, 3, 2, 7, 4, 1), and the
8-PSK anti-gray mapper is (0, 7, 1, 6, 2, 5, 3, 4), where the
representation conventions for 8-PSK is identical to those
of the 8-PSK mappers shown in Fig. 2. For the 16-QAM
anti-gray mapper, the (-3,-1,+1,+3) amplitudes have mapping
(00, 11, 01, 10) on either in-phase and quadrature components
[18], resulting in the mapping
(2, 14, 6, 10, 1, 13, 5, 9, 3, 15, 7, 11, 0, 12, 4, 8).
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1
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Fig. 4. EXIT Chart of 8-PSK Mappers on AWGN Channel.

Fig. 4 shows the EXIT characteristics of different 8-PSK
mappers. The function Tm(·) is the EXIT characteristics of
the SISO demapper, given by Io,1 = Tm(Ii,1), where Ii,1

and Io,1 are the mutual information between the extrinsic
information and the transmitted codewords corresponding to
the input and output of the demapper, respectively. The Gray
mapper’s EXIT function is a constant line. In the absences of
a priori information, i.e., Ii,1 = 0, the Gray mapper has the
largest Io,1 value among all mappers. This suggests that for the
first iteration, Gray mapping provides the best performance.
However, with iterations BICM with Gray mapping achieves
no performance gain because the mutual information Io,1

cannot be improved. As shown in Fig. 4, the EXIT functions
of the non-Gray mappers have lower value of Io,1 than the
Gray mapper at Ii,1 = 0, but they have higher value of
Io,1 at Ii,1 = 1. A higher value of Io,1 implies a lower
error probability. When Io,1 = 1, error-free transmission is
achieved.

Fig. 4 indicates the mapper with the largest value of Io,1 at
Ii,1 = 1 is the MSEW mapper, whose EXIT function has the
steepest slope. In our previous discussion, the MSEW mapper
provides the best performance at high SNR. That is, at high
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SNR, the bit error probability of BICM with ML decoding can
be minimized with the MSEW mapper. This indirectly implies
that the MSEW mapper can provide the maximum mutual
information Io,1 at Ii,1 = 1. Although there is no analytical
proof of this, our investigation concludes that the MSEW can
provide the best mutual information Io,1 at Ii,1 = 1.

Note that the MSEW mappers for 8-PSK or 16-QAM are not
unique. The EXIT functions of the different MSEW mappers
with the same multiplicity have slight differences at one end
where Ii,1 = 0. This is due to the difference of their SEW
properties. However, at the high end where Ii,1 = 1, the value
of their EXIT functions are virtually identical. We use the 8-
PSK MSEW mapper shown in Fig. 2-(c) and the 16-QAM
MSEW mapper shown in Fig. 3-(d).

B. EXIT Chart of BICM

The MSEW mapper can provide a large value of Io,1 at
Ii,1 = 1. However, this does not guarantee that BICM can
reach its potential performance through iterative decoding and
demodulation. The iterative decoding process depends not only
on the EXIT characteristics of the mapper, but also on the
EXIT characteristics of the outer code. It is desirable that the
outer code should provide a “tunnel” at the lowest possible
channel SNR so that the maximum Io,1 can be achieved
through iterations at lowest channel SNR.

There are two major properties of the EXIT characteristics
of the outer code. First, the EXIT function of the outer code
does not depend on the channel SNR. Secondly, the EXIT
characteristics of the outer code can always achieve Io,2 = 1
when Ii,2 = 1, where the error-free transmission is possible.
Further, when Ii,2 = 0 the output mutual information Io,2 = 0.
Because the mapper EXIT function Tm(·) usually cannot reach
(1,1) at the upper-left corner, the two EXIT functions will
intersect near the (1,1) point. The intersection point is the
end of the iterating “tunnel”, and determines the error floor
of BICM at a given channel SNR. When the channel SNR
is large, the mapper EXIT function Tm(·) is shifted upwards
and it can achieve higher Io,1, resulting in a smaller error
probability. For the outer code, it is desirable to provide a high
value of Io,2 for a modest value of Ii,2. Usually a convolutional
code with a larger free distance will reach a larger value of
Io,2 at the high end of Ii,2. Therefore, a convolutional code
with longer constraint length can usually provide a lower error
floor than one with a shorter constraint length.

The MSEW mapper provides the largest value of Io,1 at the
high end of Ii,1, which means that the error floor of BICM with
the MSEW mapper should be the lowest. However, because
the lower end has a small value of Io,1, the MSEW EXIT
function may intersect to the outer code EXIT function and
close the iterative “tunnel” after a few iterations. One instance
is shown in Fig. 5, where BICM with MSEW mapper fails
because the iteration converges at the intersecting point. But
the other mapper with a higher value of Io,1 at the low end of
Ii,1 can start the iteration process and reach its corresponding
Io,1 at the high end of the mapper EXIT function. Hence, this
mapper can outperform the MSEW mapper, even though its
potential error floor is worse than the MSEW mapper. This

indicates that for a given outer code, the MSEW mapper is
not always the best mapper; it is just the mapper with best
potential asymptotic performance.
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Fig. 5. EXIT Chart of BICM.

To achieve the best performance with BICM, the mapper
and the outer code should be considered together. For a given
outer code the best mapper is not necessary the MSEW
mapper, but rather the mapper for which EXIT function
“matches” the outer code EXIT function. For a given mapper,
the optimal outer code should provide an iteration “tunnel” at
lowest possible channel SNR and make the intersection point
of their EXIT functions as close as possible to the (1,1) point
in the Ii,1×Io,1 space. Based on the EXIT chart of the BICM,
we can summarize the design criteria for BICM as follows.

1) (Minimizing error floor) In order to give the lowest
asymptotic error probability, the mapper with maximum
value of output mutual information Io,1 at the high end
of input mutual information Ii,1 should be used. This
mapper is the MSEW mapper.

2) (Minimizing threshold channel SNR) In order to achieve
the best iterative performance, the EXIT function of the
mapper should match the EXIT function of the outer
code at the lowest possible channel SNR. This mapper
may or may not be the MSEW mapper.

C. MSEW Mapper Doping with Gray Mapper

Compromise is needed at low channel SNR when the
iterative decoder for BICM with the MSEW mapper converges
at early stages. Usually, we select another mapper with a
higher output mutual information Io,1 at the lower end of its
EXIT function Tm(·) to match the outer code. For different
outer codes, the selection of the matching mappers may be
different which leads to some inconvenience in the mapper
design.

An easier approach for changing the slope of the MSEW
EXIT function is to combine or “dope” the MSEW mapper
with other mappers. This idea is motivated by the “doping”
concept that was introduced to achieve better binary turbo
codes in [9], [12]. Since different mappers have different
slopes and their EXIT functions are almost straight lines,
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combining two mappers will surely change the slope of the
mapper. By combining we mean that some of the symbol
mappings are changed in the transmitted block. In one block
there are two mapping schemes, one is the original mapper,
and the other one is a “doping” mapper. Since the MSEW
mapper has the largest slope of its EXIT function, and the
Gray mapper’s EXIT function is a constant line, we can use
the MSEW mapper and dope with some Gray mappings. The

doping rate η
�
= Nd

N is defined as the ratio of the number of
the doping symbol mappings, Nd, and the block length, N .
By controlling the doping rate, the EXIT of the doped mapper
exhibits different slopes and lies between the Gray mapper
and the MSEW mapper. Fig. 6 shows the EXIT functions of
the doped 8-PSK mappers with different doping rates.
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Fig. 6. EXIT Chart for doped 8-PSK Mappers.

The doping technique provides an easy approach to generate
mappers with almost arbitrary EXIT function slopes. This
approach is very effective for matching the mapper to the outer
code. Simulations can show that different mappers, including
the doped mapper, that have the same EXIT function slope
will provide similar performance.

V. SIMULATION RESULTS AND DISCUSSION

In our simulation, a 16-state rate 1/2 convolutional code
with generators (46, 72) [20] 1 is used as the outer code. To
achieve rate 2/3 or rate 3/4, puncturing is used with puncture
patterns [21]

Rate 2/3:

(
1 1
1 0

)
Rate 3/4:

(
1 0 1
1 1 0

)
. (19)

A. 8-PSK-BICM Performance on AWGN Channels

The BER performance of convolutionally coded 8-PSK
BICM with block length N = 4000 information bits and
different symbol mappings is shown in Fig. 7 for an AWGN
channel. From Fig. 7, the MSEW symbol mapping with doping
rate η = 0.2 outperforms both the SP and the Mapper A sym-
bol mappings at high Eb/No, which confirms our analysis with

1This code is exactly the same code as the one with generators (23, 35) in
[21]

EXIT charts. At low Eb/N0, SP mapping performs better than
the doped MSEW mapper with doping rate 0.2. Increasing the
doping rate 0.2 to 0.5 can improve the low SNR performance
of the MSEW mapper, but sacrifices the error floor. Although
not shown in Fig. 7, we note that a Gray symbol mapper
will outperform both the SP and MSEW mappers for non-
iteratively decoded BICM. However, for iteratively decoded
BICM no performance gain will be realized through further
iterations with a Gray symbol mapper, and the other mappers
will perform better.
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Fig. 7. BER performance of rate-2/3, 16-state, convolutionally coded 8-PSK
BICM with different symbol mappings on an AWGN channel; N=4000, 10
iterations.

B. 16-QAM-BICM Performance on Rayleigh Fading Channel

Simulation results for the 16-QAM BICM system with
rate 3/4 coding and 10 iterations are shown in Fig. 8. Among
the four different mappers, MSP, SP, anti-Gray, and MSEW
mapper, the MSEW mapper provides the best performance at
high SNR. This confirms our analysis that MSEW mapper
provides the smallest error floor at high SNR. At low SNR
the anti-Gray mapper has the best performance because its
mutual information has highest value at the lower end of its
EXIT function. But its performance at high SNR is similar
to that of the SP mapper and worse than that of the MSEW
and MSP mappers. Again, the low SNR performance of the
MSEW and MSP mappers can be improved by using doping
with some sacrifice of the error floor at high SNR.

C. Effects of outer code

Different outer codes may require different matching map-
pers to achieve the desired performance. Fig. 9 shows simula-
tion results for the rate 1/2 16-QAM BICM with 10 iterations.
Of the three mappers, the MSEW mapper is still the best
mapper at high SNR. The performance of the MSP mapper
is very close to that of the MSEW mapper, and it has better
performance at low SNR than the MSEW mapper. The anti-
Gray mapper provides good performance at low SNR, and
similar performance can be obtained by doping the MSEW
mapper with doping rate 0.3, as shown in Fig. 9. Comparing
Figs. 9 and 8 shows the diminished error floor of a code with
larger free distance, df .
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D. Correlated Fading Channel

As discussed earlier, the interleaver between the outer code
and the symbol mapper serves as a code interleaver in the
serial concatenated code scheme. On fading channels, the
interleaver also serves as a channel interleaver provided that
the interleaver size is large enough. This is because the soft
output of the demapper depends on one received symbol only
at one time, and it does not depend on the previous and
later symbols in the sequence. At the output of the SISO
demapper, the soft outputs are then de-interleaved so that
input of the outer decoder becomes uncorrelated and the
channel resembles a fully interleaved fading channel. Applying
a channel interleaver after the symbol mapper with BICM is
unnecessary and does not further improve the performance,
provided of course that the block length is sufficiently large
(as is the case in our example). Fig. 10 shows the performance
of the BICM on a correlated Rayleigh fading channel.
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Fig. 10. BER performance of rate-2/3, 16-state, convolutionally coded 8-PSK
on correlated fading channels; N = 4000, 10 iterations.

E. Comparison with Turbo-coded BICM

This paper considers BICM with convolutional coding.
More sophisticated codes, like turbo codes or LDPC codes can
be used instead of the convolutional code. A good discussion
of this is provided in [22]. When a turbo code or LDPC code is
used, the Gray mapper provides the best performance. Iterative
decoding for turbo or LDPC codes can provide a large per-
formance gain. However, there is little gain in using iterative
demapping and decoding. With iterative demapping/decoding,
convolutional coded BICM provides comparable performance
to that of turbo or LDPC coded modulation over both AWGN
and fading channels for moderate block sizes considered in
this paper, e.g., n = 4000 [22]. However, as N → ∞ the
turbo or LDPC coded systems will be better because the
convolutional coded BICM with iterative demapping/decoding
does not have any interleaving gain as N → ∞. Convolutional
coded BICM is superior to turbo or LDPC coded modulation
in terms of implementation complexity. This is due to the
simple trellis structure of the BICM symbol mapper and the
relatively simple structure for soft-input soft-output decoding
of the convolutional code.

VI. CONCLUSIONS

Analysis and design of iteratively decoded BICM is pre-
sented in this paper. The ML bit error probability bound for
BICM is obtained and analysis of the error probability bound
leads a new symbol mapper called the MSEW mapper. The
iterative decoding and demodulation process is investigated
using EXIT chart to determine the role of the mapper. Our
major conclusions are as follows:

• At high SNR, where the BICM performance is domi-
nated by its minimum SEW, an interleaving gain can
be achieved. However, due to the non-recursive property
of the mapper, there is no interleaving gain when the
block length N → ∞. However, for a small block length,
N , increasing N can achieve better performance at high
SNR. When N is “large” enough, no further interleaving
gain will be achieved. Usually this limiting block length
is very large and it depends on the channel SNR.
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• The MSEW (maximum squared Euclidean weight) map-
per is defined as the mapper which has the maximum SED
for any Hamming weight-1 symbol pairs. The optimal
MSEW mapper is defined as the MSEW mapper to have
the minimum number of symbol pairs which have the
minimum SED with Hamming distance-1. There are 12
and 48 optimal MSEW mappers for 8-PSK and 16-QAM,
respectively. The optimal MSEW mapper can achieve
better performance at high SNR than other mappers.

• The EXIT function of the MSEW mapper has the max-
imum mutual information value when the input mutual
information Ii,1 = 1. This generally indicates that the
EXIT function of the MSEW mapper has steepest slope,
and thus can provide the best potential performance for
BICM.

• The MSEW mapper is not always the best mapper. For a
given outer code, the optimal mapper is the mapper which
matches the EXIT function of the outer code in the EXIT
chart. The MSEW mapper can be doped with the Gray
mapper to provide a good match to a given outer code.
The doping technique is a practical and flexible scheme to
offer good performance given a outer code and a channel
SNR.
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