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LECTURE 180 –FREQUENCY SYNTHESIZERS – GSM EXAMPLE
(References [3,11])

Specifications
Frequency range:  890-960MHz Switching time:  ≤ 800µs    Close-in rms noise:  ≤ 2°
Phase noise @ 200kHz:  -110dBc Reference spurs: < -71dBc    Pdiss:  ≤ 50mW

Block Diagram of the Design:
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Fig. 12.4-21

Technology used is 0.5µm CMOS with 3 metal layers.
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Design of the PFD
Illustration of (a.) symbol, (b.) state-diagram:

Illustration of the response with fr>fo,  fr<fo, V lagging R, and R lagging V.
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PFD Implementation and Response
PFD consists of two edge-triggered, resettable D flipflops with their D inputs connected
to logical 1.
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Note that the outputs Up and Dn are simultaneously high for a duration of τd equal to the
total delay through the AND gate and the reset path of the D flipflop.

A dead zone exists when the phase error is nearly zero.  Neither the Up or Dn signal
reaches the logic 1 and the charge pump is disconnected from the capacitor.  In this case,
the high impedance node of the charge pump will leak off until the phase difference of the
inputs is large enough for the PFD to exit the dead zone and turn on the charge pump to
correct this error.
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A PFD without a Dead Zone
Concept:

Modified D flipflop:
•  Number of transistors in the signal path

has been reduced.
• Extra gates have been added to

increase the reset delay.
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Simulated PFD Waveforms
The input R leads the input V by 3ns at f = 20 MHz.
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Charge Pump
One possible differential charge pump.

Comments:
•  Large transistors are needed for the Up and

Up  and Dn and Dn  

•  Larger switches introduce more parasitic capacitance decreasing the response speed
and introducing a dead zone.

Thus, tradeoffs between response speed and matching are needed.

Fig. 4.3-34
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A Second Charge-Pump
Uses current steering in the source-
coupled pairs, MN1-MN2 and MP1 and
MP2.
Current sinks and sources are 300µA.

This charge pump does not produce
current spikes resulting from charge
sharing which in turn minimizes the spurs
in the synthesized RF signal.
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Fig. 4.3-35
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Simulated Charge-Pump Waveforms
The reference signal, fref, leads the feedback VCO signal, fvco, by 3ns.  The frequency of
fref and fvco is 20 MHz.
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Simulated Charge-Pump Current Waveforms
The charge pump has been simulated over a ±3σ process variation at VDD = 3.3V.
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Loop Filter Design
In order to supress the high-frequency noise introduced by the third-order, delta-sigma
modulator, it will be necessary to select a higher order loop filter.
A third-order filter is chosen for this work and is shown below.
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Fig. 4.3-36

The transfer function is

F(s) = 
1+sCR

s2RCC1 + sC + sC1
  = 

1+sτ2
s(C + C1)(1+sτ1) 

where

τ1 = 
CC1

C + C1
 R and τ2 = RC

Actually, more supression is needed and R2 and C2 above are added prior to the VCO
making the PLL a type-II, fourth-order.
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The Third-Order Filter Response
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Realization of the Loop Filter
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The transfer function of this filter is given as,
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Simulated Settling Time
Simulated results for 30MHz frequency steps using behavioral modeling:

Settles to within ±100Hz at about 172µs.
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Frequency Divider

A multimodulus prescaler with four different divide ratios:
Consists of a divide-by-8/9 prescaler, composed of a synchronous divide-by-4/5 and a
toggle flipflop, a three-stage extender, and control logic gates.
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Timing Diagrams of the Four-Modulus Prescaler

a.)  Divide-by 72: The prescaler divides by 9 for eight F1 cycles.

b.)  Divide-by 71: The prescaler divides by 8 for one F1 cycle and 9 for seven F2 cycles.

c.)  Divide-by 70: The prescaler divides by 8 for two F1 cycle and 9 for six F2 cycles.

d.)  Divide-by 69: The prescaler divides by 8 for three F1 cycle and 9 for five F2 cycles.
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Eight-Modulus Prescaler:
The following multi-modulus prescaler is based on a dual-modulus prescaler.
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o
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fout
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Fig. 4.3-375

The multi-modulus prescaler can achieve a divide ratio of 64 to 144.
For this work, the divide ratio is set to N-3 to N+4 where N = 70.

I.e.  67, 68, 69, 70, 71, 72, 73, and 74
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Circuit Design for the Multimodulus Prescaler
To avoid switching noise generation and reduce the coupling noise from the supply line
and substrate,  a folded source-coupled logic and ECL-like logic were chosen.
Differential Inverter/Buffer: Temperature and Supply Independent Biasing:

Fig. 4.3-39
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Fig. 4.3-38
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Implementation of the D Flipflop with an Embedded NAND Gate
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Positive Edge-Triggered Toggle Flipflop

D Qi

Clk

Di Q

QClk
Master SlaveClk

Q

Qi

Clk

Q

Qi

Fig. 4.3-41

Note that the master output, Qi, always leads the slave output, Q, by 90°.

If the master output is used as the inputs to the control logic gates to generate the
appropriate control signals for the prescaler, the delay requirement in a critical path of the
prescaler loop is relaxed which causes reduction in power consumption.
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Implementation of a 16/17 Dual Modulus Prescaler using Above Concepts

Uses the master outputs instead of the slave outputs to generate the control signals.
When MC is high, the divide ratio is 17 and when MC is low, the divide ratio is 16.
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Accumulator
A three-stage modulated fractional divider controller.
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Fig. 4.3-42

This circuit generates the modulus control signals for the multi-modulus prescaler.
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Bias Circuitry
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Bias Circuitry-Continued

Distribution of the current avoids change in bias voltage due to IR drop in bias lines.

Slave bias circuit:
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Fig. 400-08
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Synthesizer Block Diagram
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Measurements – Close-In Spectrum
Close-in output spectrum with (962.5MHz) and without the delta-sigma modulator
(962.715MHz, k =1):

No delta-sigma modulator With delta-sigma modulator
The phase noise at an offset frequency of 100kHz is about 1.7dB better with the
modulator.
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Measurements – Single Sideband Phase Noise
Loop bandwidth is 20kHz.

The measured phase noise is -110dBc/Hz at a 200kHz offset and -118dBc/Hz at a
600kHz offset.
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Measurement – Phase Noise with a 5kHz Loop Bandwidth
fref = 14MHz, k=0 → 980MHz: fref  = 14MHz, k=1 → 980.219MHz:

The loop filter was connected to the output of the charge pump and the input of the VCO
by long wires which caused some pick-up noise to occur at the input of the VCO resulting
in spur-like spikes within the loop bandwidth.
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Measurements – Reference Sideband Spurs
fo = 962.5MHz, loop bandwidth < 40kHz

The sideband spurs are less than –73.5dBc.
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Measurements – Harmonic Distortion

 The measured second harmonic is –24dBc.
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Summary of Measured Results

Measurement Prototype 1 (NMOS VCO) Prototype 2 (PMOS VCO)
Close-in RMS Noise < 2° < 2°
Phase noise @ 200kHz -110dBc/Hz -110dBc/Hz
Frequency range 834-965 MHz 862-1004.5 MHz
Reference Spurs < -71dBc < -73.5dBc
2nd Harmonic -24dBc -24dBc
Simulated Settling Time 172µs 172µs
Loop bandwidth 20kHz 20kHz
Power dissipation 43mW@VDD = 3.3V 43mW@VDD = 3.3V

6.6mW-VCO
6.9mW-Prescaler

1.3mW-Bias
2mW-Charge Pump

0.7mW-Reference Buffer
1mW-Digital

24.4mW-VCO Buffer
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SUMMARY
CMOS Frequency Synthesizer State-of-art Performance

Design [1] [2] [3] [4]
Architecture Frac-N Dual Loop Frac-N Int-N

Process 0.4µm CMOS 0.5µm CMOS 0.5µm CMOS 0.4µm CMOS
Application DCS-1800 GSM GSM, AMPS WLAN
Frequency 1.8GHz 900MHz 1.1GHz 2.6/5.2GHz

Freq. Resolution 200kHz 200kHz < 1Hz 23.5MHz
Ref. Frequency 26.6MHz 1.6MHz&205MHz 7.944MHz 11.75MHz

Loop BW 45kHz 40kHz & 27kHz 40kHz N/A
Chip Area 3.23mm2 2.64mm2 11.03mm2 2.01mm2

Phase Noise
-121dBc/Hz
@600MHz

-121.8dBc/Hz
@600MHz

-92 dBc/Hz
@10kHz

-115dBc/Hz
@10MHz

Spurs -75dBc -79.5dBc -95dBc -53dBc
Switching Time < 250µs < 830µs < 150µs 40µs
Supply Voltage 3V 2V 2.5V – 4V 2.6

Power 51mW 34mW 25mW 47mW
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State-of-the Art Performance Summary – Continued

Design [5] [6] [7] [8]
Architecture Int-N Frac-N Frac-N DDS-Driven

Process 0.24µm CMOS 0.35µm CMOS 0.5µm CMOS 0.25µm CMOS
Application WLAN PCS GSM DCS-1800
Frequency 5GHz 1.9GHz 900MHa 1.7GHz

Freq. Resolution 22MHz 10kHz 12.5kHz 200kHz
Ref. Frequency 11MHz 19.68MHz 25.6MHz ≈ 8MHz

Loop BW 280kHz N/A 80kHz 52kHz
Chip Area 1.6mm2 5 mm2 0.99 mm2 > 2mm2

Phase Noise
-101dBc/Hz

@1MHz
-104dBc/Hz
@100kHz

-118dBc/Hz
@600kHz

N/A

Spurs < -45dBc N/A -67dBc < -70dBc
Switching Time N/A < 800µs < 100µs 150µs
Supply Voltage 1.5V/2.0V 3V 1.5V 2.0V

Power 25mW 60mW 30mW 9mW
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