CE - CC Amplifier Example

For the circuits in the figure, it is given that $V^{+}=10 \mathrm{~V}, V^{-}=-10 \mathrm{~V}, R_{s}=5 \mathrm{k} \Omega, R_{1}=100 \mathrm{k} \Omega$, $R_{2}=120 \mathrm{k} \Omega, R_{E 1}=2 \mathrm{k} \Omega, R_{3}=51 \Omega, R_{C}=2.4 \mathrm{k} \Omega, R_{E 2}=2 \mathrm{k} \Omega, R_{L}=1 \mathrm{k} \Omega, V_{B E}=0.65 \mathrm{~V}$, $V_{T}=0.025 \mathrm{~V}, \alpha=0.99, \beta=99, r_{x}=20 \Omega$, and $r_{0}=50 \mathrm{k} \Omega$. The capacitors are ac short circuits and dc open circuits.

DC Solution

The dc solution for Q_{1} is the same as for the CE amplifier and is repeated. To solve for $I_{E 1}$, replace the capacitors with open circuits. Look out the base and form a Thévenin equivalent circuit. We have

$$
\begin{aligned}
V_{B B 1} & =\frac{V^{+} R_{2}+V^{-} R_{1}}{R_{1}+R_{2}}=10 \frac{120 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+120 \mathrm{k} \Omega}-10 \frac{100 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+120 \mathrm{k} \Omega}=\frac{10}{11} \\
R_{B B 1} & =R_{1}\left\|R_{2}=100 \mathrm{k} \Omega\right\| 120 \mathrm{k} \Omega=54.55 \mathrm{k} \Omega \\
V_{E E 1} & =V^{-}=-10 \\
R_{E E 1} & =R_{E}=2 \mathrm{k} \Omega
\end{aligned}
$$

The emitter current in Q_{1} is given by

$$
I_{E 1}=\frac{V_{B B 1}-V_{B E 1}-V_{E E 1}}{R_{B B 1} /(1+\beta)+R_{E E 1}}=\frac{10 / 11-0.65-(-10)}{54.55 \mathrm{k} \Omega /(1+99)+2 \mathrm{k} \Omega}=4.031 \mathrm{~mA}
$$

The ac emitter intrinsic resistance of Q_{1} is

$$
r_{e 1}=\frac{V_{T}}{I_{E 1}}=\frac{25 \mathrm{mV}}{4.031 \mathrm{~mA}}=6.202 \Omega
$$

Look out of the base and emitter of Q_{2} and form Thévenin equivalent circuits. We have

$$
\begin{aligned}
V_{B B 2} & =V^{+}-\alpha I_{E 1} R_{C 1}=10-0.99 \times 4.031 \mathrm{~mA} \times 2.4 \mathrm{k} \Omega=0.4223 \mathrm{~V} \\
R_{B B 2} & =2.4 \mathrm{k} \Omega \\
V_{E E 2} & =V^{-}=-10 \mathrm{~V} \\
R_{E E 2} & =R_{E 2}=2 \mathrm{k} \Omega
\end{aligned}
$$

The emitter current in Q_{2} is given by

$$
I_{E 2}=\frac{V_{B B 2}-V_{B E 2}-V_{E E 2}}{R_{B B 2} /(1+\beta)+R_{E E 2}}=\frac{0.4223-0.65-(-10)}{2.4 \mathrm{k} \Omega /(1+99)+2 \mathrm{k} \Omega}=4.828 \mathrm{~mA}
$$

The ac emitter intrinsic resistance of Q_{2} is

$$
r_{e 2}=\frac{V_{T}}{I_{E 2}}=\frac{25 \mathrm{mV}}{4.828 \mathrm{~mA}}=5.178 \Omega
$$

AC Solution - Method 1

Zero the dc supplies and short the capacitors. Look out the base of Q_{1} and make a Thévenin equivalent circuit. We have

$$
\begin{aligned}
v_{t b 1} & =v_{s} \frac{R_{1} \| R_{2}}{R_{s}+R_{1} \| R_{2}}=v_{s} \frac{100 \mathrm{k} \Omega \| 120 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+100 \mathrm{k} \Omega \| 120 \mathrm{k} \Omega}=\frac{v_{s}}{1.092}=0.9160 v_{s} \\
R_{t b 1} & =R_{s}\left\|R_{1}\right\| R_{2}=5 \mathrm{k} \Omega\|100 \mathrm{k} \Omega\| 120 \mathrm{k} \Omega=4.580 \mathrm{k} \Omega
\end{aligned}
$$

The Thévenin equivalent circuit looking into the $i_{e 1}^{\prime}$ branch is $v_{t b 1}$ in series with $r_{e 1}^{\prime}$, where

$$
r_{e 1}^{\prime}=\frac{R_{t b 1}+r_{x 1}}{1+\beta_{1}}+r_{e 1}=\frac{4.580 \mathrm{k} \Omega+20}{1+99}+6.202=52.20 \Omega
$$

The resistance looking out of the emitter of Q_{1} is

$$
R_{t e 1}=R_{E}\left\|R_{3}=2 \mathrm{k} \Omega\right\| 51=49.73 \Omega
$$

The resistance looking into the collector of Q_{1} is

$$
r_{i c 1}=\frac{r_{01}+r_{e 1}^{\prime} \| R_{t e 1}}{1-\alpha_{1} R_{t e 1} /\left(r_{e 1}^{\prime}+R_{t e 1}\right)}=\frac{50 \mathrm{k} \Omega+52.20 \| 49.73}{1-0.99 \times 49.73 /(49.73+52.20)}=97.76 \mathrm{k} \Omega
$$

The short circuit collector output current from Q_{1} is

$$
\begin{aligned}
i_{c 1(s c)} & =G_{m b 1} v_{t b 1}=\frac{\alpha_{1}}{r_{e 1}^{\prime}+R_{t e 1}} \frac{r_{01}-R_{t e 1} / \beta_{1}}{r_{01}+r_{e 1}^{\prime} \| R_{t e 1}} v_{t b 1} \\
& =\frac{0.99}{52.20+49.73} \frac{50 \mathrm{k} \Omega-49.73 / 99}{50 \mathrm{k} \Omega+52.20 \| 49.73} v_{t b 1}=\frac{v_{t b 1}}{103.0}=\frac{v_{s}}{112.4}
\end{aligned}
$$

Look out of the base of Q_{2} and make a Thévenin equivalent circuit. We have

$$
\begin{aligned}
v_{t b 2} & =-i_{c(\mathrm{sc})} R_{C}\left\|r_{i c 1}=\frac{-v_{s}}{112.4} \times 2.4 \mathrm{k} \Omega\right\| 97.76 \mathrm{k} \Omega=-20.84 v_{s} \\
R_{t b 2} & =R_{C}\left\|r_{i c 1}=2.4 \mathrm{k} \Omega\right\| 97.76 \mathrm{k} \Omega=2.342 \mathrm{k} \Omega
\end{aligned}
$$

Replace Q_{2} with its simplified T model. Looking into the $r_{e 2}^{\prime}$ branch, we see $v_{t b 2}$ in series with $r_{e 2}^{\prime}$ given by

$$
r_{e 2}^{\prime}=\frac{R_{t b 2}+r_{x 2}}{1+\beta_{2}}+r_{e 2}=\frac{2.342 \mathrm{k} \Omega+20}{1+99}+5.178=28.80
$$

The resistance seen looking out of the emitter of Q_{2} is

$$
R_{t e 2}=R_{E 2} \| R_{L}=666.7 \Omega
$$

By voltage division, v_{o} is given by

$$
v_{o}=v_{t b 2} \frac{r_{02} \| R_{t e 2}}{r_{e 2}^{\prime}+r_{02} \| R_{t e 2}}=-20.84 v_{s} \frac{50 \mathrm{k} \Omega \| 666.7}{28.80+50 \mathrm{k} \Omega \| 666.7}=-19.97 v_{s}
$$

Thus the voltage gain is

$$
\frac{v_{o}}{v_{s}}=-19.97
$$

The output resistance is

$$
r_{\text {out }}=R_{E 2}\left\|r_{02}\right\| r_{e 2}^{\prime}=2 \mathrm{k} \Omega\|50 \mathrm{k} \Omega\| 28.80=28.38 \Omega
$$

To solve for the input resistance, we need $r_{i b 1}$. To calculate this, we need $R_{t c 1}$, which requires us to know $r_{i b 2}$. For the latter, we have

$$
\begin{aligned}
r_{i b 2} & =r_{x 2}+\left(1+\beta_{2}\right) r_{e 2}+R_{t e 2} \frac{\left(1+\beta_{2}\right) r_{02}+R_{t c 2}}{r_{02}+R_{t e 2}+R_{t c 2}} \\
& =20+(1+99) 5.178+666.7 \frac{(1+99) 50 \mathrm{k} \Omega}{50 \mathrm{k} \Omega+666.7} \\
& =66.33 \mathrm{k} \Omega
\end{aligned}
$$

Thus the resistance seen looking out of the collector of Q_{1} is

$$
R_{t c 1}=R_{C}\left\|r_{i b 2}=2.4 \mathrm{k} \Omega\right\| 66.33 \mathrm{k} \Omega=2.316 \mathrm{k} \Omega
$$

The resistance looking into the base of Q_{1} is

$$
\begin{aligned}
r_{i b 1} & =r_{x 1}+\left(1+\beta_{1}\right) r_{e 1}+R_{t e 1} \frac{\left(1+\beta_{1}\right) r_{01}+R_{t c 1}}{r_{01}+R_{t e 1}+R_{t c 1}} \\
& =5.391 \mathrm{k} \Omega
\end{aligned}
$$

The input resistance is

$$
r_{i n}=R_{1}\left\|R_{2}\right\| r_{i b 1}=100 \mathrm{k} \Omega\|120 \mathrm{k} \Omega\| 5.613 \mathrm{k} \Omega=5.089 \mathrm{k} \Omega
$$

If Q_{2} and $R_{E 2}$ are omitted from the circuit and the left node of C_{2} is connected to the collector of Q_{1}, we have a common-emitter amplifier. In this case, the output voltage is

$$
v_{o}=-i_{c 1(s c)} R_{C}\left\|r_{i c 1}\right\| R_{L}=\frac{-v_{s}}{112.4} \times 2.4 \mathrm{k} \Omega\|97.76 \mathrm{k} \Omega\| 1 \mathrm{k} \Omega=-6.235 v_{o}
$$

Thus the voltage gain drops to

$$
\frac{v_{o}}{v_{s}}=-6.235
$$

This is lower than with the CC stage by a factor of 3.25 or by 10.2 dB . This illustrates how a stage that has a gain less than unity can increase the gain of a circuit when it is used to drive the load resistor.
AC Solution - Method 2
For this solution, we use the r_{0} approximations for Q_{1}. That is, we neglect the current through r_{01} in calculating $i_{c 1(\mathrm{sc})}$ but not in calculating $r_{i c 1}$. The short circuit collector output current of Q_{1} is

$$
i_{c 1(s c)}=G_{m 1} v_{t b 1}=\frac{\alpha}{r_{e 1}^{\prime}+R_{t e 1}} v_{t b 1}=\frac{0.99 v_{t b 1}}{52.20+49.73}=\frac{v_{t b 1}}{103.0}=\frac{v_{s 1}}{111.3}
$$

Look out of the base of Q_{2} and make a Thévenin equivalent circuit. We have

$$
\begin{aligned}
v_{t b 2} & =-i_{c 1(s c)} R_{C}\left\|r_{i c 1}=\frac{-v_{s}}{111.3} \times 2.4 \mathrm{k} \Omega\right\| 97.76 \mathrm{k} \Omega=-21.05 v_{s} \\
R_{t b 2} & =R_{C}\left\|r_{i c 1}=2.4 \mathrm{k} \Omega\right\| 97.76 \mathrm{k} \Omega=2.342 \mathrm{k} \Omega
\end{aligned}
$$

Replace Q_{2} with its simplified T model. Looking into the $r_{e 2}^{\prime}$ branch, we see $v_{t b 2}$ in series with $r_{e 2}^{\prime}$ given by

$$
r_{e 2}^{\prime}=\frac{R_{t b 2}+r_{x 2}}{1+\beta_{2}}+r_{e 2}=\frac{2.342 \mathrm{k} \Omega+20}{1+99}+5.178=28.80
$$

By voltage division, v_{o} is given by

$$
v_{o}=v_{t b 2} \frac{r_{02} \| R_{t e 2}}{r_{e 2}^{\prime}+r_{02} \| R_{t e 2}}=-21.05 v_{s} \frac{50 \mathrm{k} \Omega \| 666.7}{28.80+50 \mathrm{k} \Omega \| 666.7}=-20.17 v_{s}
$$

Thus the voltage gain is

$$
\frac{v_{o}}{v_{s}}=-20.17
$$

This differs from the answer by Method 1 by 0.99%.
The solutions for $r_{\text {out }}$ and $r_{\text {in }}$ are the same as for Method 1.

