ECE 4043 Spring 2020

Homework for 7 for Experiment No. 7

Due Week of March 2

1. Shown below is a single stage common source amplifier biased by a current mirror current source. Bias the circuit so that the dc drain current is 1.86 mA, viz pick R_T so that the drain current in each transistor has this value. The small-signal input impedance is specified to be $50 \text{ k}\Omega$ and the small signal output impedance is $5.1 \text{ k}\Omega$ (Assume $\lambda = 0$ for this specifications). The load resistor is $10 \text{ k}\Omega$. The dc power supply voltages are $V^+ = +15 \text{ V}$ and $V^- = -15 \text{ V}$. The parameters of the each transistor are: $K = 1 \text{ mA}/\text{V}^2$, $V_{TO} = 1 \text{ V}$, $\lambda = 0.001 \text{ V}^{-1}$, $C_{GDO} = 2.5 \text{ nF/m}$, and $C_{GSO} = 2.5 \text{ nF/m}$. Pick $C_1 = C_2 = 22 \mu\text{F}$, and $C_3 = 330 \mu\text{F}$.

Verify the design with a SPICE analysis using National Instruments SPICE Multisim .

For the SPICE analysis use a DC analysis to determine the bias. Use an AC analysis to plot the gain versus the frequency. Choose the lower frequency as 1 Hz and the upper frequency 10 GHz. Mark the midband gain and the -3 dB frequencies. The SPICE parameters are KP (2K), VTO (V_{TO}), LAMBDA (λ), CGDO (C_{GDO}), and CGSO (C_{GSO}). If the version of SPICE used requires the width (W) and length (L) of the channel use 10 μ m for each. Perform a transient analysis to determine the upper and lower clipping levels. (Remember the SPICE parameter KP = 2K.)

