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LECTURE 060 – LINEAR PHASE LOCK LOOPS - II
(Reference [2])

LINEAR PHASE LOCKED LOOPS - CONTINUED

THE ACQUISTION PROCESS – LPLL IN THE UNLOCKED STATE
Unlocked Operation
If the PLL is initially unlocked, the phase error, θe, can take on arbitrarily large values and
as a result, the linear model is no longer valid.

The mathematics behind the unlocked state are beyond the scope of this presentation.  In
the section we will attempt to answer the following questions from an intuitive viewpoint:
1.)  Under what conditions will the LPLL become locked?
2.)  How much time does the lock-in process require?
3.)  Under what conditions will the LPLL lose lock?
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Some Definitions of Key Performance Parameters
1.)  The hold range (∆ωH) is the frequency range over which an LPLL can statically
maintain phase tracking.  A PLL is conditionally stable only within this range.

ωo
ω

Hold-In Range (Static Limits of Stability)

ωo+∆ωHωo-∆ωH Fig. 2.1-111

2.)  The pull-in range (∆ωP) is the range within which an LPLL will always become
locked, but the process can be rather slow.

ωo
ω

ωo+∆ωPωo-∆ωP Fig. 2.1-112

Pull-in Range

3.)  The pull-out range (∆ωPO) is the dynamic limit for stable operation of a PLL.  If
tracking is lost within this range, an LPLL normally will lock again, but this process can
be slow.

ωo
ω

 Pull-Out Range (Dynamic Limits of Stability)

ωo+∆ωPOωo-∆ωPO Fig. 2.1-113

4.)  The lock range (∆ωL) is the frequency range within which a PLL locks within one
single-beat note between reference frequency and output frequency.  Normally, the
operating frequency range of an LPLL is restricted to the lock range.

ωo
ω

ωo+∆ωLωo-∆ωL Fig. 2.1-112

Lock Range
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Illustration of Static Ranges
Assume the frequency of the VCO is varied very slowly from a value below ωo-∆ωH to a
frequency above ωo+∆ωH.

ωVCO

ωin
ωo+∆ωP

ωo-∆ωP

ωo+∆ωH

ωo-∆ωH

Pull-in Range
Hold-in Range

Fig. 2.1-115

The following pages will attempt to relate the key parameters of hold range, pull-in range,
pull-out range, and lock range to the time constants, τ1 and τ2 and the gain factors Kd, Ko,
and Ka.
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Hold Range (∆∆∆∆ωωωωH)

The magnitude of the hold range is calculated by finding the frequency offset of the input
that causes a phase error of ±π/2.
Let,

ω1 = ωo ± ∆ωH → θ1(t) = ∆ωH t→ Θ1(s) = 
∆ω
s2  

∴ Θe(s) =Θ1(s) He(s) = 
∆ω
s2  

s
s + KoKdF(s) 

lim
t→∞

 θe(t) = lim
s→0

 sΘe(s) = 
∆ω

KoKdF(0) (valid for small values of θe)

For large variations, we write

lim
t→∞

 sinθe(t) = 
∆ωH

KoKdF(0) → ∆ωH = ±KoKdF(0)  when θe = ±π/2

For the various filters-
1.)  Passive lag filter: ∆ωH = ±KoKd

2.)  Active lag filter: ∆ωH = ±KoKdKa

3.)  Active PI filter: ∆ωH = ±∞

(the actual hold range may be limited by the frequency range of the VCO)
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Lock Range (∆∆∆∆ωωωωL)

Assume the loop is unlocked and the reference frequency is ω1 = ωo + ∆ω.  Therefore,

v1(t) = V10 sin(ωot + ∆ω t)

The VCO output is assumed to be
v2(t) = V20 sgn(ωot)

∴ vd(t) = Kd sin(∆ω t) + higher frequency terms

Assuming the higher frequency terms are filtered out, the filter output is
vf(t) ≈  Kd|F(j∆ω)| sin(∆ω t)

This signal causes a frequency modulation of the VCO output frequency as shown.
Frequency

t

ω1

ωo

∆ω

ω2(t)

KoKd|F(j∆ω)|

Fig. 2.1-12

Note:  No locking occurs in the above illustration because ∆ω > KoKd |F(j∆ω)|.
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Lock Range – Continued
Locking will take place if KoKd |F(j∆ω)| ≥ ∆ω.  Therefore, the lock range can be
expressed as,

∆ωL = ± KoKd |F(j∆ω)|

and is illustrated as,

Frequency

t

ω1

ωo

∆ω
ω2(t)

KoKd|F(j∆ω)|

Fig. 2.1-13

ω2 = ω1

Locks within one cycle or beat note.
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Lock Range - Continued
If we assume that the lock range is greater than the filter frequencies, 1/τ1 and 1/τ2, the

lock range for the various filters can be expressed as,

1.)  Passive lag filter: ∆ωL = ± KoKd |F(j∆ω)| ≈ ± KoKd 
τ2

τ1+τ2
  ≈ ± KoKd 

τ2
τ1

 

2.)  Active lag filter: ∆ωL = ± Ka |F(j∆ω)| ≈ ± Ka 
τ2
τ1

 

3.)  Active PI filter: ∆ωL = ± |F(j∆ω)| ≈ ± 
τ2
τ1

 

Previously, we found expressions for ωn and ζ for each type of filter.  Using these
expressions and assuming that the loop gain is large, we find for all three filters that

∆ωL ≈ ±2ζωn

The lock-in time or settling time can be approximated as one cycle of oscillation,

TL ≈ 
1
fn  = 

2π
ωn
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Pull-In Range (∆ωP)

Again assume the loop is unlocked and the reference frequency is ω1 = ωo + ∆ω and the
VCO initially operates at the center frequency of ωo.

Let us re-examine the previous considerations:

Frequency

t

ω1

ωo

∆ωmax

ω2(t)

Fig. 2.1-14

∆ωmin

ω2

Pull-in Effect

Since ∆ωmin is less than ∆ωmax, the frequency of the positive going sinusoid is less than
the frequency of the negative going sinusoid.  As a consequence, the average value of the
VCO output “pulls” toward ω1.
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The Pull-In Process
For an unlocked PLL with the frequency offset, ∆ω, less than the pull-in range, ∆ωP,
theVCO output frequency, ω2 will approach the reference frequency,  ω1, over a time
interval called the pull-in time, TP.

Illustration:

Frequency

ω1

ωo
ω2(t)

ω2

t

∆ω

Fig. 2.1-15

Pull-in Time, TP
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Pull-In Range (∆ωP) for Various Types of Filters

The mathematical treatment of the pull-in process is beyond the scope of this
presentation†.  The results are summarized below.

Type of Filter ∆ωP (Low Loop Gains) ∆ωP (High Loop Gains) Pull-In Time, TP

Passive Lag ≈ 
4
π 2ζωnKoKd - ωn

2 ≈ 
4 2
π  ζωnKoKd = 

π2

16 
∆ωo

2

ζωn
3

Active Lag
≈ 

4
π 2ζωnKoKd - 

ωn
2

Ka
≈ 

4 2
π  ζωnKoKd = 

π2

16 
∆ωo

2Ka

ζωn
3

Active PI Lag → ∞ → ∞
= 
π2

16 
∆ωo

2

ζωn
3

                             
† R.M. Best, Phase-Locked Loops – Design, Simulation, and Applications, 4th ed., McGraw-Hill Book Co., 1999, Appendix A.
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Example
A second-order PLL having a passive lag loop filter is assumed to operate at a center
frequency, fo, of 100kHz and has a natural frequency, fn, of 3 Hz which is a very narrow
band system.  If ζ  = 0.7 and the loop gain, KoKd = 2π·1000 sec.-1, find the lock-in time,
TL, and the pull-in time, TP, for an initial frequency offset of 30 Hz.

Solution

TL ≈ 
1
fn  = 

1
3  = 0.333 secs.

TP = 
π2

16 
∆ωo

2

ζωn
3 = 

4π4

16·8π3 
∆fo2

ζfn3   = 
π 302

32(0.7)33  = 4.675 secs.
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Pull-Out Range (∆∆∆∆ωωωωPO)

The pull-out range is that frequency step which causes a lock-out if applied to the
reference input of the PLL.
An exact calculation is not possible but simulations show that,

∆ωPO = 1.8ωn (ζ +1)

At any rate, the pull-out range for most systems is between the pull-in range and the lock-
range,

∆ωL < ∆ωPO  < ∆ωP
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Steady-State Error of the PLL
The steady-state error is the deviation of the controlled variable from the set point after
the transient response has died out.  We have called this error, θe(∞).

θe(∞) = lim
s→0

 sΘe(s) = lim
s→0

 sΘ1(s) 
s

s + KoKdF(s) 

Let us consider a generalized filter given as,

F(s) = 
P(s)

Q(s)sN 

where P(s) and Q(s) can be any polynomials in s, and N is the number of poles at s = 0.

∴ θe(∞) = lim
s→0

  
s2sNQ(s)Θ1(s)

s·sNQ(s) + KoKdP(s) 

Comments:
•  Note that for the active PI filter, N = 1.
•  For N >1, it becomes difficult to maintain stability.
•  In most cases, P(s) is a first-order polynomial and Q(s) is a polynomial of order 0 or 1.
To find the steady-state error, the input, Θ(s) must be known.  We will consider several
inputs on the following slide.
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Steady-State Error for Various Inputs
1.)  A phase step, ∆Φ.

Θ1(s) = 
∆Φ
s  

∴ θe(∞) = lim
s→0

  
s2sNQ(s)∆Φ

s[s·sNQ(s) + KoKdP(s)] = 0  for any value of N.

2.)  A frequency step, ∆ω.

Θ1(s) = 
∆ω
s2  

∴ θe(∞) = lim
s→0

  
s2sNQ(s)∆ω

s2[s·sNQ(s) + KoKdP(s)] = 0  if N ≥1

(The LPLL must have one pole at s = 0 for the steady-state error to be zero.)

3.)  A frequency ramp, ∆ω ·  .

Θ1(s) = 
∆ω ·

s3  

∴ θe(∞) = lim
s→0

  
s2sNQ(s)∆ω ·

s3[s·sNQ(s) + KoKdP(s)] = 0  if N ≥ 2

For N = 2 and Q(s) =1, the order of the LPLL becomes 3 permitting a phase shift of nearly
270° which must be compensated for by zeros to maintain stability.
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NOISE IN LINEAR PLL SYSTEMS
Phase Noise
Illustration:

v1(t)

t

t

θn1(t)

v1(t)+θn1(t)

t
Phase error

Fig. 2.1-16
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PLL for Noise Analysis
Assume that the input is band limited as shown below.

Phase
Detector

Filter

VCO

fo
f

A
tte

nu
at

io
n 

(d
B

)

Bi

Prefilter

Input
Signal Output

Fig. 2.1-17

Bi = Bandwidth of the prefilter (or system)

Some terminology:
•  Power spectral density is the measure of power in a given frequency range  (Watts/Hz)

or (V2/Hz).  It is found by dividing the rms power by the bandwidth.
•  We will consider all noise signals as white noise which means the power spectrum is

flat.

• Ps = input signal rms power (V1(rms)2/Rin)

• Pn = rms power of the input noise
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Power Spectra of a PLL
Illustration of how input noise becomes phase noise in the frequency spectrum:

Power spectra of the
reference signal, v1(t), and
the superimposed noise
signal, vn(t).

Spectrum of the phase noise
at the input of the PLL.

Frequency response of the
phase-transfer function,
H(jω).

Spectrum of the phase noise
at the output of the PLL.

Sp
ec

tr
al

 P
ow

er
D

en
si

ty

Frequency
Wi

Bi
Area = Pn

= WiBi

fo

Area = Ps

Frequency

θn1(jω)2

Bi/2

Area = vn12

Φ 

FrequencyBL

Function of ζ

|H(jω)|

Frequency

θn2(jω)2

BL

Area = vn22

Fig. 2.1-18
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Noise Relationships for a PLL
Spectral density of the input noise signal:

Wi = 
Pn
Bi

  (W/Hz)

Input rms phase noise jitter (or the square of the rms phase noise): 

θn1(t) → θn1  2  = 
Pn
2Ps

 (Comes from the assumption of white noise)

Signal-to-Noise Ratio (SNR):

SNR at the input = (SNR)i ≡ 
Ps
Pn

 → θn1  2  = 
Pn
2Ps

  = 
1

2(SNR)i
 (radians2)

Input phase jitter (noise) spectrum:

Θn1  2 (jω)  = Φ = 
θn1  2

Bi/2  (radians2/Hz)

Output phase jitter (noise) spectrum:

Θn2  2 (jω)  = |H(jω)|2 Θn1  2 (jω)  = |H(jω)|2Φ
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RMS Value of the Output Phase Noise
The output phase noise is found by integrating Θn2(jω) over the bandwidth of the PLL.

θn2  2  = ⌡
⌠

0

∞

 Θn2  2 (j2πf) df 

where θn2  2  is the area under the output phase noise plot in a previous slide.

θn2  2  = ⌡⌠
0

∞

 |H(jω)|2Φdf  = 
Φ
2π ⌡⌠

0

∞

 |H(jω)|2dω 

What is the value of ⌡⌠
0

∞

 |H(jω)|2dω ?

Let  ⌡⌠
0

∞

 |H(j2πf)|2df  = BL = the noise bandwidth.

The solution of this integral is,

BL = 
ωn
2  









ζ + 
1

4ζ   → 
dBL
dζ   = 

ωn
2  









1 - 
1

2ζ  = 0   →    ζ = 0.5   →   BL(min) = 0.5ωn

∴ θn2  2  = Φ BL = 
θn1  2

Bi/2 BL = 
Pn
2Ps

 
2BL
Bi

 = 
Pn
Ps

 ·
BL
Bi

 = 
BL

(SNR)iBi
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RMS Value of the Output Phase Noise – Continued
We noted previously that,

θn1  2  = 
1

2(SNR)i
 

A dual relationship holds for the output,

 θn2  2  = 
1

2(SNR)L
 

where (SNR)L is the signal-to-noise ratio at the output.

∴ (SNR)L = (SNR)i 
Bi

2BL
 

This equation suggests that the PLL improves the SNR of the input signal by a factor of
Bi/2BL.  Thus, the narrower the noise PLL bandwidth, BL, the greater the improvement.

Some experimental observations:
•  For (SNR)L = 1, a lock-in process will not occur because the output phase noise is

excessive.
• At an (SNR)L = 2, lock-in is eventually possible.
• For (SNR)L = 4, stable operation is generally possible.

Note: (SNR)L = 4, θn2  2  becomes 0.125 radians2. θn2  2  = 0.353 radians ⇒ 20° and the
limit of dynamic stability (180°) is rarely exceeded.
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Summary of Noise Analysis of the LPLL
• Stable operation of the LPLL is possible if (SNR)L ≥ 4

• (SNR)L is calculated from

(SNR)L = 
Ps
Pn

 
Bi

2BL
 

where Ps = signal power at the reference input

Pn = noise power at the reference point

Bi = bandwidth of the system at the input

BL = noise bandwidth of the PLL

• The noise bandwidth, BL, is a function of ωn and ζ.  For ζ = 0.7, BL = 0.53ωn

• The average time interval between two unlocking events gets longer as the (SNR)L
increases.
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Pull-In Techniques for Noisy Signals
1.)  The sweep technique.

When the noise bandwidth is made small, the SNR of the loop is sufficiently large to
provide stable operation.  However, the lock range can become smaller than the
frequency interval ∆ω within which the input signal is expected to be.  The following
circuit solves this problem by providing a direct VCO sweep.
(1.)  LPLL not locked.
(2.)  RUN mode starts

a positive sweep.
(3.)  When the VCO

frequency
approaches the
input frequency
the loop locks.

 (4.) The “In-Lock”
detector switches
the sweep switch
to the “HOLD”
position.

Phase
Detector

Low Pass
Filter

VCO

Output

Fig. 2.1-19

90° Phase
Shifter

Multiplier

+
-

Vref

"RUN"

"HOLD"
Sweep
Input

v2(t)

v2(t)
v1(t)

v1'(t)

C R

Low Pass
Filter

Schmitt
Trigger

"In-Lock" Detector

vm(t) = v1'(t)·v2(t)

vsweep

t
RUN

HOLD
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Pull-In Techniques for Noisy Signals
2.)  Switched filter technique.

Phase
Detector

VCO

v2(t)

v1(t)
Rsmall(not locked)

Rlarge(locked)

Switched Loop Filter

"In-Lock"
Detector

vf(t)

Fig. 2.1-20

In the unlocked state, the filter bandwidth is large so that lock range exceeds the
frequency range within which the input is expected.
In the locked state, the filter bandwidth is reduced in order to reduce the noise.
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LPLL SYSTEM DESIGN
Design Procedure
Objective: Design the parameters Ko, Kd, ζ, and the filter F(s) of the LPLL.

Given:  The phase detector and VCO and pertinent information concerning these blocks.
Steps:
1.) Specify the center frequency, ωo, and its range ωomin and ωomax.

2.) Select the value of ζ.   Small values give an overshoot and large values are slow.  ζ =
0.7 is typically a good value to choose.

3.) Specify the lock range ∆ωL.

a.)  If noise can be neglected, then the selected value of  ∆ωL is chosen.

b.)  If noise cannot be neglected, then use the input noise SNR, (SNR)i and the input
noise bandwidth, Bi, to find the noise bandwidth, BL.  Later when we find ωn, the
value of ∆ωL will be specified.

4.) Specify the frequency range of the LPLL as ω2min and ω2max as,

ω2min < ωomin - ∆ωL and ω2max > ωomax + ∆ωL

Some practical limits are,
ω2min = ωomin - 1.5∆ωL and ω2max = ωomax + 1.5∆ωL
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Design Procedure – Continued
5.) Design of the VCO.  From the power supply voltage or data sheet find the value of Ko

as shown below.
ω2

ω2max

ω2min

ωo

vf
VBVB

2
vf(max)vf(min)

Ko =
ω2max - ω2min
vf(max) - vf(min)

Fig. 2.1-21

6.) Determine the value of Kd from the data sheet. Kd will depend upon the signal level.  It
is preferred to have a large value of Kd.

7.) Determine the natural frequency, ωn.
a.)  Lock range has been specified in step 3.).

ωn = 
∆ωL
2ζ  

b.)  Noise bandwidth has been specified in step 3.)

ωn = 
2BL

ζ + 0.25ζ 
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Design Procedure – Continued
8.) Select the type of loop filter.

a.)  Passive lag filter:
Solve for τ1 and τ2 from the following equations.  Normally, τ1 should be 5-10
times τ2.  If this is not the case, choose another type of filter.

ωn = 
KoKd
τ1+τ2

 and ζ = 
ωn
2  











τ2 + 
1

KoKd
 

b.)  Active lag filter:
Use the following equations to solve for τ1, τ2, and Ka.  It will be necessary to
choose one of these parameters because there are only two equations.

ωn = 
KoKdKa

τ1
 and ζ = 

ωn
2  











τ2 + 
1

KoKdKa
 

c.)  Active PI filter:
Use the following equations to solve for τ1 and τ2.  Because this filter has a pole
at s = 0, it is not necessary for τ1 to be larger than τ2.

ωn = 
KoKd
τ1

 and ζ = 
ωnτ2

2  
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LPLL Design Example
Consider the multichannel telemetry system shown where one single, voice-grade
communication line is used to transmit a number of signal channels.

S1

S2

SN

E1

E2

EN

Transmitters Receivers

f01

Channel
1

Fr
eq

ue
nc

y 
Sp

ec
tr

um

f02

Channel
2

f03

Channel
3

f0N

Channel
N

f

2∆ωLmin

2∆ωLmax

Bi

3 kHz300 Hz

Fig. 2.1-22

Each transmitter is to transmit a binary signal with a baud rate of 50 bits/sec.  The signal
is encoded in a non-return to zero format which means that the bandwidth required is half
the baud rate or 25 Hz.  The spectrum of the FM-modulated carrier consists of the carrier
frequency and a number of sidebands displaced by ±25 Hz, ±2·25 Hz, etc. from the carrier
frequency.
Assuming that a narrow-band FM is used, the channel spacing will be selected as 60 Hz.
The channel is assumed to be an ordinary telephone cable with a bandwidth of 300 Hz to
3000 Hz giving Bi = 2700 Hz.  Therefore, the maximum number of channels is

Max. no. of channels = Bi/Channel spacing = 2700/60 = 45 channels.
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LPLL Design Example – Continued
Design one of the receivers using the procedure outlined above assuming the carrier
frequency is 1000 Hz.  Assume the VCO is an XR-215†

1.)  The angular frequency, ωo, is 2π·1000 = 6280 sec.-1.
2.)  Select ζ  = 0.7.
3.) In this problem the noise cannot be neglected.  Therefore, we must find the noise
bandwidth, BL, of the loop and not the lock-range ∆ωL. The input SNR is given as

(SNR)i = 
Ps
Pn

 

Because there are 44 other channels, let the noise of our particular channel be Pn = 44Ps.
Therefore,

(SNR)i = 
Ps
Pn

  = 
1

44  ≈ 0.023

To enable locking onto the carrier, the SNR of the loop should be approximately 4.

∴ BL = 
(SNR)i
(SNR)L

Bi
2  = 

0.023·2700
4·2  = 7.67 Hz

4.) Determine the lock range.  Because the noise bandwidth, BL, is very small, the lock
range will be small and will be determined in step 7.

                             
†  Phase-Locked Loop Data Book, Exar Integrated Systems, Sunnyvale, CA, 1981.( http://www.exar.com/products/XR215A.html)
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LPLL Design Example – Continued
5.) From the data sheet of the VCO we get,

fo = 
200
Co

 










1 + 
0.6
Rx

 and Ko = 
700

CoRo
 

where the resistors are in kΩ  and the capacitors in µF.
Choosing Co = 0.27µF and Rx = 1.71kΩ gives the required center frequency of 1000 Hz.

The data sheet specifices that Ro should be in the range of 1 to 10 kΩ.  Therefore, we see
that Ko can be in the range of 260 rads/sec·V to 2600 rads/sec·V.  Choosing Ro as 10 kΩ,
gives Ko = 260 rads/sec·V.

This means that the VCO can change its frequency by 260/2π = 41.4 Hz.  We will have to
check in step 7 that this range is sufficient to enable locking within the lock range of ∆ωL.

6.) Determine Kd.  A plot of the data sheet is

shown. In the application we are considering,
the input signal level is 3mV(rms).
∴ Kd ≈ 0.2 V/rad/
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LPLL Design Example – Continued
7.) ωn is calculated from BL and ζ and is,

ωn = 
2BL

ζ + 0.25ζ  = 
2·7.67

0.7·1.25 = 17.53 sec.-1

The lock-in range is found as,

∆ωL = 2ζωn = 24.54 sec.-1

8.) Solve for τ1 and τ2 from the equations below.

ωn = 
KoKd
τ1+τ2

 and ζ = 
ωn
2  











τ2 + 
1

KoKd
 

τ2 = 
2ζ
ωn

 - 
1

KoKd
  = 60.6 ms

τ1 + τ2 = 
KoKd

ωn
2   = 169.2 ms→ τ1 =  108.6 ms

The resistor R1 is already integrated on the chip as 6 kΩ.

9.)  Finally, determine R1, R2, and C of the filter.  The data sheet shows that the resistor,
R1, is already integrated on the chip as 6 kΩ.  (Note: Two passive lag filters are needed.)

∴ C = 
τ1
R1

  = 
108.6 ms

6 kΩ  = 18.1 µF and R2 = 
τ2
C   = 

60.6 ms
18.1 µF  = 3.35 kΩ
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Simulation of the LPLL Design Example
The open loop transfer function is,

LG(s) = 
Kv
s 








1+sτ1

1+s(τ1 +τ2)  = 
52
s 








1+s60.6x10-3

1+s169.2x10-3

Cutoff frequency:

ωc = ωn 2ζ2 + 4ζ4+1 = 17.53 2·0.72 + 4·0.74+1 = 27.045 rads/sec  (4.3 Hz)

The phase margin can be written as,
PM = 180° - 90° + tan-1(ωc·60.6x10-3) - tan-1(ωc·169.2x10-3)

= 90° + 58.61° - 77.67° = 70.94°
PSPICE Input File:
LPLL Design Problem-Open Loop Response
VS 1 0 AC 1.0
R1 1 0 10K
* Loop bandwidth = Kv =52 sec.-1   Tau1=60.6E-3  Tau2=108.6E-3
ELPLL 2 0 LAPLACE {V(1)}= {(52/(S+0.00001))*((1+60.6E-3*S)/(1+108.6E-3*S))}
R2 2 0 10K
*Steady state AC analysis
.AC DEC 20 0.01 100
.PRINT AC VDB(2) VP(2)
.PROBE
.END
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Simulation of the LPLL Design Example - Continued
Open Loop Response
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LPLL Design Example – Continued
Implementation of the FSK Demodulator:

Phase
Detector

+
-

R2 =
3.35kΩ

R2 =
3.35kΩ

C =
18.1 µF

C =
18.1 µF

VCO

R1=6kΩ

R1=6kΩ

1 128 11

Co = 0.27µF

Timing
Capacitor

15

1413103216

4

6

5

9 2

Demodulated Output Signal

VCO
Sweep
Input

VCO
Gain

Control

VCO Output

Range
Select

Phase
Detector
Outputs

VCC

VEE PD
Out

4.7kΩ 100kΩ

68nF

10kΩ

5kΩ
Rx

10kΩ

FM Input

+15V
0.1µF

0.1µF

2.2kΩ

2.2kΩ

4.7kΩ

4.7kΩ 0.1µF

Phase
Detector
Inputs

Phase
Comparator

Bias

Op Amp
Input

Op Amp
Output

XR-215
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LPLL SYSTEM SIMULATION
A PC-based simulation program developed by R.M. Best and found as part of the 4th

edition is used as an example of PLL simulation at the systems level.  The description of
how to use this program is found on the CD or described in the text, Phase-Locked
Loops-Design, Simulation, and Applications, 4th ed., 1999, McGraw-Hill Book Co.
The simulation flow chart is show below and follows the previous design procedure.

Start

Step 1 - Specify ωo and the range of ωo.

Step 2 - Specify ζ

Noise can be neglected

Step 3.1 - Secify the 
noise bandwidth, BL

No

Step 3.2 - Secify the 
lock range, ∆ωL

Yes

Step 4 - Specify frequency range of VCO

Step 5 - Specify VCO characteristic.  Calculate
Ko.  Determine external components of the VCO

Step 6 - Determine reference signal 
level, v1, and phase detector gain, Kd

Noise can be neglected

Step 7.1 - Calculate
ωn from BL and ζ

No

Step 7.2 - Calculate
ωn from ζ and ∆ωL

Yes

Step 8 - Select type of loop filter.  Calculate
loop filter parameters τ1, τ2 and (Ka)

Step 9 - Determine the extenal
components of the loop filter

End Fig. 2.1-24
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Example of LPPL Simulation
PLL selected is:
1.) Architecture - LPLL, Passive Lag, and VCO
2.) Parameters –

Power supply = +5V and 0V

Phase detector:  Kd = 1.0, Vsat
+ = 4.5V and Vsat

- = 0.5V

Loop filter:  τ1 = 500 µsec. and τ2 = 50 µsec.

Oscillator: Ko = 130,000 rads/sec·V, Vsat
+ = 4.5V and Vsat

- = 0.5V

The simulator program calculates ωn = 15,374.12 rads/sec. and ζ = 0.443.

Using the formulas developed in these notes, we can compute the key LPLL parameters
as:
1.) Lock range: ∆ωL = 13,621 rads/sec. → ∆fL = 2169 Hz

2.) Pull-out range: ∆ωPO = 39,932 rads/sec. → ∆fPO = 6358 Hz

3.) Pull-in range:  ∆ωP = 53,597 rads/sec. → ∆fP = 8534 Hz

(The ratio 
ωn

KoKd
 = 0.12 and can be considered a high-gain loop)

4.) Hold range: ∆ωH = 130,000 rads/sec. → ∆fL = 20,700 Hz

On the following pages, we attempt to verify these values by simulation.
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Pull-out Range of the LPLL (2kHz Frequency Step)

mV

vd(t)

vf(t)
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Linearity of the LPLL (Frequency Step Doubled from 2kHz to 4kHz)

mV

vd(t)

vf(t)

The LPLL is not linear
because doubling the
frequency step did not
double the output.

The flat topped response for
vd(t) indicates that the phase
error is close to π/2.

Loop is still locked.
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Pull-out Range of the LPLL (Frequency = 5kHz)

V

vd(t)

vf(t)

The dip in the response of
the detector output implies
that the phase error has
exceeded π/2.

The loop is still locked.
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Finding the Pull-out Range (Frequency step = 5700Hz)

V

vd(t)

vf(t)

The loop has not yet pulled
out and is still locked.
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Finding the Pull-out Frequency (Frequency step = 5800Hz)

V

vd(t)

vf(t)

From this simulation, we see
that the pull-out frequency
is close to 5800Hz which is
compared with the predicted
value of 6358Hz (10%
error).
Because the frequency step
applied to the LPLL is
smaller than the pull-in
range, the loop locks again
after a short time.
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Finding the Pull-in Frequency (Frequency step = 7000Hz)

V

vd(t)

vf(t)

The frequency step of
7000Hz causes the LPLL to
pull-out again.  However,
the pull-in process takes
longer than before.
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Finding the Pull-in Frequency (Frequency step = 8000Hz)

V

vd(t)

vf(t)

The frequency step of
8000Hz causes the LPLL to
pull-out again.  However,
the pull-in process takes
even longer than before.
We can estimate the lock
range by observing that vf(t)
gets slowly “pumped up”.
When it reached about 2.8V,
the PLL became locked
within one oscillation of
vd(t).  The value of vf(t) at
lock is 2.9V.  The 0.1V
difference corresponds to a
lock range of 2000Hz.

Loop begins
to lock
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Finding the Pull-in Frequency (Frequency Step = 9000Hz)

V

vd(t)

vf(t)

The frequency step of
9000Hz causes the LPLL to
pull-out and is no longer
able to pull back in.
Further simulation showed
that the LPLL cannot pull
back in for a frequency step
of 8500Hz.
∴ The pull-in frequency is
near 8500Hz compared with
a predicted value of 8534Hz.
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SUMMARY
•  Lectures 050 and 060 constitute a systems perspective of the LPLL
•  LPLL components are:

 1.) Multiplying phase detector
 2.) Low pass filter
 3.) Voltage controlled oscillator

•  Locked state:  Input frequency = VCO frequency
The phase response is low pass
The phase error response is high pass

•  Unlocked state:
- Hold range (∆ωH) – frequency range over which a PLL can statically maintain phase
- Pull-in range (∆ωP) - frequency range within which a PLL will always lock
- Pull-out range (∆ωPO) – dynamic limit for stable operation of a PLL
- Lock range (∆ωL) - frequency range within which a PLL locks within one single-beat

note between reference frequency and output frequency
•  The order of a PLL is equal to the number of poles in the open-loop PLL transfer

function
•  LPLL design –Design the parameters Ko, Kd, ζ, and the filter F(s) of the LPLL for a

given performance specification.


