EE3050 Fall 2000

Some Practice Problems

1. Solve for V_{o} / V_{i} by setting $I_{1}+I_{f}=0$. Hint, use the inspection method for Z_{F}. Sketch and label the Bode magnitude and phase plots.

2. Solve for V_{o} / V_{i}. Sketch and label the Bode magnitude and phase plots.

3. (a) It is given that $V_{B E}=0.65 \mathrm{~V}, V_{A}=\infty$, and $\beta=49$. Solve for I_{O}. (b) If $V_{A}=50$ V , solve for $r_{\text {out }}$ using the value of I_{O} found in part (a).

4. (a) For M1, it is given that $K=0.001 \mathrm{~A} / \mathrm{V}^{2}$ and $V_{T O}=-1.25 \mathrm{~V}$. Solve for the dc drain current. (b) For M2, it is given that $K=0.001 \mathrm{~A} / \mathrm{V}^{2}, V_{T O}=+1.25 \mathrm{~V}$, and $\chi=0.35$. Calculate $V_{G S 1}, g_{m 1}, r_{s 1}$, and $r_{i s 1}$. (c) If $r_{01}=r_{02}$, calculate v_{o} / v_{i} and $r_{\text {out }}$. (d) Repeat part (c) if the body of M1 is connected to its source.

5. For the MOSFET, it is given that $K=0.001 \mathrm{~A} / \mathrm{V}^{2}$ and $V_{T O}=1.5 \mathrm{~V}$. Solve for I_{D}.

6. It is given that $I_{D}=2 \mathrm{~mA}, K=0.00075, V_{T O}=2 \mathrm{~V}, V_{D S}=10 \mathrm{~V}, \lambda=0.02, \chi=0.4$, and $R_{D}=10 \mathrm{k} \Omega$. The r_{0} in the figure is shown as an external resistor here. Solve for $v_{o} / v_{i}, r_{\text {out }}$, and the input resistance seen by v_{i}.

7. If $I_{S}=5 \times 10^{-15} \mathrm{~A}, \beta=\infty$, and $V^{+}=24 \mathrm{~V}$, solve for R_{1} and R_{2} such that $I_{1}=2 \mathrm{~mA}$ and $I_{2}=0.1 \mathrm{~mA}$.

8. Solve for V_{o} / V_{i}. Sketch and label the Bode magnitude and phase plots.

9. Solve for V_{o} / V_{i}. Sketch and label the Bode magnitude and phase plots.

10. For each MOSFET, it is given that $g_{m}=1 / 200, r_{0}=30 \mathrm{k} \Omega$, and $\chi=0.3$. The element values are $R_{G 1}=100 \mathrm{k} \Omega, R_{D 1}=10 \mathrm{k} \Omega, R_{S 1}=100 \Omega$, and $R_{G 2}=5 \mathrm{k} \Omega$. Solve for v_{o} / v_{i} and $r_{\text {out }}$.

