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LECTURE 160 – PHASE NOISE - II
(References [4,6,9])

LINEAR TIME INVARIENT MODELS OF VCO PHASE NOISE
Amplifier Phase Noise (A Two-Port Approach)
Consider the oscillator as an amplifier with feedback as shown.
Let us examine the phase noise added to an amplifier that has a
noise factor of F where

F = 
(S/N)in
(S/N)in

 

If the amplifier has a power gain of G, then
Nout = FGkT∆f and Nin = FkT∆f

The input phase noise in a 1 Hz bandwidth at a frequency of fo + fm from the carrier is
given by,

θrms1 = 
VNrms

2·VSrms
  = 

FkT
2Ps

 

where
VNrms = the rms noise voltage at the input
VSrms = the rms signal voltage at the input
F = noise factor
Ps = input signal power

Resonator
H(fm)

Amplifier
Output

Fig. 3.4-21
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Amplifier Phase Noise - Continued
Since a correlated random phase deviation, θrms2, exists at fo – fm, the total phase noise
deviation becomes,

θrms = θrms1
2 + θrms2

2  = 
FkT
Ps

 

Now, the phase noise spectral density of the noise contributed by the amplifier, N(jω), can
be written as,

Sθ(fm) = θrms
2 = 

FkT
Ps

 

In addition to the above thermal noise,
we can include the flicker or 1/f noise.
The phase noise spectral density is
given as,

Sθ(fm) = 
FkT
Ps 










1 + 
fc
f  

FkT
Ps

Sθ(fm)

fc

1/f noise

f
Fig. 3.43
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Linear Time Invarient Model for the Phase Noise of an Oscillator using a Resonator
N(jω) = phase noise contributed by the amplifier
Solving for Y(jω):

Y(jω) = 
1

1 - H(jω) N(jω) + 
1

1 - H(jω) X(jω) 

Let Soθ(fm) = the output phase noise spectral

density in (volts2/Hz) of the oscillator
fo = oscillator frequency

fm = frequency deviation about fo
Sθ(fm) = phase noise spectral density of N(jω)

Soθ(fm) = 








1

1 - H(fm) 
2
 Sθ(fm) 

Assume that H(jω)  is a bandpass function.

∴ H(jω) = 

jωωo
Q

(jω)2 + 
jωωo

Q  + ωo2
 = 

jf
foQ

1 - 








f

fo
2 + 

jf
foQ

 = 
1

1 + jQ 








fo

f  - 
f
fo

X(jω) Y(jω)

Frequency shaping 
network Fig. 3.4-22

+

+

+
+

N(jω)

H(jω)
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Noise Transfer Function of a Resonator Oscillator - Continued
If f = fo + fm, then

H(fm) = 
1

1 + jQ 








fo

fo+fm - 
fo + fm

fo

 = 
1

1 - jQ 










1 + 
fm
fo  - 

1
1 + fm/fo

 ≈ 
1

1 - jQ 








2fm

fo

Substituting this expression in Soθ(fm) = 








1

1 - H(fm) 
2
 Sθ(fm) , gives

Soθ (fm) = 








1

1 - H(fm) 
2
 Sθ (fm) =  









1/H(fm)

1/H(fm) -1
2
 Sθ (fm) = 







1 - jQ









2fm

fo

- jQ








2fm

fo

2
 Sθ (fm) 

  Soθ (fm) ≈ 









1

- jQ








2fm

fo

2
 Sθ (fm) = 









1

4Q2 








fo

fm
 2

 Sθ (fm)   ←  Leeson’s equation

Comments:
•  The further away fm is from fo, the smaller the phase noise.
•  The larger the open-loop Q, the smaller the phase noise.
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Phase Noise of an Ideal LC Oscillator (Two-Terminal Approach)†

In general, an LC oscillator can be modeled as,

Noiseless
Energy

Restorer

+

V

-

R C L

Fig. 3.4-26

The energy stored is,

Estored = 
1
2 CVpeak

2

Assuming a sinusoidal signal, the mean square carrier voltage is,

Vsig
2  = 

Estored
C  

The total mean square noise is,

Vn
2   = 4kTR⌡


⌠

0

∞







Z(f)

R
2
df  = 4kTR







1

4RC   = 
kT
C  

where |Z(f)/R| is the bandwidth of the resonator.
                             
† T.H. Lee and A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE J. of Solid-State Circuits, Vol. 35, No. 3, March 2000.
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Phase Noise of an Ideal LC Oscillator (Two-Terminal Approach) - Continued
The “noise-to-signal” ratio is given as,

N
S  = R

Vn
2

Vsig
2  = 

kT
Estored

 

which confirms that one needs to maximize the signal level to reduce the noise-to-carrier
ratio.
Power consumption and Q can be brought into the relationship via the definition of Q,

Q = 
Energy stored

Energy dissipated per cycle  = 
ω Estored

Pdiss
 

Therefore,
N
S  = 

ωkT
QPdiss

 

These relationships are reasonably valid for real oscillators and encourage the use of large
values of Q to achieve low phase noise (which is not the total picture).
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Phase Noise of an Ideal LC Oscillator (Two-Terminal Approach) - Continued
Assume that the only source of noise is the thermal (white) noise of the resistor.
Therefore, the noise can be represented by a current source in parallel with the LC tank
with a mean-square spectral density of,

in2

∆f  = 4kTG

The noise voltage is more useful and is found by multiplying the noise current times the
tank impedance.  However, if the energy restoring circuit perfectly cancels the positive
resistance, we have an ideal LC impedance at resonance.  For relatively small deviations
from resonance, ∆ω, we have,

Z(ωo+∆ω) ≈ j
ωoL

2
∆ω
ωo

 

A more useful form is achieved using the expression for the unloaded Q of the LC tank.

Q = 
R

ωoL  = 
1

ωoGL → |Z(ωo+∆ω)| ≈ 
1
G 

ωo
2Q∆ω 

The spectral density of the mean-square noise voltage can be expressed as,
vn

2

∆f  = 
in2

∆f  |Z|2 =  4kTR 








ωo

2Q∆ω
2
 → 1/f 2 behavior
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Phase Noise of an Ideal LC Oscillator (Two-Terminal Approach) - Continued
In the ideal model, the thermal noise affects both amplitude and phase which is

represented by the previous expression.  When in equilibrium, these two noise
contribution are equal.

In an amplitude limited system, the limiting mechanism removes the amplitude noise so
that the spectral density of the mean-square noise voltage for an LC tank with an
amplitude limiting mechanism is equal to half of the previous result,

vn
2

∆f  = 
in2

∆f  |Z|2 =  2kTR 








ωo

2Q∆ω
2
 

Normalizing the voltage noise by the rms signal voltage (Ps = Vs
2/R), gives the single-

sideband noise spectral density as,

L(∆ω) = 10 log 








2kT

Ps 







ωo

2Q∆ω
2

 

Interpretation:
•  Phase noise improves as Q increases (the LC tank’s impedance falls off as 1/Q∆ω).
•  Phase noise improves as the carrier power increases (thermal noise stays constant)
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Phase Noise of an Ideal LC Oscillator (Two-Terminal Approach) - Continued
Results of simplifying assumptions:

•  Although real spectra possess a 1/f 2 region, the magnitudes are larger than that
predicted above.

•  There are other noise sources besides the tank loss (i.e., the energy restorer).
•  The measured spectra will eventually flatten out for large frequency offsets (this is

due to noise such as the output buffers or even the limitation of the measurement
equipment itself).

•  There is almost always a 1/(∆ω)3 region at small offsets.
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A Modification to the Single-Sideband Phase Noise (Leeson)
A modification to the single-sideband phase noise by Leeson is as follows:

L(∆ω) = 10 log 






1

2 Soθ(fm)   = 10 log 





FkT

Ps
 










1 + 
1

4Q2 








fo

fm
2

 










1 + 
fc
f  

The modifications are:

1.) To include a factor, F, to account for the increased noise in the 1/(∆ω)2 region.
2.)  Include a 1 inside the brackets to include the flattening out of the spectra.

3.)  Include a multiplicative term to provide a 1/(∆ω)3 region at small offset frequencies.
Typical result:

L[∆ω] dBc/Hz

1
∆f 3

(Slope = -30dB/decade)

1
∆f 2

(Slope = -20dB/decade)

∆ω1/f3
log(∆ω)

Fig. 3.4-23
ωo
2Q

10log(       )2FkT
Psig
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LINEAR TIME VARYING NOISE MODEL FOR VCO PHASE NOISE
Linear Time Varying Noise Model
In reality, most oscillators are time varying systems and the previous time-invarient
analysis needs to be modified to account for time variance.  (Linearity is still a reasonable
assumption, however.)
How are oscillators time varying?
Consider the LC oscillator shown excited by a current pulse:

i(t) L C

i(t)

t
τ

δ(t-τ)

Fig. 3.4-24

Assume that the oscillator is oscillating with some constant amplitude.  The following
shows the impulse response of the oscillator at two different times and demonstrates time
variance.

∆V

tτ

Vmax

∆V tτ

Vmax

Fig. 3.4-25
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Impulse Sensitivity Function
The impulse response completely characterizes the oscillator since linearity still remains a
good assumption.  Therefore, let us find the single-sideband phase noise using the impulse
response approach.

The impulse response for a step change in the phase may be written as,

hφ(t,τ) = 
Γ(ωoτ)
qmax

 u(t-τ)

where u(t) is a unit step function and Γ(x) is called the impulse sensitivity function (ISF)
and qmax is the maximum charge displacement across the capacitor.

ISF is a dimensionless, frequency and amplitude independent function periodic in 2π.  It
encodes information about the sensitivity of the oscillator to an impulse injected at phase
ωoτ.

The following are some
examples of the ISF:

t

Vout(t)

t

Γ(ωot)

LC Oscillator

t

Vout(t)

t

Γ(ωot)

Ring Oscillator

Fig. 3.4-27



Lecture 160 – Phase Noise - II  (6/25/03) Page 160-13

ECE 6440  - Frequency Synthesizers © P.E. Allen - 2003

Excess Phase using the ISF
Once the ISF has been determined (many means are possible but simulation is probably
the best), we may compute the excess phase through the use of the superposition integral:

φ(t) = ⌡⌠

-∞

∞
hφ(t,τ)i(τ)dτ  = 

1
qmax ⌡⌠

-∞

t
Γ(ωoτ)i(τ)dτ 

Illustration of this computation:

∫
t

-∞

cos[ωot + φ(t)]

Γ(ωot)

ψ(t) φ(t) v(t)i(t)
qmax

Ideal
Integration

Phase
ModulationFig. 3.4-28

This process involves the modulation of the normalized input noise current injected into
the node of interest by a periodic function (ISF), followed by an ideal integration and a
nonlinear phase modulation that converts phase to voltage.
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Excess Phase using the ISF – Continued
To put the above equation in a more practical form, note that the ISF is periodic and

therefore can be represented by a Fourier series as,

Γ(ωoτ) = c0 + ∑
n=1

∞
cn cos(nωoτ + θn) 

where the coefficients, cn, are real and θn is the phase of the n-th harmonic of the ISF.

In the following, we shall assume that the noise components are uncorrelated so their
relative phase is unimportant and θn can be ignored.  If the series converges rapidly, then
the ISF is well-approximated by only the first few terms.

Substituting the Fourier expansion of the ISF into the previous work gives the excess
phase as,

φ(t) = 
1

qmax
 






c0 ⌡⌠

-∞

t

i(τ)dτ + ∑
n=1

∞
cn ⌡⌠

-∞

t
i(τ)cos(nωoτ) dτ  
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Excess Phase using the ISF – Continued
Illustration of the ISF decomposition:

∫
t

-∞

cos[ωot + φ(t)]
φ(t) v(t)i(t)

qmax

Fig. 3.4-29

c0

c1cos[ωot + θ1]

cncos[nωot + θn]

∫
t

-∞

∫
t

-∞

Σ

The block diagram contains elements that are analogous to those of a superheterodyne
receiver.  The normalized noise current is analogous to a broadband “RF” signal whose
Fourier components undergo simultaneous down-conversion by a “local oscillator” at all
harmonics of the oscillation frequency.
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Sidebands of Excess Phase
The previous analogy can be used to show that the excess phase noise has two equal

sidebands at ±∆ω even though injection occurs near some integer multiple of ωo.

Consider a sinusoidal current that is injected at a frequency ∆ω, where ∆ω << ωo.

i(t) = In cos (∆ωt)

Substitute this expression into
the previous expression for φ(t)
with n =0, gives the following

φ(t) ≈ 
I0c0
qmax

 ⌡⌠

-∞

t

 cos (∆ωt)dτ 

    = 
I0c0 sin(∆ωt)

qmax∆ω  

where there is a negligible
contribution to the integral by
terms other than n = 0.
Therefore, the spectrum of φ(t)
consists of two equal sidebands
at ∆ω even though the injection occurred near ω =0.

i(ω)

ω

πI0πI0

∆ω−∆ω
Γ(ω)

ω

πc1

2πI0 πc2
πc3

πc1

πc2
πc3

+ωo +2ωo +3ωo-ωo-2ωo-3ωo
Sφ(ω)

ω
∆ω−∆ω +ωo +2ωo +3ωo

Integration

-ωo-2ωo-3ωo
Fig. 3.4-30
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Sidebands of Excess Phase - Continued
Consider a sinusoidal current that is injected at a frequency which is close to the

oscillation frequency,
i(t) = I1 cos [ωo + ∆ω)t]

where ∆ω << ωo.

Substitute this expression into
the previous expression for φ(t)
gives the following

φ(t) ≈ 
I1c1 sin(∆ωt)

2qmax∆ω  

where there is a negligible
contribution to the integral by
terms other than n=1.
Again, the spectrum of φ(t)
consists of two equal sidebands
at ∆ω even though the injection
occurred near ωo.

i(ω)

ω

πI1πI1

ωo +∆ω−ωo−∆ω
Γ(ω)

ω

πc1

πI0 πc2
πc3

πc1

πc2
πc3

+ωo +2ωo +3ωo-ωo-2ωo-3ωo
Sφ(ω)

ω
∆ω−∆ω +ωo +2ωo +3ωo

Integration

-ωo-2ωo-3ωo
Fig. 3.4-31
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Sidebands of Excess Phase - Continued
In general, consider a sinusoidal current that is injected at a frequency near an integer

n of the oscillation frequency,
i(t) = In cos [nωo + ∆ω)t]

where ∆ω << ωo.

Substitute this expression into the previous expression for φ(t) gives the following

φ(t) ≈ 
Incn sin(∆ωt)

2qmax∆ω  

where there is a negligible contribution to the integral by terms other than n.
Therefore, the spectrum of φ(t) consists of two equal sidebands at ∆ω even though the

injection occurred near some integer multiple of ωo.
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Single-Sideband Noise using the LTV Model
How is the excess phase noise linked to spectrum of the output voltage of the oscillator?
Consider the following equation,

vout(t) = cos[ωot + φ(t)]

which acts like a phase-to-voltage converter.
Expanding vout(t) gives,

vout(t) = cos(ωot)cos[φ(t)] - sin(ωot)sin[φ(t)] ≈ cos(ωot) - φ(t)sin(ωot)

for small values of φ(t).
Substituting the value of φ(t) from the previous slide gives

vout(t) = cos(ωot) - 
Incn sin(∆ωt)

2qmax∆ω  sin(ωot)

Therefore, the single-sideband power relative to the carrier is given as,

PdBc(∆ω) = 








Incn

4qmax∆ω
2
 → PdBc(∆ω) = 






in2

∆f∑
n=0

∞

cn
2

4qmax
2∆ω2  

for white noise†.

                             
†  A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Cricuts, vol. 34, no. 5, May 1999, pp. 716-724.
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Conversion of Noise to Phase Fluctuations and Phase-Noise Sidebands
The previous expressions for PdBc(∆ω) imply both an upward and downward conversion
of phase noise onto the noise near the carrier as illustrated below.

in2

∆f
(ω)

∆ω

3ωo

∆ω

2ωo

∆ω

ωo∆ω
ω

1/f noise

ω

Sφ(ω)

∆ω-∆ω

ω

Sv(ω)

3ωo2ωoωo
ωo+∆ωωo-∆ω

c0 c1 c2 c3

Phase
Modulation

Fig. 3.4-32

Components of the noise near integer multiples of the carrier frequency all fold into noise
near the carrier itself.
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Single-Sideband Phase Noise of the LTV Model
The total single-sideband phase noise spectral density due to one noise source at an offset
frequency of ∆ω is given by the sum of the powers in the previous figure and is

L(∆ω) = 10 log 





in2

∆f∑
n=0

∞

cn
2

4qmax
2∆ω2  

According to Parseval’s relation,

∑
n=0

∞

cn
2  = 

1
π ⌡⌠

0

2π

|Γ(x)|2dx = 2Γrms
2

where Γrms is the rms value of Γ(x).

Therefore,

L(∆ω) = 10 log 









Γrms
2

qmax
2    

in2 /∆f

2∆ω2  

This equation is rigorous equation for the 1/f2 region and no empirical curve-fitting
parameters are needed.
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Single-Sideband Phase Noise of the LTV Model – Continued
The close-in phase noise can be modeled by assuming the current noise behaves as
follows in the 1/f region,

in,1/f
2    = in2  

ω1/f
∆ω  

Using the previous results for white noise, we obtain the following,

L(∆ω) = 10 log 







in2

∆f  c0
2

8qmax
2∆ω2 

ω1/f
∆ω  

which describes the behavior in the 1/f 3 region.

Equating the above to the single-sideband phase noise in the 1/f 2 region gives,

∆ω1/f = ω1/f 
c0

2

4Γrms
2   = ω1/f 






Γdc

Γrms
2

 2 

where Γdc is the dc value of Γ.

Note that the 1 f 3 is not necessarily the same as the 1/f circuit noise corner and is
generally lower.
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Summary
So what does all this mean?
To reduce the phase noise in PLLs due to VCO’s:
1.)  Make the tank Q or resonator Q as large as possible.
2.)  Maximize the signal power.
3.)  Minimize the ISF.
4.)  Force the energy restoring circuit to function when the ISF is at a minimum and to

deliver it’s energy in the shortest possible time.
5.)  The best oscillators will possess symmetry which leads to small Γdc for minimum

upconversion of 1/f noise.
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PHASE NOISE IN LC OSCILLATORS
LC Oscillator Example using the LTV Theory – Colpitts Oscillator

VBias

L

VDD

R

C1

C2
IBias

vd

v1

C2 L R

gmv

v
+

-

C1

Small-signal
model

t

vd

t

id

IBias

t

in(t)

Fig. 3.4-33

Note that id only flows during a short interval coincident with minimum ISF.

v = 
gmZv'

Z + 
1

sC1
 + 

1
sC2

 
1

sC2
where Z = 

sRL
R + sL 
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Colpitts LC Oscillator Example – Continued

LG = 
v
v'  = 

gm





sRL

R + sL

 
sRL

R + sL + 
1

sC1
 + 

1
sC2

 
1

sC2
 = 

gmRL
C2

sRL + (sL+R)








1

sC1
 + 

1
sC2

 

= 
s
gmRL

C2

s2RL + sL








1

C1
 + 

1
C2

 + 








R

C1
 + 

R
C2

  = 
s
gm
C2

s2 + s








1

RC1
 + 

1
RC2

 + 








1

LC1
 + 

1
LC2

 

LG = 
jω 

gm
C2









1

LC1
 + 

1
LC2

 - ω2 + jω








1

RC1
 + 

1
RC2

 = 1 +j0

ωosc = 
1

LC1
 + 

1
LC2

 and

gm
C2

1
RC1

 + 
1

RC2

 =1 → gmR = 1 + 
C2
C1

 

It can be shown by the LTV theory that the best phase noise occurs when C2 is
approximately 4 to 5 times C1.
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An Optimum Low-Phase Noise LC Oscillator
The Colpitts LC oscillator suffers

from the fact the tank voltage cannot
exceed power supply.  The Clapp LC
oscillator, shown previously, avoids
this problem with a tapped resonator.
A common implementation of the
Clapp oscillator is the differential
version shown.1 2 3

This circuit uses an automatic
amplitude control circuit to force the
value of loop gain needed to provide
contant oscillation amplitude.

Impulse sensitivity function model-
ing was used to optimize the noise
performance.  The optimum tapping
ratio (1+C2/C1) was found to be 4.5.

                             
1 J. Craninckx and M. Steyaert, “A 1.8 GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler,” IEEE J. of Solid-State Circuits, Vol.

30, pp. 1474-1482, Dec. 1995.
2  T.I. Ahrens and T. H. Lee, “A 1.4 GHz, 3mW CMOS LC low phase noise VCO using tapped bond wire inductance,” Proc. ISLPED, Aug. 1998,

pp. 16-19.
3  M. Margarit, J. Tham, R. Meyer, and M. Deen, “A low-noise, low-power VCO with automatic amplitude control for wireless applications,” IEEE J.
of Solid-State Circuits, Vol. 34, pp. 761-771, June 1999.

VCC

L1L2

R1R2 C2

C2

C4 C3

VCtrl

VBias VBias

IBias

Resonator

vout

Fig. 3.4-34



Lecture 160 – Phase Noise - II  (6/25/03) Page 160-27

ECE 6440  - Frequency Synthesizers © P.E. Allen - 2003

Symmetrical LC Oscillator
This configuration exploits importance in the LTV theory of symmetry.

VDD

M1 M2

M3 M4

0.5L  

C

0.5L

I

VDD

M1 M2

M3 M4

0.5L  

C

0.5L

I

VDD

M1 M2

M3 M4

0.5L  

C

0.5L

Fig. 3.4-35

I

• Select the relative widths of the PMOS and NMOS to minimize the dc value of the ISF
which will minimize the upconversion of 1/f noise.

• The bridge arrangement of transistors allows for greater signal swings.
• 0.25µm CMOS gives –121dBc/Hz at 600kHz offset at 1.8 GHz dissipating 6mW†

                             
† A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circutis, vol. 34, pp. 716-724, May 1999.
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Finding the ISF
1.) Direct Method

Apply an impulse to the oscillator and measure the steady state perturbation.  Repeat
the application of the impulse throughout the entire cycle of the oscillator

t

t

v(t)

Γ[ωo(t-T/4)]

t

Γ[ωo(t-T/2)]

t

Γ[ωo(t)]

t

Γ[ωo(t-T/12)]

t

Γ[ωo(t-3T/4)]

t

Γ[ωo(t-T/6)]

Fig. 160-01

Caution:  The impulse amplitude must be small enough to insure the assumption of
linearity is valid.  One can check by increasing or decreasing the impulse amplitude and
see if the response scales linearly.
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Finding the ISF – Continued
2.) Steady-State Method.

Simulate the oscillator limit cycle upon the application of a small perturbation.  The
phase shift is given by the change in time to transverse the new limit cycle.

Does not take into account the AM-to-PM conversion that occurs in the oscillator.
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Amplitude Noise (versus Phase Noise)
The close-in sideband are dominated by the phase noise whereas the far out sidebands

are more affected by amplitude noise.
Unlike phase noise, amplitude noise will decay with time because of the amplitude

restoring mechanisms present in all oscillators.  The excess amplitude may decay slowly
as in the case of a harmonic oscillator or quickly as in the case of a ring oscillator.

d(t)

t

Overdamped Response

d(t)

t

Underdamped Response

Fig. 160-03

If the current impulse that causes an instantaneous voltage change on the capacitor is a
white noise source with a power spectral density of in2 /∆f , then the single sideband
noise can be found as,

Lamplitude{∆ω} = 
Λ(ωoτ
qmax

2  
in2 /∆f 

2








ωo

2

Q2  + ∆ω2

where Λ(ωot) is a periodic function that determines the sensitivity of each point of the
waveform to an impulse and is called the amplitude impulse sensitivity function.



Lecture 160 – Phase Noise - II  (6/25/03) Page 160-31

ECE 6440  - Frequency Synthesizers © P.E. Allen - 2003

Amplitude Noise – Continued
The amplitude and phase noise and total output sideband power for the overdamped
exponentially decaying amplitude response is shown below.
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JITTER AND PHASE NOISE IN RING OSCILLATORS
Ring Oscillators
Problems:
1.) The Q is low (energy stored in the capacitor is discharged every cycle)
2.) The energy is stored at the rising/falling edges rather than at voltage maximums
However, the ring oscillator achieves better phase noise in a mixed signal environment.
Five-stage inverter-chain ring oscillator with a current impulse injected:

Effect of impulses injected during the transition and during the peak.

Time
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Impulse Sensitivity Function for Single-Ended Ring Oscillators
Approximate waveform and ISF for a single-ended ring oscillator:

The approximate rms value of Γ is,

Γrms ≈ 
2π2

3η3 
1

N1.5
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Impulse Sensitivity Function for Single-Ended Ring Oscillators - Continued
The relationship between risetime and delay (definition of η):

RMS values of the ISFs for various single-ended ring oscillators versus no. of stages:
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Phase Noise and Jitter of the Single-Ended Ring Oscillator
(We should not conclude from the previous result that the phase noise will decrease with
the number of stages.)
Assuming VTN = |VTP|, the maximum total channel current noise from the inverter is

in2

∆f  = 



in2

∆f N
 = 




in2

∆f p
 = 4kTγµeffCox

Weff
L ∆V

where
∆V = the gate overdrive in the middle of the transition = 0.5VDD - VT

γ = 2/3 for long channel devices in saturation and 1.5 to 2 for shorter channel devices
in saturation

µeff   = 
µnWn + µpWp

Wn + Wp
 

Weff = Wn + Wp
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Phase Noise and Jitter for Single-Ended Ring Oscillators - Continued
Assumptions –

Thermal noise sources of the different devices are uncorrelated.
The waveform (hence the ISF) of all the nodes are the same except for a phase shift.

The resulting phase noise and jitter is given as,

where

Vchar = 
(VDD/2) - VT

γ 
P = 2ηNVDDqmaxfo

fo = 
1

NtD  = 
1

ηN(tr+tf)  ≈ 
µeffWeff Cox∆V2

8ηNLqmax

Note that L{∆ω} and στ are independent of N.  Why?

The increase in the number of stages adds more noise and counters the decrease in the
ISF with N.

L{∆ω} ≈ 
8

3η  
kT
P   

VDD
Vchar

 
ωo

2

∆ω2

στ = 
8

3η  
kT
P   

VDD
Vchar

 τ 
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Phase Noise and Jitter of a Differential Ring Oscillator
Consider the following differential MOS ring oscillator with
a resistive load.

Total power dissipation:
P = NItailVDD

The frequency of oscillation:

fo = 
1

NtD  = 
1

2ηNtr  ≈ 
Ιtail

2ηNqmax

Characteristics of phase noise in differential ring oscillators:
1.) Tail current noise in the vicinity of fo does not affect the phase noise.

2.) Tail current noise influences the phase noise at low frequencies and at even
multiples of fo.

3.) Tail current at low frequencies can be reduced by exploiting symmetry.
4.) Tail current at even multiples of fo, can be reduced by harmonic traps.

Therefore, the total current noise on each single-ended node is

in2

∆f  = 



in2

∆f N
 + 




in2

∆f Load
 = 4kTΙtail









1

Vchar
 + 

1
RLItail

in2

∆f Load

in2

∆f N

VDD

VBias Itail

RL RL

W/L W/L

Fig. 160-11
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Phase Noise of a Differential Ring Oscillator - Continued
Making the following assumptions simplifies the expressions for phase noise and jitter:
1.)  No correlation among the various noise sources.
2.)  The ISF for the differential pair transistor noise sources and the ISF for the load

resistors noise are the same.
To further simplify the expressions, assume that the phase noise and jitter due to all 2N
noise sources is 2N times the values of the individual phase and noise sources.  Thus,

L{∆ω}  ≈ 2N 



Γrms

2

qmax
2 

in2 /∆f 

2∆ω2  = 
2N

qmax
2  









2π2

3η3N3  
in2 /∆f 

2∆ω2   = 
1

6qmax
2η3N2fo2 




in2

∆f  
ωo

2

2∆ω2

Substituting for fo gives,

L{∆ω}  ≈ 
4η2N2qmax

2

6qmax
2η3N2Itail

2 



in2

∆f  
ωo

2

∆ω2 = 
4

6ηItail
2 



in2

∆f  
ωo

2

∆ω2

Substituting for in2 /∆f and replacing Itail in terms of P gives,

where

Vchar = 
VGS-VT

γ    for long channel and Vchar = 
EcL
γ   for short channels

L{∆ω} ≈ 
8NkT
3ηP  









VDD

Vchar
 + 

VDD
RLItail

 
ωo

2

∆ω2
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Jitter Noise of a Differential Ring Oscillator
Assuming as before that the jitter noise due to all 2N noise sources is 2N times the values
of the individual jitter noise sources gives,

στ ≈ 2N  
Γrms

qmaxωo

1
2 

in2

∆f  τ 

= 
2N

qmax
 





2π2

3η3 
1

N N
 








2ηNqmax

2πItail
 2kTItail









1

 Vchar
 + 

1
RLItail

 τ 

στ ≈  
4

3ηN 
2kT
Itail 








1

 Vchar
 + 

1
RLItail

 τ 

Replacing the first Itail in terms of P gives,

στ ≈ 
8

3η  
kTN
P 








1

 Vchar
 + 

1
RLItail

 τ 
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Comparison of the Single-Ended and Differential Ring Oscillator Noise
Note, that both L{∆ω}  and στ for the differential ring oscillator will increase with N.

Why? The answer is in the way the two oscillators dissipate power.
Differential Ring Oscillator:

The dc current from the supply is independent of the number and slope of the
transition.

Single-Ended Ring Oscillator:
This oscillator dissipate power mainly on a per transition basis and therfore have better
phase noise for a given power dissipation.

However, a differential topology may still be preferred in an IC implementation because of
the lower sensitivity to substrate and supply noise, as well as lower noise injection into
other circuits on the chip.
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Optimum Number of Stages for Ring Oscillators
Single-ended ring oscillators:
What is the optimum number of stages for an inverter (single-ended) ring oscillator for
best jitter and phase noise for a given frequency, fo, and power, P?

Observations:
1.) The phase noise and jitter in the 1/f2 region are not strong functions of N.
2.) If the symmetry criteria is not well satisfied and/or the process has a large 1/f noise,
then a larger N will reduce the jitter.
Result:

The number of stages for an inverter ring oscillator depends on 1/f noise, the maximum
frequency of oscillation, and the influence of external noise sources such as supply and
substrate which may not scale with N.
Differential ring oscillators:

Jitter and phase noise will increase with increasing N.  Therefore, if the 1/f noise corner
is not large and/or proper symmetry measures have been taken, then the minimum
number of stage gives the best results (N = 3 or 4).
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Ring Oscillators with Correlated Noise Sources
Noise analysis of ring oscillators:
1.) Assume that all noise sources are strongly correlated (i.e. substrate noise and power

supply noise).
2.) If all noise sources in the inverters are the same, then

φ(t) = 
1

qmax
 ⌡⌠

-∞

t

i(τ)










∑
n=0

N-1

Γ 








ωoτ + 
2πn
N  dτ

However, the term 










∑
n=0

N-1

Γ 








ωoτ + 
2πn
N  is zero except at dc and multiplies of Nωo.

∴ φ(t) = 
N

qmax
 ∑
n=0

N-1
c(nN) ⌡⌠

-∞

t
i(τ)cos(nN)ωoτ dτ
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Phase Noise of Ring Oscillators – Continued
The previous expression implies that
for fully correlated sources, only noise
in the vicinity of integer multiples of
Nωo affects the phase noise.

⇒
Therefore, every effort should be made
to maximize the correlations of noise
arising from the substrate and supply
perturbations.

Example of a 5-stage ring oscillator with correlated noise sources:

Phasors for the noise contributions from
each source:

Sideband power below
carrier for fully correlated
injection at nfo+fm:
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Minimizing the Correlated Noise of Ring Oscillators
Methods of minimizing the phase noise in ring oscillators:
1.) Make the stages identical.
2.) The physical orientation of all stages should be the same.
3.) Layout the stages close together.
4.) Interconnect wires between stages should be the same length and shape.
5.) A common supply line should feed all inverter stages.
6.) The loading of each stage should be identical – use dummy stages.

x1

x1 x1x1x1

1 2 3 4 5

Fig. 160-09

7.) Use the largest number of stages consistent with the oscillator.
8.) If the low frequency portion of the substrate and supply noise dominates, exploit

symmetry to minimize Γd.
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SUMMARY
•  Phase noise and jitter are key parameters in characterizing the spectral purity of

periodic waveforms
•  Two important phase noise models are the LTI and LTV models
•  To reduce the phase noise in LC oscillators:

1.)  Make the tank Q or resonator Q as large as possible.
2.)  Maximize the signal power.
3.)  Minimize the ISF.
4.)  Force the energy restoring circuit to function when the ISF is at a minimum and

to deliver it’s energy in the shortest possible time.
5.)  The best oscillators will possess symmetry which leads to small Γdc for minimum

upconversion of 1/f noise.
•  To reduce the phase and jitter noise in ring oscillators

1.)  The inverter ring oscillator does not depend strongly upon N so reduction of
noise depends more on the noise sources than the number of stages.

2.)  Use differential ring oscillators to minimize substrate and supply noise.
3.) If the noise sources are correlated, use matching to reduce the noise.

For further information on applying these principles to oscillators, see Hajimiri and Lee,
The Design of Low Noise Oscillators, Kluwer Academic Publishers, 1999.


