Homework Assignment No. 3

This homework assignment is due in class on Wednesday, June 4, 2003.

Problem 1-(10 points)

Assume an LPLL has $F(s)=1$ and the PLL parameters are $K_{d}=0.8 \mathrm{~V} /$ radians, $K_{o}=100$ $\mathrm{MHz} / \mathrm{V}$, and the oscillation frequency, $f_{\text {osc }}=500 \mathrm{MHz}$. Sketch the control voltage at the output of the phase detector if the input frequency jumps from 500 MHz to 650 MHz .

Problem 2-(10 points)

A Type I PLL incorporates a VCO with $K_{o}=100 \mathrm{MHz} / \mathrm{V}$, a phase detector with $K_{d}=$
$1 \mathrm{~V} / \mathrm{rad}$, and a first-order, lowpass filter with $\omega_{L P F}=2 \pi \times 10^{6}$ radians/s shown below. A divider of 100 has been placed in the feedback path to implement a frequency synthesizer.
(a.) Find the value of the natural damping frequency, ω_{n}, and the damping factor, ζ, for the transfer function $\phi_{\text {out }}(s) / \phi_{\text {in }}(s)$, for this PLL. (b.) If a step input of $\Delta \phi_{\text {in }}$ is applied at t $=0$, what is the steady-state phase error at the output of the phase detector, ϕ_{e} ? The steadystate error is evaluated by multiplying the desired phase by s and letting $s \rightarrow 0$.

Problem 3-(10 points)

Modify the active filter shown of Problem 4 of Homework 2 to design the lag-lead loop filter shown below. The capacitors can be no larger than 10 pF . Give the values of R_{1}, R_{2}, C_{1} and C_{2}.

Problem 4-(10 points)

Using the filter of Problem 3, find the value of ω_{n} and ζ of the PLL if $K_{d}=1 \mathrm{~V} /$ radians, K_{o} $=2$ Mradians $/ V \cdot$ sec. What is the steady state phase error in degrees if a frequency ramp of 10^{8} radians $/ \mathrm{sec} .^{2}$ is applied to the PLL?

Problem 5-(10 points)

Solve for the crossover frequency of the PLL of Problems 3 and 4 and find the phase margin. Use SPICE to find the open-loop frequency response of the PLL and from your plot determine the crossover frequency and phase margin and compare with your calculated values.

