Rotary Router: An Efficient Architecture for CMP Interconnection Networks

P. Abad, V. Puente, P. Prieto, and J. Gregorio
ISCA 2007

Overview

• The constraints change on chip
 - Wide links are the norm
 - Local information readily available (neighbors)

• Complex networks...
 - Consume power especially buffering schemes
 - Place area pressure on caches and cores

• Need simplification
 - How do we deal with issues like HOL blocking, adaptive routing and arbitration across a router?
Router Architecture

- Injection into the ring
 - Routing tag
- Avoid HOL blocking
 - Multiple rotations
- Dual port FIFOs
- No centralized structures
 - Xbars
 - Arbitration

Input Port

- FIFO buffer and demux
- Local routing tag computation
- Ring selection
 - Distance to port
 - Occupancy
Output Port

- Multiplexor + buffers
 - Fair access
- Flow control with neighbor

Buffer Management

- Buffer bypass logic when output is available
- Round robin arbitration
- Delay comparable to Adaptive Bubble Router
- Area is buffer bound: comparable/better than traditional routers

Operation

- Arbitration
 - Independent of the # of output ports
 - Local

- Simple FIFO buffer and no HOL blocking

- Router complexity grows linearly in # ports

- Low complexity adaptive routing

Flow Control

- Virtual cut through with neighbors

- Bubble flow control for injection limitation
 - Deadlock freedom relies on bubble flow control

- Occupation based flow control in a ring
 - Levels injection probability across input ports

- Misrouting
 - Multiple ring traversals marks packet for misrouting
 - Take first available port
Deadlock, Liveloop & Starvation

- Bubble flow control ensures progress and deadlock freedom
- Liveloop with very low probability
 - Misrouting is randomized
 - Probability of bubble following cyclic paths is very low
- Starvation is mitigated with adaptive injection rates
 - Ring buffer allocation is unfair between injection ports and router ports
 - Dynamically throttle injection (required bubble count) at router ports

Analysis of Power Behavior

- More activity in the router increases power consumption
 - Superior latency reduces execution time → reduces energy-delay product
- Number of turns are low
 - Multiple flow control protocols smooth out the flows

Performance

Summary

- No virtual channels
- Topology agnostic
- Component complexity independent of node degree
 - However, need to better understand effect of message size, e.g., cache lines