EE3050 Fall 2000 Some Practice Problems

1. Solve for V_o/V_i by setting $I_1 + I_f = 0$. Hint, use the inspection method for Z_F . Sketch and label the Bode magnitude and phase plots.

2. Solve for V_o/V_i . Sketch and label the Bode magnitude and phase plots.

3. (a) It is given that $V_{BE} = 0.65$ V, $V_A = \infty$, and $\beta = 49$. Solve for I_O . (b) If $V_A = 50$ V, solve for r_{out} using the value of I_O found in part (a).

4. (a) For M1, it is given that $K = 0.001 \text{ A/V}^2$ and $V_{TO} = -1.25 \text{ V}$. Solve for the dc drain current. (b) For M2, it is given that $K = 0.001 \text{ A/V}^2$, $V_{TO} = +1.25 \text{ V}$, and $\chi = 0.35$. Calculate V_{GS1} , g_{m1} , r_{s1} , and r_{is1} . (c) If $r_{01} = r_{02}$, calculate v_o/v_i and r_{out} . (d) Repeat part (c) if the body of M1 is connected to its source.

5. For the MOSFET, it is given that $K = 0.001 \text{ A/V}^2$ and $V_{TO} = 1.5 \text{ V}$. Solve for I_D .

6. It is given that $I_D = 2$ mA, K = 0.00075, $V_{TO} = 2$ V, $V_{DS} = 10$ V, $\lambda = 0.02$, $\chi = 0.4$, and $R_D = 10$ k Ω . The r_0 in the figure is shown as an external resistor here. Solve for v_o/v_i , r_{out} , and the input resistance seen by v_i .

7. If $I_S = 5 \times 10^{-15}$ A, $\beta = \infty$, and $V^+ = 24$ V, solve for R_1 and R_2 such that $I_1 = 2$ mA and $I_2 = 0.1$ mA.

8. Solve for V_o/V_i . Sketch and label the Bode magnitude and phase plots.

9. Solve for V_o/V_i . Sketch and label the Bode magnitude and phase plots.

10. For each MOSFET, it is given that $g_m = 1/200$, $r_0 = 30 \text{ k}\Omega$, and $\chi = 0.3$. The element values are $R_{G1} = 100 \text{ k}\Omega$, $R_{D1} = 10 \text{ k}\Omega$, $R_{S1} = 100 \Omega$, and $R_{G2} = 5 \text{ k}\Omega$. Solve for v_o/v_i and r_{out} .

