Homework Assignment No. 6 - Solutions

Problem 1-(10 points)

An LC oscillator is shown. The value of the inductors, L, are 5 nH and the capacitor, C, is 5 pF . If the Q of each inductor is 5 , find (a.) the frequency of oscillation, (b.) the value of negative resistance that should be available from the cross-coupled, source-coupled pair (M1 and M2) for oscillation and (c.) design the W / L ratios of M1 and M2 to realize this negative resistance.

Solution

(a.) The equivalent circuit seen by the negative resistance circuit is:

The frequency of oscillation is given as $1 / \sqrt{2 L C}$ or $\omega_{o}=2 \pi \times 10^{9}$ radians $/ \mathrm{sec}$.

Therefore the series resistance, R_{s}, is found as

$$
R_{S}=\frac{\omega L}{Q}=\frac{2 \pi \times 10^{9} .5 \times 10^{-9}}{5}=2 \pi \Omega
$$

Converting the series impedance of $2 L$ and $2 R_{S}$ into a parallel impedance gives,

$$
Y=\frac{1}{2 R_{S}+j \omega 2 L}=\frac{0.5}{R_{S}+j \omega L} \cdot \frac{R_{S}-j \omega L}{R_{S}-j \omega L}=\frac{0.5 R_{S}}{R_{S}^{2}+\omega^{2} L^{2}}-\mathrm{j} \frac{0.5 \omega L_{S}}{R_{S}^{2}-\omega^{2} L^{2}}
$$

The reciprocal of the conductance is the parallel resistance, R_{p}, given as

$$
R_{p}=\frac{R_{S}^{2}+\omega^{2} L^{2}}{0.5 R_{S}}=\frac{4 \pi^{2}+4 \pi^{2} .25}{\pi}=4 \pi(26)=326.7 \Omega
$$

$\therefore \underline{\underline{R}}_{\underline{n e g}}=-104 \pi \Omega=-326.7 \Omega$
(b.) The negative resistance seen by the RLC circuit is found as follows.

$$
\begin{aligned}
& i_{i n}=g_{m 1} v_{g s 1}-g_{m 2} v_{g s 2}=g_{m}\left(v_{g s 1}-v_{g s 2}\right)=-g_{m} v_{i n} \\
& \therefore R_{i n}=\frac{-1}{g_{m}}
\end{aligned}
$$

Assuming the 2 mA splits evenly between M1 and M2 for the negative resistance calculation gives,

Thus, $g_{m}=g_{m 1}=g_{m 2}=\frac{1}{104 \pi}=\sqrt{2 \mathrm{~mA} \cdot 110 \times 10^{-6}(\mathrm{~W} / \mathrm{L})}=\frac{\sqrt{W / L}}{2132}$
$\therefore W / L=\left(\frac{2132}{104 \pi}\right)^{2}=42.6 \quad \Rightarrow \quad \underline{\underline{W / L}=42.6}$

Problem 2-(10 points)

An LC oscillator is shown. Find an expression for the frequency of oscillation and the value of $g_{m} R_{L}$ necessary for oscillation. Assume that the output resistance of the FET, $r_{d s}$, can be neglected.

Solution

An open-loop, small-signal model of this oscillator is shown below.

Writing a nodal equation at the output and input gives,
$g_{m} V^{\prime}+G_{L} V_{o}+s C_{2} V_{o}+\frac{V_{o}-V^{\prime}}{s L}=0 \quad$ and $\quad \frac{V_{o}-V^{\prime}}{s L}=s C_{2} V^{\prime} \quad \rightarrow \quad V_{o}=V^{\prime}\left(1+s^{2} L C_{2}\right)$
$\therefore \quad g_{m} V^{\prime}+\left(G_{L}+s C_{1}+\frac{1}{s L}\right)\left(1+s^{2} L C_{2}\right) V^{\prime}-\frac{V^{\prime}}{s L}=0$
Assuming a non-zero value of V^{\prime} gives,
$g_{m}+\left(G_{L}+s C_{1}+\frac{1}{s L}\right)\left(1+s^{2} L C_{2}\right)-\frac{1}{L}=g_{m}+G_{L}+s C_{1}+\frac{1}{s L}+s^{2} L C_{2} G_{L}+s^{3} L C_{1} C_{2}+s C_{2}-\frac{1}{s L}=0$
or $\quad\left(g_{m}+G_{L}-\omega^{2} L G_{L} C_{2}\right)+j \omega\left[C_{1}-\omega^{2} L C_{1}+C_{2}\right]=0$
Therefore, the frequency of oscillation is,

$$
\omega_{o s c}=\sqrt{\frac{C_{1}+C_{2}}{L C_{1} C_{2}}}=\frac{1}{\sqrt{\frac{L C_{1} C_{2}}{C_{1}+C_{2}}}}
$$

The value of $g_{m} R_{L}$ necessary for oscillation is

$$
g_{m}+G_{L}=L G_{L} C_{2} \omega_{o s c}^{2}=G_{L}\left(1+\frac{C_{2}}{C_{1}}\right) \quad \rightarrow \quad g_{m} R_{L}=\frac{C_{2}}{C_{1}}
$$

Problem 3-(10 points)

A Clapp oscillator which is a version of the Colpitt's oscillator is shown. Find an expression for the frequency of oscillation and the value of $g_{m} R_{L}$ necessary for oscillation. Assume that the output resistance of the FET, $r_{d s}$, and $R_{\text {Large }}$ can be neglected (approach infinity).

Solution

The small-signal model for this problem is shown below.
The loop gain will be defined as $V_{g s} / V_{g s}$.

$$
\begin{aligned}
& \text { Therefore, } \\
& V_{g s}= \\
& \frac{-g_{m} V_{g s}{ }^{\prime} R_{L} \|\left(1 / s C_{3}\right)}{R_{L} \|\left(1 / s C_{3}\right)+\frac{1}{s C_{1}}+\frac{1}{s C_{2}}+s L}\left(\frac{1}{s C_{2}}\right) \\
& =\frac{-g_{m} V_{g s}{ }^{\prime} \frac{R_{L}\left(1 / s C_{3}\right)}{R_{L}+\left(1 / s C_{3}\right)} \frac{1}{s C_{2}}}{\frac{R_{L}\left(1 / s C_{3}\right)}{R_{L}+\left(1 / s C_{3}\right)}+\frac{1}{s C_{1}}+\frac{1}{s C_{2}}+s L} \\
& T(s)=\frac{V_{g s}}{V_{g s}}=\frac{\frac{-g_{m} R_{L}}{s R_{L} C_{3}+1} \frac{1}{s C_{2}}}{\frac{R_{L}}{s R_{L} C_{3}+1}+\frac{1}{s C_{1}}+\frac{1}{s C_{2}}+s L}= \\
& \frac{-g_{m} R_{L}}{s C_{2}} \\
& \overline{R_{L}+\left(s R_{L} C_{3}+1\right)\left(\frac{1}{s C_{1}}+\frac{1}{s C_{2}}+s L\right)} \\
& T(s)=\frac{-g_{m} R_{L}}{s C_{2} R_{L}+\left(s R_{L} C_{3}+1\right)\left(s^{2} L C_{2}+\frac{C_{2}}{C_{1}}+1\right)} \\
& T(s)=\frac{-g_{m} R_{L}}{s C_{2} R_{L}+s^{3} R_{L} C_{3} L C_{2}+s R_{L} \frac{C_{2} C_{3}}{C_{1}}+s C_{3} R_{L}+s^{2} L C_{2}+\frac{C_{2}}{C_{1}}+1} \\
& T(j \omega)=\frac{-g_{m} R_{L}}{\left[1+\frac{C_{2}}{C_{1}}-\omega^{2} L C_{2}\right]+j \omega\left[R_{L}\left(C_{2}+C_{3}\right)+R_{L} \frac{C_{2} C_{3}}{C_{1}}-\omega^{2} R_{L} C_{3} L C_{2}\right]}=1+j 0 \\
& \therefore \quad C_{2}+C_{3}+\frac{C_{2} C_{3}}{C_{1}}=\omega_{o s c}{ }^{2} C_{3} L C_{2} \quad \rightarrow \quad \omega_{o s c}=\sqrt{\frac{1}{L}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)} \\
& \text { Also, } g_{m} R_{L}=\omega_{o s c}{ }^{2} L C_{2}-1-\frac{C_{2}}{C_{1}}=C_{2}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)-\frac{C_{2}}{C_{1}}-1=\frac{C_{2}}{C_{3}} \rightarrow \\
& g_{m} R_{L}=\frac{C_{2}}{C_{3}}
\end{aligned}
$$

Problem 4-(50 points maximum)

The objective of this problem is to use passive LC tank and negative feedback circuit to design an LC oscillator that meets the GSM specification. At first, show the condition that the ideal circuit oscillates at $\omega_{o s c}=\frac{1}{\sqrt{\text { LC }}}$ and find quality factor, Q . The transistors should be modeled with the standard small-signal model using g_{m} and $r_{d s}$ or $r_{\text {out }}$ in this part of the problem. Second, use SPICE to obtain a transient simulation. Third, simulate the oscillator that replaces the ideal inductor with the lumped inductor model shown, and use the program referenced below [1] to layout the inductor. Use the model parameters given in [2] for this problem.

Fig.1. Ideal LC VCO

Fig.2. Lumped Inductor Model

GSM specifications:
Frequency range $=935 \sim 960 \mathrm{MHz} \quad \mathrm{v}_{\mathrm{c}}=0.75 \sim 1.75 \mathrm{~V}$
Switching time $=800 \mu \mathrm{sec} \quad V_{D D}=2.5 \mathrm{~V}$
Technology parameter:
Metal sheet resistance $=35 \mathrm{~m} \Omega / \mathrm{sq}$.
Substrate layer resistivity $=0.015 \Omega-\mathrm{cm}$
Metal to substrate capacitance $=5.91 \mathrm{aF} / \mu \mathrm{m}^{2}$
Metal to metal capacitance $=98.0 \mathrm{aF} / \mu \mathrm{m}$
$\mathrm{C}_{\text {sub }}, \mathrm{R}_{\text {sub }}, \mathrm{C}_{\mathrm{p}}$ can be ignored

Problem 4 - Continued

Solution

LC VCO equivalent

$\mathrm{A}_{\mathrm{v} 1}=\mathrm{A}_{\mathrm{v} 2}=\mathrm{G}_{\mathrm{m}} *\left(\mathrm{r}_{\text {out }}\|\mathrm{L}\| \mathrm{C} / 2\right)$
$A_{v 1}(s)=A_{v 2}(s)=G_{m} \frac{1}{\frac{1}{r_{\text {out }}}+\frac{1}{L s}+\frac{C}{2} s}=\operatorname{GmsL} \frac{1}{1+s \frac{L}{r_{\text {out }}}+s^{2} L \frac{C}{2}}$ where G_{m} and $r_{\text {out }}$ are the transconductance and the output resistance of M1 and M2 transistors respectively, $\mathrm{C} / 2$ is the total output capacitance at the outputs $\mathrm{V}_{\text {on }}$ and $\mathrm{V}_{\text {op }}$. For this circuit to oscillate, the gain around the loop must be equal to negative one; therefore, each cross coupled gain stage can be presented as shown below. Hence, the total gain equation around the loop is equal to $H(s)=\frac{A_{v 1}(s)}{1-A_{v 1}(s)}$.
Substituting for $\mathrm{A}_{\mathrm{v} 1}(\mathrm{~s})$,

$$
H(s)=\frac{\frac{G m s L}{1+s \frac{L}{r_{\text {out }}}+s^{2} L \frac{C}{2}}}{1-\frac{G m s L}{1+s \frac{L}{r_{\text {out }}}+s^{2} L \frac{C}{2}}}=\frac{G_{m} s L}{1-s L\left(G_{m}-G_{\text {out }}\right)+s^{2} L \frac{C}{2}}
$$

For this circuit to oscillate at $\omega_{\text {osc }}=\frac{1}{\sqrt{\mathrm{~L} \frac{\mathrm{C}}{2}}}$, it is necessary for the s term in the denominator to be equal to zero; hence, $\quad G_{m}=\frac{1}{r_{\text {out }}}=G_{\text {out }}$
By forcing G_{m} greater than Gout a pair of complex poles are forced in the right side plane. This is the condition to start oscillation. Once the oscillation starts, the $\mathrm{G}_{\text {eff }}$ parameter $\left(\mathrm{G}_{\text {eff }}=\right.$ $\mathrm{G}_{\mathrm{m}}-\mathrm{G}_{\text {out }}$) approaches zero and the oscillation becomes sustaining, giving a $\mathrm{Q}=\frac{\sqrt{\mathrm{L} \frac{\mathrm{C}}{2}}}{\mathrm{~L}_{\mathrm{eff}}}=$ $\sqrt{\frac{C}{2 L}} R_{\text {eff }}$

Problem 4 - Continued
Inductor Layout:

LC YCO schematic and inductor layout

Each elemant siza
Negative resistance transistor(M1 and M2): $\mathrm{L}=.25 \mathrm{~mm}, \mathrm{~W}-25 \mathrm{~mm}, \mathrm{M}-20$
Accumulation Capcitor(Cl and C2): $\mathrm{L}-5 \mathrm{~mm}, \mathrm{~W}-345 \mathrm{~mm}, \mathrm{M}-50$
Ideal inductor size: . 865 nH
Inductor's layout figure: turns-2, spacing-.5um, width-40um, diameter-250um Inductor's parasitic resistor, $\mathrm{R}_{\mathrm{s}}=1.186$ Ohms (from layout and its technology parameter) Inductor's parasitic cap, C_{wx} and $\mathrm{C}_{\mathrm{ox}}-160.22 \mathrm{fF}$ (from layout and its technology parameter) Current suluce: lmA, Tunning voltage: $0.75-1.75$

