Homework Assignment No. 5-Solutions

Problem 1-(10 points)

Sketch the time variation and frequency spectrum of an RF signal with 75 percent amplitude modulation. Show several cycles of the modulated wave. Make the modulation frequency $1 / 10$ of the carrier frequency. The unmodulated carrier has a peak amplitude of 1.0 V .

Solution

The expression for the general form of amplitude modulation is,
$v(t)=1.0\left[1+m_{a} \cos \left(\frac{\omega_{c} t}{10}\right)\right] \cos \left(\omega_{c} t\right)=\left[1+0.75 \cos \left(0.1 \omega_{c} t\right)\right] \cos \omega_{c} t$

Problem 2-(10 points)

The level of an SSB AM spur is observed to be -75 dBc . If the carrier has a peak amplitude of 1 V , what is the variation of the carrier in $\pm \mathrm{V}$ needed to produce the observed spur?

Solution

The observed spectrum is

$\therefore \quad m_{a}=2 \cdot 10^{-75 / 20}=335.6 \times 10^{-6}$
If $V_{\text {peak }}=1 \mathrm{~V}$, then $m_{a}=\frac{\Delta v}{\mathrm{~V}_{p}} \quad \rightarrow \quad \Delta v=\underline{\underline{3.35 .6 \mu \mathrm{~V}}}$

Problem 3-(10 points)

A pair of 5 kHz PM/FM spurs appear on a 10 MHz carrier. The level of each spur is -50 dBc . (a.) What phase deviation in \pm degrees is need to produce the spurs? (b.) What frequency deviation in $\pm \mathrm{Hz}$ is needed to produce the spurs?

Solution

(a.) The single sideband spurs can be expressed as,

$$
S S B=20 \log _{10}\left(\frac{\theta_{d}}{2}\right)=20 \log _{10}\left(\frac{\beta}{2}\right)
$$

Solving for θ_{d} gives,

$$
\theta_{d}=2 \cdot 10^{S S B / 20}=2 \cdot 10^{-50 / 20}=2 \cdot 0.003162=6.325 \text { milliradians }= \pm 0.3624^{\circ}
$$

(b.) We know that $\theta_{d}=\beta=\frac{\Delta f_{c}}{f_{m}}$ which gives

$$
\Delta f_{c}=\beta f_{m}=\theta_{d} f_{m}=6.325 \times 10^{-3} .5 \times 10^{+3}= \pm 31.6 \mathrm{~Hz}
$$

Problem 4-(10 points)

The carrier and spurs of Problem 3 above are passed through a frequency tripler. Make a sketch of the output spectrum of the tripler. Label and show all important features of the spectrum.

Solution

After passing through a tripler, the SSB spur is increased by $20 \log _{10}(3)$ or +9.54 dB .
The resulting spectrum is shown as,

Problem 5-(10 points)

A 100 MHz carrier having a -40 dBc upper sideband at 100.002 MHz and $\mathrm{a}-47 \mathrm{dBc}$ lower sideband at 99.998 MHz is passed through an ideal limiter followed by a bandpass filter centered at 100 MHz with a 10 kHz total bandwidth. Make a sketch of the spectrum at the output of the filter. Label all frequencies and amplitudes.

Solution

Asymmetrical sidebands imply the presence of both AM and FM as show below.

$$
-40 \mathrm{dBc}=10^{-40 / 20}=0.01 \quad \text { and } \quad-47 \mathrm{dBc}=10^{-47 / 20}=4.467 \times 10^{-3}
$$

Solve for S_{A} and S_{F} as follows,

$$
\begin{aligned}
& S_{A}+S_{F}=\text { Upper sideband }=0.01 \\
& S_{A}-S_{F}=\text { Lower sideband }=4.467 \times 10^{-3} \\
& S_{A}=\frac{\text { Upper sideband }+ \text { Lower sideband }}{2}=7.234 \times 10^{-3} \\
& S_{F}=\frac{\text { Upper sideband }- \text { Lower sideband }}{2}=2.767 \times 10^{-3}
\end{aligned}
$$

The limiter will remove all AM sidebands and the filter removes all products other than the sidebands at $\pm 2 \mathrm{kHz}$. Therefore the output spectrum will appear as,

where $f_{c}=100 \mathrm{MHz}$ and $f_{m}=2 \mathrm{kHz}$.

