LECTURE 040 – INTEGRATED CIRCUIT TECHNOLOGY - II (Reference [7,8])

Objective

The objective of this presentation is:

- 1.) Illustrate and model the passive components compatible with IC technology
- 2.) The passive components examined will be those suitable for frequency synthesizers

Outline

- Resistors
- Capacitors
- Inductors
- Summary

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Page 040-2

Lecture 040 - Integrated Circuit Technology - II (5/11/03)

RESISTORS **MOS Resistors - Source/Drain Resistor** Metal p+ SiO. FOX FOX n- well p- substrate Fig. 2.5-16 Diffusion: Ion Implanted: 10-100 ohms/square 500-2000 ohms/square Absolute accuracy = $\pm 35\%$ Absolute accuracy = $\pm 15\%$ Relative accuracy=2% (5µm), 0.2% (50µm) Relative accuracy=2% (5µm), 0.15% (50µn Temperature coefficient = $+1500 \text{ ppm/}^{\circ}\text{C}$ Temperature coefficient = $+400 \text{ ppm/}^{\circ}\text{C}$ Voltage coefficient $\approx 200 \text{ ppm/V}$ Voltage coefficient $\approx 800 \text{ ppm/V}$ Comments:

- Parasitic capacitance to substrate is voltage dependent.
- Piezoresistance effects occur due to chip strain from mounting.

CAPACITORS

Types of Capacitors Considered

- pn junction capacitors
- Standard MOS capacitors
- Accumulation mode MOS capacitors
- Poly-poly capacitors
- Metal-metal capacitors

Characterization of Capacitors

Assume *C* is the desired capacitance:

1.) Dissipation (quality factor) of a capacitor is

 $Q = \omega C R_p$

where R_p is the equivalent resistance in parallel with the capacitor, *C*.

- 2.) C_{max}/C_{min} ratio is the ratio of the largest value of capacitance to the smallest when the capacitor is used as a variable capacitor called *varactor*.
- 3.) Variation of capacitance with the control voltage.
- 4.) Parasitic capacitors from both terminal of the desired capacitor to ac ground.

ECE 6440 - Frequency Synthesizers

Lecture 040 – Integrated Circuit Technology - II (5/11/03)

Desirable Characteristics of Varactors

- 1.) A high quality factor
- 2.) A control voltage range compatible with supply voltage
- 3.) Good tunability over the available control voltage range
- 4.) Small silicon area (reduces cost)
- 5.) Reasonably uniform capacitance variation over the available control voltage range
- 6.) A high C_{max}/C_{min} ratio

Some References for Further Information

1.) P. Andreani and S. Mattisson, "On the Use of MOS Varactors in RF VCO's," *IEEE J. of Solid-State Circuits*, vol. 35, no. 6, June 2000, pp. 905-910.

2.) A-S Porret, T. Melly, C. Enz, and E. Vittoz, "Design of High-*Q* Varactors for Low-Power Wireless Applications Using a Standard CMOS Process," *IEEE J. of Solid-State Circuits*, vol. 35, no. 3, March 2000, pp. 337-345.

3.) E. Pedersen, "RF CMOS Varactors for 2GHz Applications," *Analog Integrated Circuits and Signal Processing*, vol. 26, pp. 27-36, Jan. 2001

Page 040-5

© P.E. Allen - 2003

Page 040-6

PN-Junction Capacitors – Continued

The anode should be the floating node and the cathode must be connected to ac ground. Experimental data (Q at 2GHz, 0.5µm CMOS):

ECE 6440 - Frequency Synthesizers

ECE 6440 - Frequency Synthesizers

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Compensated MOS-Capacitors in Depletion with Substrate Biasing[†]

Substrate biasing keeps the MOS capacitors in a broad depletion region and extends the usable voltage range and achieves a first-order cancellation of the nonlinearity effect. Principle:

Compensated MOS-Capacitors in Depletion – Continued

Measured CV plot of a series compensated MOS capacitor with different substrate biases (0.25µm CMOS, $t_{ox} = 5$ nm, $W_1 = W_2 = 20$ µm and $L_1 = L_2 = 20$ µm):

ECE 6440 - Frequency Synthesizers

MOS Passive RC Component Performance Summary

Component Type	Range of Values	Absolute Accuracy	Relative Accuracy	Temperature Coefficient	Voltage Coefficient
Poly-oxide-semi- conductor Capacitor	0.35-0.5 fF/µm ²	10%	0.1%	20ppm/°C	±20ppm/V
Poly-Poly Capacitor	0.3-0.4 fF/µm ²	20%	0.1%	25ppm/°C	±50ppm/V
Diffused Resistor	10-100 Ω/sq.	35%	2%	1500ppm/°C	200ppm/V
Ion Implanted Resistor	0.5-2 kΩ/sq.	15%	2%	400ppm/°C	800ppm/V
Poly Resistor	30-200 Ω/sq.	30%	2%	1500ppm/°C	100ppm/V
n-well Resistor	1-10 kΩ/sq.	40%	5%	8000ppm/°C	10kppm/V

ECE 6440 - Frequency Synthesizers

Lecture 040 – Integrated Circuit Technology - II (5/11/03)

INDUCTORS

Inductors

What is the range of values for on-chip inductors?

Note: Off-chip connections will result in inductance as well.

Page 040-24

© P.E. Allen - 2003

Planar Spiral Inductors - Continued

Typically: $3 < N_{turns} < 5$ and $S = S_{min}$ for the given current

Select the OD, $N_{\mbox{turns}},$ and W so that ID allows sufficient magnetic flux to flow through the center.

Loss Mechanisms:

- Skin effect
- Capacitive substrate losses
- Eddy currents in the silicon

ECE 6440 - Frequency Synthesizers

Lecture 040 – Integrated Circuit Technology - II (5/11/03)

Planar Spiral Inductors - Continued

Influence of a Lossy Substrate

where:

L is the desired inductance

R is the series resistance

 C_1 and C_2 are the capacitance from the inductor to the ground plane

 R_1 and R_2 are the eddy current losses in the silicon

Guidelines for using spiral inductors on chip:

- Lossy substrate degrades Q at frequencies close to f_{self}
- To achieve an inductor, one must select frequencies less than f_{self}
- The Q of the capacitors associated with the inductor should be very high

© P.E. Allen - 2003

Page 040-28

Planar Spiral Inductors - Continued

Comments concerning implementation:

- 1.) Put a metal ground shield between the inductor and the silicon to reduce the capacitance.
 - Should be patterned so flux goes through but electric field is grounded
 - Metal strips should be orthogonal to the spiral to avoid induced loop current
 - The resistance of the shield should be low to terminate the electric field
- 2.) Avoid contact resistance wherever possible to keep the series resistance low.
- 3.) Use the metal with the lowest resistance and farthest away from the substrate.
- 4.) Parallel metal strips if other metal levels are available to reduce the resistance.

Example:

ECE 6440 - Frequency Synthesizers

Lecture 040 - Integrated Circuit Technology - II (5/11/03)

Multi-Level Spiral Inductors

Use of more than one level of metal to make the inductor.

- Can get more inductance per area
- Can increase the interwire capacitance so the different levels are often offset to get minimum overlap.
- Multi-level spiral inductors suffer from contact resistance (must have many parallel contacts to reduce the contact resistance).
- Metal especially designed for inductors is top level approximately 4µm thick.

¹ The skin effect and substrate loss appear to be the limiting factor at higher frequencies of self-resonance. ECE 6440 - Frequency Synthesizers Page 040-30

- Capacitive coupling to substrate is still present
- Potentially best with a ferromagnetic core

Transformer structures are easily obtained using stacked inductors as shown below for a 1:2 transformer.

Lecture 040 – Integrated Circuit Technology - II (5/11/03) Page 040-35
SUMMARY
• This section has presented and characterized passive components suitable for implementation on silicon integrated circuit technologies.
• Resistors
Source/drain diffusions, base/emitter diffusions, polysilicon and n-well/collector
• Capacitors
pn-junction, MOS capacitors (depletion and accumulation), poly-poly, metal-metal
• Varactors – varied using a voltage and vary from 10% to as much as 100% or more
• Inductors
Limited to nanohenrys
Very low Q (3-5)
Not variable
• Transformers
Reasonably easy to build and work using stacked inductors
• Did not cover several important aspects of IC components
- Errors
- Matching
- Physical aspects (layout)
ECE 6440 - Frequency Synthesizers © P.E. Allen - 2003