Homework Assignment No. 6

This homework assignment is due in class on Friday, June 27, 2003.

Problem 1-(10 points)

An LC oscillator is shown. The value of the inductors, L, are 5 nH and the capacitor, C, is 5 pF . If the Q of each inductor is 5, find (a.) the frequency of oscillation, (b.) the value of negative resistance that should be available from the cross-coupled, source-coupled pair (M1 and M2) for oscillation and (c.) design the W / L ratios of M1 and M2 to realize this negative resistance.

Problem 2-(10 points)

An LC oscillator is shown. Find an expression for the frequency of oscillation and the value of $g_{m} R_{L}$ necessary for oscillation. Assume that the output resistance of the FET, $r_{d s}$, can be neglected.

Problem 3-(10 points)

A Clapp oscillator which is a version of the Colpitt's oscillator is shown. Find an expression for the frequency of oscillation and the value of $g_{m} R_{L}$ necessary for oscillation. Assume that the output resistance of the FET, $r_{d s}$, and $R_{\text {Large }}$ can be neglected (approach infinity).

Problem 4-(50 points maximum)

The objective of this problem is to use passive LC tank and negative feedback circuit to design an LC oscillator that meets the GSM specification. At first, show the condition that the ideal circuit oscillates at $\omega_{o s c}=\frac{1}{\sqrt{\text { LC }}}$ and find quality factor, Q . The transistors should be modeled with the standard small-signal model using g_{m} and $r_{d s}$ or $r_{\text {out }}$ in this part of the problem. Second, use SPICE to obtain a transient simulation. Third, simulate the oscillator that replaces the ideal inductor with the lumped inductor model shown, and use the program referenced below [1] to layout the inductor. Use the model parameters given in [2] for this problem.

Fig.1. Ideal LC VCO

Fig.2. Lumped Inductor Model

GSM specifications:
Frequency range $=935 \sim 960 \mathrm{MHz} \quad \mathrm{v}_{\mathrm{c}}=0.75 \sim 1.75 \mathrm{~V}$
Switching time $=800 \mu \mathrm{sec} \quad V_{D D}=2.5 \mathrm{~V}$
Technology parameter:
Metal sheet resistance $=35 \mathrm{~m} \Omega / \mathrm{sq}$.
Substrate layer resistivity $=0.015 \Omega-\mathrm{cm}$
Metal to substrate capacitance $=5.91 \mathrm{aF} / \mu \mathrm{m}^{2}$
Metal to metal capacitance $=98.0 \mathrm{aF} / \mu \mathrm{m}$
$\mathrm{C}_{\text {sub }}, \mathrm{R}_{\text {sub }}, \mathrm{C}_{\mathrm{p}}$ can be ignored
The score on this problem is calculated by you, the student, as follows:

$$
\begin{aligned}
\text { SCORE }=15 * & \operatorname{Min}\left[g_{m} r_{\text {out }}, 1\right]+10 *\left[\frac{\text { Frequency Range }}{25 \mathrm{MHz}}, 1\right]+15 *\left[\frac{90,000 \mu \mathrm{~m}^{2}}{\text { Inductor Area in } \mu \mathrm{m}^{2}}, 1\right] \\
& +10 *\left[\frac{1 \mathrm{~mA}}{\text { Supply Current }}, 1\right]
\end{aligned}
$$

All entries in the above formula must be from simulation. $g_{m} r_{\text {out }}$ are the transistor small signal values determined from simulation. The "inductor area" is a rectangle that encloses the inductor.

References

1.) Web site: www-smirc.stanford.edu/spiralcalc.html
2.) Hspice technology file: ftp://ftp.mosis.org/pub/mosis/vendors/tsmc-025/t17b-params.txt

