LECTURE 050 – LINEAR PHASE LOCK LOOPS - I (References [2])

INTRODUCTION TO PHASE LOCK TECHNIQUES

Introduction

Objective:

Understand the principles and applications of phase locked loops using integrated circuit technology with emphasis on CMOS technology.

Organization:

Introduction - Continued

Outline:

- Operating Principles of PLLs
- Classification of PLL Types

Pertinent References:

- 1. F.M Gardner, *Phaselock Techniques*, 2nd edition, John-Wiley & Sons, Inc., New York, 1979.
- 2. B. Razavi (ed.), *Monolithic Phase-Locked Loops and Clock Recovery Circuits*, IEEE Press, 1997.
- 3. R.E. Best, *Phase-Locked Loops: Design, Simulation, and Applications*, 4th edition, McGraw-Hill, 1999.
- 4. Recent publications of the IEEE Journal of Solid-State Circuits.

Phase Detector:

 $v_d(t) = K_d \theta_e = K_d(\theta_{in} - \theta_{osc})$

where K_d is the gain of the phase detector.

The units of K_d are volts/radians or simply volts assuming all phase shifts are in radians and not degrees.

Voltage Controlled Oscillator:

 $\omega_{osc} = \omega_o + K_o v_c(t)$

where K_o is the VCO gain and ω_o is the free-running radian frequency.

The units of K_o are rads/sec·V or simply $(\sec V)^{-1}$ assuming all phase shifts are in radians and not degrees.

ECE 6440 - Frequency Synthesizers

Lecture 050 – Linear Phase Lock Loops - I (5/14/03)

PLL Operation

Locked Operation:

- The loop is *locked* when the frequency of the VCO is exactly equal to the average frequency of the input signal.
- If the input signal has noise, the phase locked loop will remove much of the noise on the input signal.
- To maintain the control voltage needed for locked conditions, it is generally necessary for the output of the phase/frequency detector to be nonzero.

Unlocked Operation:

- The VCO runs at a frequency called the *free running frequency*, ω_o , which corresponds to no control voltage.
- The capture process is the means by which the loop goes from unlocked, free-running state to that of the locked state.

Page 050-6

Transient Response of the PLL

Assume the input frequency is increased by an amount $\Delta \omega$.

- 1.) ω_{in} increases by $\Delta \omega$ at t_o .
- 2.) The input signal leads the VCO and v_d begins to increase.
- 3.) After a delay due to the loop filter, the VCO increases ω_{osc} .
- 4.) As ω_{osc} increases, the phase error reduces.
- 5.) Depending on the loop filter, the final phase error will be reduced to zero or to a finite value.

ECE 6440 - Frequency Synthesizers

Lecture 050 - Linear Phase Lock Loops - I (5/14/03)

CLASSIFICATION OF PLL TYPES

Types of PLLs

PLL Type	Phase Detector	Loop Filter	Controlled Oscillator
Linear PLL (LPLL)	Analog multiplier	RC passive or active	Voltage
Digital PLL (DPLL)	Digital detector	RC passive or active	Voltage
All digital PLL (ADPLL)	Digital detector	Digital filter	Digitally controlled
Software PLL (SPLL)	Software multiplier	Software filter	Software oscillator

The digital PLL (DPLL) has been the mainstay of most PLLs and is called the "classical" digital PLL.

Page 050-8

SYSTEMS PERSPECTIVE OF PLLs

Outline

- Linear PLL
- Classical Digital PLL
- All-Digital PLL
- Measurement of PLLs

Roadmap

LINEAR PHASE LOCKED LOOPS

Outline

- PLL Components
- Locked State
- Order of the LPLL System
- The Acquisition Process Unlocked State
- Noise in the LPLL
- LPLL System Design
- Simulation of LPLLs

Loop Filters

In the PLL, there are many high frequencies including noise that must be removed by the use of a low pass filter in order to achieve optimum performance.

Types of Loop Filters:

1.) Passive lag filter (*lag-lead*)

Pole is at $1/(\tau_1 + \tau_2)$ and the zero at $1/\tau_2$.

- Since the pole is smaller than the zero, the filter is lag-lead
- Passive filters should have no amplitude nonlinearity

Loop Filters - Continued

ECE 6440 - Frequency Synthesizers

Phase Signals

It is important to remember that frequency and phase are related as

$$\frac{d\theta}{dt} = \omega \qquad \rightarrow \qquad \theta = \int \omega \cdot dt$$

Transfer functions:

$$H(s) = \frac{V_2(s)}{V_1(s)}$$

where $V_2(s)$ and $V_1(s)$ are the Laplace transforms of $v_2(t)$ and $v_1(t)$.

To examine phase signals, let us assume that,

 $v_1(t) = V_{10} \sin[\omega_1 t + \theta_1(t)]$ and $v_2(t) = V_{20} \sin[\omega_2 t + \theta_2(t)]$ For phase signals, the information is carried only in $\theta(t)$.

Next, we consider some simple phase signals that are used to excite a PLL.

ECE 6440 - Frequency Synthesizers

Lecture 050 - Linear Phase Lock Loops - I (5/14/03)

Phase Signals – Continued

1.) A step phase shift which is an example of phase modulation.

$$\theta_1(t) = \Delta \Phi \ u(t)$$

© P.E. Allen - 2003

Page 050-20

2.) A step frequency change assuming that $\omega_1(t) = \omega_0$ for t < 0. We may express $v_1(t)$ as,

$$v_1(t) = V_{10} \sin[\omega_o t + \Delta \omega \cdot t]$$

$$= V_{10} \sin[\omega_o t + \theta_1(t)]$$

 $\therefore \quad \theta_1(t) = \Delta \omega \cdot t$

(the phase becomes a ramp signal)

3.) Frequency ramp

$$\omega_1(t) = \omega_o + \Delta \dot{\omega} \cdot t$$

where $\Delta \dot{\omega}$ is the rate of change of the angular frequency.

$$\therefore \quad v_1(t) = V_{10} \sin\left[\int_0^t (\omega_o + \Delta \dot{\omega} \tau) d\tau\right]$$
$$= V_{10} \sin\left[\omega_o t + \Delta \dot{\omega} \frac{t^2}{2}\right]$$
$$\theta_1(t) = \Delta \dot{\omega} \frac{t^2}{2}$$

ECE 6440 - Frequency Synthesizers

Lecture 050 – Linear Phase Lock Loops - I (5/14/03)

LOCKED STATE OF THE LPLL

Transfer Function of the Phase Detector

Input sinusoidal and VCO sinusoidal:

$$v_{1}(t) = V_{10} \sin[\omega_{1}t + \theta_{1}(t)] \quad \text{and} \quad v_{2}(t) = V_{20} \cos[\omega_{2}t + \theta_{2}(t)]$$

$$\therefore v_{d}(t) = v_{1}(t) \cdot v_{2}(t) = V_{10}V_{20} \sin[\omega_{1}t + \theta_{1}(t)]\cos[\omega_{2}t + \theta_{2}(t)]$$

$$= \frac{V_{10}V_{20}}{2} \sin[\omega_{1}t + \theta_{1}(t) - \omega_{2}t - \theta_{2}(t)] - \frac{V_{10}V_{20}}{2} \sin[\omega_{1}t + \theta_{1}(t) + \omega_{2}t + \theta_{2}(t)]$$

If the loop is locked, then $\omega_1 = \omega_2$ and

$$v_d(t) = \frac{V_{10}V_{20}}{2} \sin[\theta_1(t) - \theta_2(t)] - \frac{V_{10}V_{20}}{2} \sin[2\omega_1 t + \theta_1(t) + \theta_2(t)]$$

Ignoring the high-frequency terms gives,

$$v_d(t) \approx \frac{V_{10}V_{20}}{2} \sin[\theta_1(t) - \theta_2(t)] = \frac{V_{10}V_{20}}{2} \sin\theta_e(t) = K_d \sin\theta_e(t) \approx K_d \theta_e(t)$$

if $\theta_e(t)$ is small.

$$K_d = \text{detector gain} = \frac{V_{10}V_{20}}{2}$$

$$\therefore v_d(t) \approx K_d \ \theta_e(t) \implies V_d(s) \approx K_d \ \Theta_e(s)$$

ECE 6440 - Frequency Synthesizers

Page 050-22

Input signals when VCO output is a square wave:

$$v_{1}(t) = V_{10} \sin[\omega_{1}t + \theta_{1}(t)]$$

$$v_{2}(t) = V_{20} sgn[\omega_{2}t + \theta_{2}(t)] = V_{20} \Big[\frac{4}{\pi} cos[\omega_{2}t + \theta_{2}(t)] + \frac{4}{3\pi} cos[3\omega_{2}t + \theta_{2}(t)] + \cdots \Big]$$

$$\therefore v_{d}(t) = v_{1}(t) \cdot v_{2}(t)$$

$$= V_{10}V_{20} sin[\omega_{1}t + \theta_{1}(t)] \Big[\frac{4}{\pi} cos[\omega_{2}t + \theta_{2}(t)] + \frac{4}{3\pi} cos[3\omega_{2}t + \theta_{2}(t)] + \cdots \Big]$$

$$= \frac{4V_{10}V_{20}}{\pi} \Big[sin[\omega_{1}t + \theta_{1}(t)] cos[\omega_{2}t + \theta_{2}(t)] + \frac{1}{3} cos[\omega_{2}t + \theta_{2}(t)] cos[3\omega_{2}t + \theta_{2}(t)] + \cdots \Big]$$
When the loop is locked,
$$v_{d}(t) = \frac{2V_{10}V_{20}}{\pi} [sin[\theta_{1}(t) - \theta_{2}(t)] + sin[2\omega_{1}t + \theta_{1}(t) + \theta_{2}(t)] + \cdots \Big]$$

$$\approx \frac{2V_{10}V_{20}}{\pi} sin\theta_{e}(t) = K_{d} sin\theta_{e}(t) \rightarrow v_{d}(t) \approx K_{d} \theta_{e}(t)$$
where the detector gain is $K_{d} = \frac{2V_{10}V_{20}}{\pi}$ (a little better than sinusoidal inputs only)
The transfer function is $V_{d}(s) \approx K_{d} \Theta_{e}(s)$ or $\frac{V_{d}(s)}{\Theta_{e}(s)} = K_{d}$

ECE 6440 - Frequency Synthesizers

Lecture 050 – Linear Phase Lock Loops - I (5/14/03)

VCO Transfer Function

The angular frequency of the VCO was expressed as,

$$\omega_2(t) = \omega_o + \Delta \omega_2(t) = \omega_o + K_o v_f(t)$$

where K_o is the VCO gain in units of radians/sec or simply sec⁻¹.

However, what we want is the phase of the VCO output.

$$\therefore \quad \theta_2(t) = \int \Delta \omega_2 \, dt = K_o \int v_f(t) dt$$

Taking the Laplace transform gives,

$$\Theta_2(s) = \mathcal{L}[\Theta_2(t)] = \frac{K_o}{s} V_f(s) \quad \rightarrow \quad \frac{\Theta_2(s)}{V_f(s)} = \frac{K_o}{s}$$

Page 050-24

Linear Model of the LPLL

Phase transfer function:

$$H(s) = \frac{\Theta_2(s)}{\Theta_1(s)} = ?$$

$$\Theta_2(s) = \frac{K_o}{s} V_f(s) = \frac{K_o}{s} F(s) V_d(s) = \frac{K_o K_d}{s} F(s) \Theta_e(s) = \frac{K_o K_d}{s} F(s) [\Theta_1(s) - \Theta_2(s)]$$

$$s\Theta_2(s) = K_o K_d F(s) [\Theta_1(s) - \Theta_2(s)] \rightarrow \Theta_2(s) [s + K_o K_d F(s)] = K_o K_d F(s) \Theta_1(s)$$

$$\therefore H(s) = \frac{\Theta_2(s)}{\Theta_1(s)} = \frac{K_o K_d F(s)}{s + K_o K_d F(s)} \qquad \text{Also, } H_e(s) = 1 - H(s) = \frac{s}{s + K_o K_d F(s)}$$

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Page 050-26

Lecture 050 – Linear Phase Lock Loops - I (5/14/03)

LPLL Transfer Function for Various Loop Filters

1.) Passive lag filter.

$$F(s) = \frac{1 + s\tau_2}{1 + s(\tau_1 + \tau_2)} \longrightarrow H(s) = \frac{K_o K_d \left(\frac{1 + s\tau_2}{\tau_1 + \tau_2}\right)}{s^2 + s \left(\frac{1 + K_o K_d \tau_2}{\tau_1 + \tau_2}\right) + \frac{K_o K_d}{\tau_1 + \tau_2}}$$

2.) The active lag filter.

$$F(s) = K_a \frac{1 + s\tau_2}{1 + s\tau_1} \qquad \rightarrow \qquad H(s) = \frac{K_o K_d K_a \left(\frac{1 + s\tau_2}{\tau_1}\right)}{s^2 + s \left(\frac{1 + K_o K_d K_a \tau_2}{\tau_1}\right) + \frac{K_o K_d K_a}{\tau_1}}$$

3.) The active PI filter.

$$F(s) = \frac{1 + s\tau_2}{s\tau_1} \qquad \longrightarrow \qquad H(s) = \frac{K_o K_d \left(\frac{1 + s\tau_2}{\tau_1}\right)}{s^2 + s \left(\frac{K_o K_d \tau_2}{\tau_1}\right) + \frac{K_o K_d}{\tau_1 + \tau_2}}$$

The normalized form of the denominator of a second-order transfer function is

$$D(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$$

where ω_n is the natural frequency and ζ is the damping factor.

1.) Passive lag filter.

$$\omega_n = \sqrt{\frac{K_o K_d}{\tau_1 + \tau_2}}$$
 and $\zeta = \frac{\omega_n}{2} \left(\tau_2 + \frac{1}{K_o K_d} \right)$

2.) Active lag filter.

$$\omega_n = \sqrt{\frac{K_o K_d K_a}{\tau_1}}$$
 and $\zeta = \frac{\omega_n}{2} \left(\tau_2 + \frac{1}{K_o K_d K_a} \right)$

3.) Active PI filter.

$$\omega_n = \sqrt{\frac{K_o K_d}{\tau_1}}$$
 and $\zeta = \frac{\omega_n \tau_2}{2}$

ECE 6440 - Frequency Synthesizers

Lecture 050 - Linear Phase Lock Loops - I (5/14/03)

Normalized Phase Functions

1.) Passive lag filter.

$$H(s) = \frac{s\omega_n \left(2\zeta - \frac{\omega_n}{K_o K_d}\right) + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

2.) Active lag filter.

$$H(s) = \frac{s\omega_n \left(2\zeta - \frac{\omega_n}{K_o K_d K_a}\right) + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

3.) Active PI filter.

$$H(s) = \frac{2s\zeta\omega_n + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

If $K_d K_o >> \omega_n$ or $K_d K_o K_a >> \omega_n$, then all of the above transfer functions simplify to,

$$H(s) = \frac{2s\zeta\omega_n + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \quad \text{and} \quad H_e(s) = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Page 050-28

Steady state error:

$$\theta_e(\infty) = \lim_{s \to 0} s \Theta_e(s) = 0$$

Frequency Step Response

Assume that $\omega_1(t) = \omega_0 + \Delta \omega \cdot u(t)$

However,
$$\theta_1(t) = \Delta \omega \cdot t \quad \rightarrow \quad \Theta_1(s) = \frac{\Delta \omega}{s^2}$$

Phase error:

$$\begin{split} \Theta_e(s) &= H_e(s) \, \frac{\Delta \omega}{s^2} = \frac{\Delta \omega s^2}{s^2 (s^2 + 2\zeta \omega_n s + \omega_n^2)} = \frac{\Delta \omega}{s^2 + 2\zeta \omega_n s + \omega_n^2} \\ \theta_e(t) &= \mathcal{L}^{-1}[\Theta_e(s)] = \frac{\Delta \omega}{\omega_n} \left(\frac{1}{\sqrt{1 - \zeta^2}} \sin \sqrt{1 - \zeta^2} \, \omega_n t \right) e^{-\zeta \omega_n t}, \ \zeta < 1 \\ &= \frac{\Delta \omega}{\omega_n} \ (\omega_n t) e^{-\zeta \omega_n t}, \ \zeta = 1 \\ &= \frac{\Delta \omega}{\omega_n} \left(\frac{1}{\sqrt{\zeta^2 - 1}} \sinh \sqrt{1 - \zeta^2 - 1} \, \omega_n t \right) e^{-\zeta \omega_n t}, \ \zeta > 1 \end{split}$$

Steady state error:

$$\theta_e(\infty) = \lim_{s \to 0} s \Theta_e(s) = 0$$
 (high gain loops) $\theta_e(\infty) = \frac{\Delta \omega}{K_d K_o F(0)}$

ECE 6440 - Frequency Synthesizers

Lecture 050 - Linear Phase Lock Loops - I (5/14/03)

Frequency Ramp Response

Assume that
$$\omega_1(t) = \omega_0 + \Delta \dot{\omega} \cdot t$$

However, $\theta_1(t) = \Delta \dot{\omega} \frac{t^2}{2} \longrightarrow \qquad \Theta_1(s) = \frac{\Delta \dot{\omega}}{s^3}$

Phase error:

$$\begin{split} \Theta_{e}(s) &= H_{e}(s) \frac{\Delta \dot{\omega}}{s^{3}} = \frac{\Delta \dot{\omega} s^{2}}{s^{3}(s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2})} = \frac{\Delta \dot{\omega}}{s(s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2})} \\ \Theta_{e}(t) &= \mathcal{L}^{-1}[\Theta_{e}(s)] = \frac{\Delta \dot{\omega}}{\omega_{n}^{2}} - \frac{\Delta \dot{\omega}}{\omega_{n}^{2}} \left(\cos\sqrt{1-\zeta^{2}}\omega_{n}t + \frac{\zeta}{\sqrt{1+\zeta^{2}}}\sin\sqrt{1-\zeta^{2}}\omega_{n}t\right)e^{-\zeta\omega_{n}t}, \quad \zeta < 1 \\ &= \frac{\Delta \dot{\omega}}{\omega_{n}^{2}} - \frac{\Delta \dot{\omega}}{\omega_{n}^{2}}(1 + \omega_{n}t)e^{-\zeta\omega_{n}t}, \quad \zeta = 1 \\ &= \frac{\Delta \dot{\omega}}{\omega_{n}^{2}} - \frac{\Delta \dot{\omega}}{\omega_{n}^{2}} \left(\cosh\sqrt{\zeta^{2}-1}\omega_{n}t + \frac{\zeta}{\sqrt{\zeta^{2}-1}}\sinh\sqrt{1-\zeta^{2}-1}\omega_{n}t\right)e^{-\zeta\omega_{n}t}, \quad \zeta > 1 \end{split}$$

Steady state error:

$$\theta_e(\infty) = \lim_{s \to 0} s\Theta_e(s) = \frac{\Delta \dot{\omega}}{\omega_n^2} \text{ (High loop gain) } \theta_e(\infty) = \frac{\Delta \dot{\omega} t}{K_d K_o F(0)^2} + \frac{\Delta \dot{\omega}}{\omega_n^2} \text{ (Low loop gain)}$$

ECE 6440 - Frequency Synthesizers

Page 050-32

© P.E. Allen - 2003

(low gain loops)

Definition of Order

The number of roots in the denominator (poles) of the PLL transfer function determines the order.

Generally, the order of a PLL is one greater than the order of F(s).

Implication of the order:

- Greater than 2 will be unstable unless corrected by zeros
- Less than 2 will have poor noise suppression.

ECE 6440 - Frequency Synthesizers

Lecture 050 – Linear Phase Lock Loops - I (5/14/03)

First-Order PLL

A first–order PLL occurs when F(s) = 1. From previous results we have,

$$H(s) = \frac{\Theta_2(s)}{\Theta_1(s)} = \frac{K_o K_d}{s + K_o K_d} \qquad \text{Also, } H_e(s) = 1 - H(s) = \frac{s}{s + K_o K_d}$$

The -3dB bandwidth of H(s) is $K_o K_d$.

Comments:

- F(s) causes the -3dB bandwidth to be reduced in higher-order systems which means that the first-order PLL has a wider bandwidth
- The hold range of the first-order PLL will be larger than for higher-order PLLs
- The first-order PLL will track the signal variations more quickly than higher-order PLLs
- The first-order PLL does not suppress noise superimposed on the input signal to the extent of higher-order PLLs.

Page 050-34

