EXAMINATION NO. 2 - SOLUTIONS

(Average Score $=80 / 100$)

Problem 1-(25 points)

A frequency synthesizer is shown below and has the following parameters:

$$
\begin{aligned}
& F(s)=\frac{1+0.01 s}{s} \quad K_{o}=2 \times 10^{6}(\mathrm{rads} / \mathrm{V}) \quad K_{d}=0.8(\mathrm{~V} / \mathrm{rad} .) \\
& \beta=2 \pi \quad N=150 \quad f_{r e f}=120 \mathrm{kHz}
\end{aligned}
$$

(a.) Where would you introduce the modulating voltage, v_{p}, if you wish to phase modulate the output of the synthesizer $(A, B, C, D, E$, or $F)$?
(b.) What is the peak amplitude of a 1 kHz ac signal needed to produce an output peak phase deviation of 0.5 radians?

Solution

(a.) The modulating voltage should be introduced at B.
(b.) The transfer function between the input modulating voltage and the output phase is given as,

$$
\begin{aligned}
& \theta_{o}(s)=\frac{K_{o}}{s} F(s)\left[V_{p}(s)-K_{d} \frac{\theta_{o}}{N}\right] \rightarrow \quad \theta_{o}(s)\left[1+\frac{K_{o} K_{d} F(s)}{s N}\right]=\frac{K_{o} F(s)}{s} V_{p}(s) \\
& \frac{\theta_{o}(s)}{V_{p}(s)}=\frac{K_{o} F(s)}{s+\frac{K_{v} F(s)}{N}}=\frac{K_{o}(1+0.01 s)}{s^{2}+\frac{0.01 K_{v}}{N} s+\frac{K_{v}}{N}}
\end{aligned}
$$

$$
\therefore \omega_{n}=\sqrt{\frac{K_{v}}{N}}=\sqrt{\frac{1.6 \times 10^{6}}{150}}=103 \mathrm{rads} / \mathrm{sec} .(16.4 \mathrm{~Hz}) \text { and } \zeta=\frac{K_{v}}{100 N} \sqrt{\frac{N}{K_{v}}} \approx 1
$$

Since, $f_{n} \ll 1 \mathrm{kHz}$, the transfer function can be approximated as,

$$
\left|\frac{\theta_{o}(j \omega)}{V_{p}(j \omega)}\right| \approx \frac{0.01 K_{o}}{\omega}=\frac{20,000}{2000 \pi}=3.183
$$

\therefore A phase deviation of 0.5 radians requires a modulating voltage of $0.5 / 3.183$ or 0.157 V
Peak deviation of the modulating voltage $=0.157 \mathrm{~V}$

Problem 2-(25 points)

(a.) Find the transfer function of the filter shown assuming an ideal op amp.
(b.) Sketch a Bode plot for the magnitude of this filter if $R_{1}=R_{2}$ $=10 \mathrm{k} \Omega$ and $C_{2}=0.159 \mu \mathrm{~F}$.
(c.) For the values in part (b.), find the single sideband spur at a reference frequency of 25 kHz if the op amp has an input offset current of $I_{o s}=50 \mathrm{nA}$ and an input offset voltage of $V_{i o}=100 \mu \mathrm{~V}$. Assume that the spurious deviation due to the offset voltage at 25
 kHz can be expressed as $\theta_{d}=100 V_{p m}$, where $V_{p m}$ is the phase modulation caused by the offset voltage of the filter.

Solution

(a.) The transfer function assuming an ideal op amp can be found as,

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{Z_{1}+Z_{2}}{Z_{1}}=\frac{R_{1}+R_{2}+\left(1 / s C_{2}\right)}{R_{1}}=\frac{s\left(R_{1}+R_{2}\right) C_{2}+1}{s C_{2} R_{1}}
$$

(b.) If $R_{1}=R_{2}=10 \mathrm{k} \Omega$ and $C_{2}=0.159 \mu \mathrm{~F}$, then the filter transfer function becomes,

$$
F(s)=\frac{s\left(R_{1}+R_{2}\right) C_{2}+1}{s C_{2} R_{1}}=\frac{s 0.00318+1}{0.00159 s}=\frac{\frac{s}{314.5}+1}{\frac{s}{628.9}}
$$

The sketch for the magnitude of this transfer function is below.

(c.) First, find the offset voltage at the input of the filter, $V_{O S}$, from the figure shown.

$$
\begin{gathered}
V_{O S}=V_{i o}+I_{O S} R_{1}=100 \mu \mathrm{~V}+50 \mathrm{nA} \cdot 10 \mathrm{k} \Omega \\
V_{O S}=0.1 \mathrm{mV}+0.5 \mathrm{mV}=0.6 \mathrm{mV}=600 \mu \mathrm{~V} \\
\therefore \theta_{d}=100 V_{p m}=100\left(2 \cdot V_{O S}\right)=0.12 \\
S S B=20 \log _{10}\left(\theta_{d} / 2\right)=-24.44 \mathrm{dBc}
\end{gathered}
$$

Problem 3-(25 points)

Find the oscillation frequency, $\omega_{o s c}$ and the value of $g_{m} r_{d s}$ necessary to oscillate in terms of L, C_{1}, and C_{2} for the $L C$ oscillator shown.

Solution

The small-signal model for solving this problem is shown below.

Note that the current from the independent source has two paths. One is through the parallel combination of $r_{d s}$ and C_{2}, and the other is through C_{1} and L.

The open-loop gain, $V_{g s}{ }^{\prime} / V_{g s}$ can be found as,

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\frac{V_{g s}(s)}{V_{g s}(s)} & =-\left(\frac{1}{s C_{1}}\right)\left[\frac{g_{m}\left[r_{d s} \|\left(1 / s C_{2}\right)\right]}{s L+\left(1 / s C_{1}\right)+r_{d s} \|\left(1 / s C_{2}\right)}\right]=-\left(\frac{1}{s C_{1}}\right)\left[\frac{g_{m}\left(\frac{r_{d s}}{s C_{2} r_{d s}+1}\right)}{s^{2} L C_{1}+1}\right. \\
s C_{1}
\end{array}+\frac{r_{d s}}{s C_{2} r_{d s}+1}
\end{array}\right] .
$$

At the oscillation frequency, we can write that,

$$
\begin{aligned}
& -g_{m} r_{d s}=1-\omega_{o s c}^{2} L C_{1}=1-\frac{C_{1}+C_{2}}{C_{2}}=1-1-\frac{C_{1}}{C_{2}}=-\frac{C_{1}}{C_{2}} \\
\therefore & g_{m} r_{d s}=\frac{C_{1}}{C_{2}}
\end{aligned}
$$

Problem 4-(25 points)

A model for single sideband noise using the time-invarient theory is given by

$$
\mathcal{L}\left\{f_{m}\right\}=10 \log \left\{\frac{2 F k T}{P_{s}}\left[1+\frac{1}{4 Q^{2}}\left(\frac{f_{o}}{f_{m}}\right)^{2}\right]\left(1+\frac{f_{c}}{f_{m}}\right)\right\}
$$

(a.) Describe each term in this equation and give the units of the term.
(b.) If $F=2 \mathrm{~dB}$, what is the noise floor if the carrier power is 10 dBm at room temperature $\left(27^{\circ} \mathrm{C}\right)$ and $k=1.381 \times 10^{-23}$ Joules $/ \mathrm{K}^{\circ}$?
(c.) Make an approximate sketch of $\mathscr{L}\left\{f_{m}\right\}$ in dBc as a function of $\log 10\left(f_{m}\right)$ and identify the various regions.

Solution

(a.)
$F=$ the noise figure or factor depending upon terminology. It is unitless.
$k=$ Boltsmann's constant and is equal to 1.381×10^{-23} Joules $/ \mathrm{K}^{\circ}$.
$T=$ temperature in ${ }^{\circ} \mathrm{K}$
$P_{S}=$ power in the carrier in watts.
$Q=$ open-loop Q of the oscillator. It is unitless.
$f_{o}=$ carrier frequency in Hz .
$f_{m}=$ deviation frequency from the carrier in Hz .
$f_{c}=$ corner frequency in Hz associate where the $1 / f$ noise is no longer significant.
(b.) The noise floor is $10 \log \left(\frac{2 F k T}{P_{s}}\right)$. We need to perform some "preprocessing" first before using the equation.

$$
\begin{aligned}
& F=2 \mathrm{~dB} \rightarrow F=10^{2 / 10}=1.585 \text { and } P_{S}=10 \mathrm{dBm} \rightarrow \quad P_{S}=10^{10 / 10}=10 \mathrm{~mW} \\
& \mathcal{L}\left\{f_{m}\right\}=10 \log \left(\frac{2 \cdot 1.585 \cdot 1.381 \times 10^{-23} \cdot 300}{10 \times 10^{-3}}\right)=-178.8 \mathrm{dBc}
\end{aligned}
$$

(c.)
$\angle[\Delta \omega] \mathrm{dBc} / \mathrm{Hz}$

