Homework Assignment No. 1 - Solution

Problem 1-(10 points)

Solve for and evaluate the series and parallel resonance frequencies of the crystal whose model is shown. It is suggested to make appropriate assumptions as the exact
 frequencies are difficult to achieve.

Solution

Solving the exact frequencies for this problem is very challenging. It is better to assume that series resonance (minimum impedance) will occur approximately when the impedance of C_{s} cancels the impedance of L_{s}. This gives series resonance as

$$
\omega_{s}^{2}=\frac{1}{L_{s} C_{s}} \quad \rightarrow \quad f_{s}=\frac{1}{2 \pi \sqrt{L_{s} \mathrm{C}_{s}}} \approx 10.026 \mathrm{MHz}
$$

The parallel resonance can be approximated by assuming that it will occur close to the frequency when the impedance of the series branch equals the negative impedance of the parallel branch. This condition is given as,

$$
\begin{aligned}
& \frac{1}{\omega C_{p}}=\omega L_{s}+\frac{1}{\omega C_{s}} \rightarrow \omega_{p}^{2}=\frac{1}{L_{s}}\left(\frac{1}{C_{s}}+\frac{1}{C_{p}}\right) \rightarrow f_{p}=\frac{1}{2 \pi} \sqrt{\frac{1}{L_{s}}\left(\frac{1}{\mathrm{C}_{s}}+\frac{1}{\mathrm{C}_{p}}\right)} \\
& f_{p} \approx \underline{\underline{10.051 \mathrm{MHz}}}
\end{aligned}
$$

SPICE Simulation:
Homework H01P1 - Crystal Impedance
IIN 01 AC 1.0
CP 106 PF
CS 1230 FF
LS 23 8.4MH
RS 30 5.30HM
RBIG 10 1GOHM
.AC LIN 101 9.5MEG 10.5MEG
.PRINT AC V(1)
. PROBE
.END

Problem 2-(10 points)

A simple, doubly balanced passive CMOS mixer is shown along with the local oscillator waveform, $v_{O L}(t)$. Assume that $v_{R F}(t)=A_{R F} \cos \left(\omega_{R F} t\right)$ and $v_{L O}(t)$ is the waveform shown below. (a.) Find the mixer gain, G_{c}, in dB if the switches are ideal. (b.) Find the mixer gain in dB if the switches have an ON resistance of $R_{s} / 2$.

Solution

Assume the switches have an ON resistance of $R_{O N}$ and work both parts (a) and (b) simultaneously. Also, The equation for $v_{I F}(t)$ can be written as,

$$
\begin{aligned}
v_{I F}(t) & =\left(\frac{R_{s}}{2 R_{S}+2 R_{O N}}\right) v_{R F}(t) \cdot \operatorname{sgn}\left[v_{L O}(t)\right] \\
V_{I F}(j \omega) & =\left(\frac{R_{S}}{2 R_{S}+2 R_{O N}}\right) A_{R F} \cos \left(\omega_{R F} t\right) \cdot\left[\frac{4}{\pi} \cos \left(\omega_{L O} t\right)+\frac{4}{3 \pi} \cos \left(3 \omega_{L O} t\right)+\cdots\right] \\
\therefore \quad V_{I F}(j \omega) & \approx\left(\frac{R_{S}}{2 R_{S}+2 R_{O N}}\right) \frac{4 A_{R F}}{\pi} \cos \left(\omega_{R F} t\right) \cdot \cos \left(\omega_{L O} t\right) \\
& \left.=\left(\frac{R_{S}}{2 R_{S}+2 R_{O N}}\right) \frac{2 A_{R F}}{\pi} \cos \left[\omega_{R F}-\omega_{L O}\right) t\right]
\end{aligned}
$$

The conversion gain in general is written as

$$
G_{c}=\frac{\left|V_{I F}\right|}{\left|V_{R F}\right|}=\left(\frac{R_{S}}{2 R_{s}+2 R_{O N}}\right) \frac{2}{\pi}
$$

(a.) For $R_{O N}=0, G_{c}=\frac{1}{\pi} \quad \rightarrow \quad G_{c}=\frac{1}{\pi}=-9.943 \mathrm{~dB}$
(b.) For $R_{O N}=0.5 R_{\mathrm{s}}, G_{c}=\frac{2}{3 \pi} \quad \rightarrow \quad G_{c}=\frac{2}{3 \pi}=-13.465 \mathrm{~dB}$

Problem 3-(10 points)

Use SPICE to demonstrate that the following circuit is a frequency doubler. If $v_{i n}(t)$ is a sinusoid of 10 kHz and 1.5 V peak, show $v_{\text {in }}(t)$ and $v_{\text {out }}(t)$ as a function of time. The model parameters of the MOSFETS are $K_{N}{ }^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \quad v_{i n}(\mathrm{t})$ $V_{T N}=0.7 \mathrm{~V}$, and $\lambda_{N}=0.04 \mathrm{~V}-1$.

Solution

The results of this problem are below.

SPICE Input File:
Homework H01P3 - Frequency Doubler
VIN 10 DC 0.0 SIN(0 1.5 10KHz)
EVIN 02101.0
VDD 40 DC 2.0
VSS 50 DC -2.0
M1 $4113 \begin{array}{llll}3 & \text { NMOS1 } W=10 U \\ L=1 U\end{array}$
M2 4233 NMOS1 W=10U L=1U
RTAIL 35 100K
.MODEL NMOS1 NMOS $\mathrm{VTO}=0.7 \mathrm{KP}=110 \mathrm{U}$ LAMBDA $=0.04$
. OP
.TRAN (10U 1000U)
.PRINT TRAN $V(1) \mathrm{V}(2) \mathrm{V}(3)$
. PROBE
.END

Output Plots:

Problem 4-(10 points)

An 10 nH inductor has a Q of 5 and is used to create a tank circuit with a 10 pF capacitor. Assume the capacitor is ideal. (a.) What is the resonant frequency of this circuit? (b.) What value of parallel negative resistance should be used to create an oscillator? (c.) If C is changed to 20 pF , what is the new value of the parallel negative resistance?

Solution

$$
\begin{aligned}
& C=10 \mathrm{pF} \text { : } \\
& L_{p}=\left(1+\frac{1}{Q^{2}}\right)=\frac{26}{25} \cdot 10 \mathrm{nH}=10.4 \mathrm{nH} \\
& \omega_{o}=\frac{1}{\sqrt{L_{p} C}}=\frac{1}{\sqrt{10.4 \mathrm{nH} \cdot 10 \mathrm{pF}}}=3.1623 \times 10^{9} \mathrm{radians} / \mathrm{sec} . \\
& Q=\frac{\omega_{o} L_{S}}{R_{S}} \rightarrow R_{S}=\frac{\omega_{o} L_{S}}{Q}=6.201 \Omega \\
& \therefore \quad R_{p}=\left(1+Q^{2}\right) R_{S}=26 \cdot 6.201 \Omega=\underline{\underline{161.245 \Omega}} \\
& C=20 \mathrm{pF}: \\
& \omega_{o}=\frac{1}{\sqrt{L_{p} C}}=\frac{1}{\sqrt{10.4 \mathrm{nH} \cdot 20 \mathrm{pF}}}=2.1926 \times 10^{9} \text { radians } / \mathrm{sec} . \\
& Q=\frac{\omega_{o} L_{S}}{R_{S}} \quad \rightarrow \quad R_{S}=\frac{\omega_{o} L_{S}}{Q}=4.3853 \Omega \\
& \therefore \quad R_{p}=\left(1+Q^{2}\right) R_{S}=26 \cdot 4.3853 \Omega=\underline{\underline{114.017 \Omega}}
\end{aligned}
$$

Problem 5-(10 points)

Give a block diagram of simple brute-force coherent direct synthesizer that will generate $1.75 f$ from f. The input frequency f is to vary from 12 MHz to 15 MHz . Since f is variable, you cannot use frequency multipliers (integer frequency dividers and mixers are allowed) in your design. A simple design will receive more credit. What other frequencies will be present at the output?

Solution

Approach: $f_{\text {out }}=f \mathrm{x} f-f / 4=1.75 f$

The frequency $2.25 f$ will also be present at the output.

