
LECTURE 220 – CLOCK AND DATA RECOVERY CIRCUITS - III

(Reference [6])

A 10-Gb/s CMOS CLOCK AND DATA RECOVERY CIRCUIT WITH FREQUENCY DETECTION

Specification and Technology

Generic Clock and Data Recovery Block Diagram:

Issues are:

- Jitter
- Skew between D_{in} and Clk
- Suitability for implementation in VLSI technology
- Power dissipation

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)

Page 220-2

Choice of Technology

Technology will be 0.18µm CMOS

Consequences:

- Limited speed:
 - Digital latches < 10 GHz
 - Phase detector < 10 GHz
- Low supply voltage (1.8V):
 - Limits the choice of circuit topologies
 - Leads to a large VCO gain and potentially high jitter

Choice of VCO

- LC
 - Small jitter
 - High center frequency
 - Narrow tuning range
 - Single-ended control
- Ring Oscillator
 - Large jitter
 - Low center frequency
 - Wide tuning range
 - Differential control

Phase Detector Design Issues

1.) System level

Linear PD versus a bang-bang (Alexander)

2.) Technology limitations

Full rate PD versus a half rate PD

3.) Skew problems

No regeneration versus inherent regeneration

Frequency Detector Design Issues

1.) Capture range

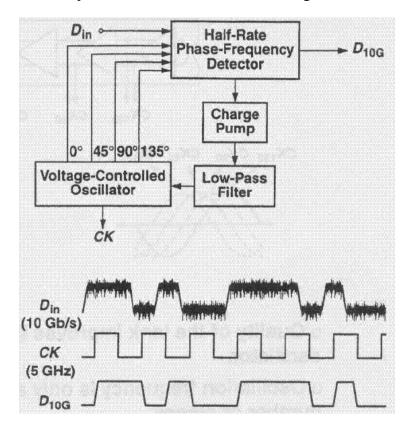
Analog versus digital

2.) System complexity

Additional frequency detector versus phase detector compatibility

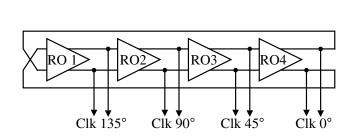
3.) Technology limitations

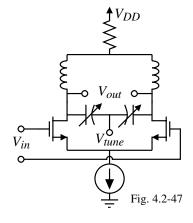
Full rate FD versus a half rate FD


ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)


Page 220-4


Clock Data Recovery Architecture for this Example

Multiphase VCO

Use a 4-stage ring oscillator with spiral inductors and MOS varactors.

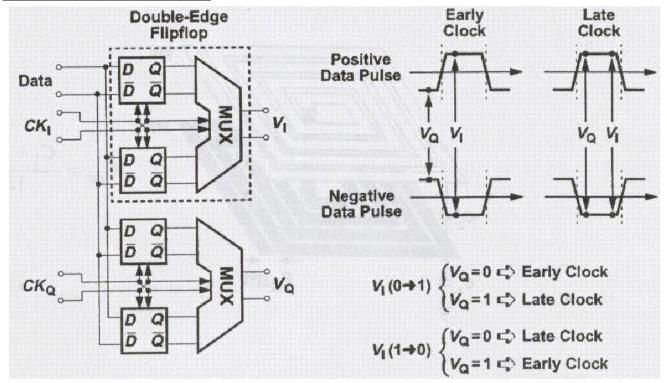
Comments:

- The LC tank improves the phase noise of the oscillator
- The oscillation frequency is only a weak function of the number of stages

 If we model each stage by a parallel RLC circuit, the phase shift of each stage should be 45°. Therefore,

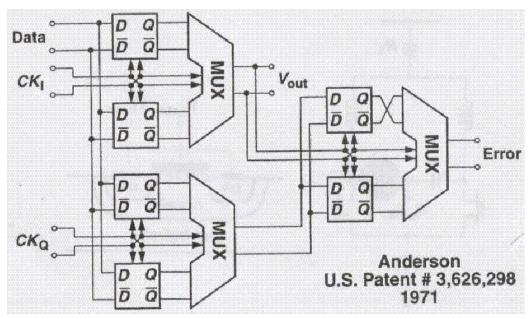
$$\operatorname{Arg}[Z(j\omega)] = 45^{\circ} \quad \Rightarrow \quad \tan^{-1}\left(\frac{L\omega}{R_{p}(1-LCQ\omega^{2})}\right) = 45^{\circ} \quad \Rightarrow \quad \omega_{osc} = \frac{1}{\sqrt{LC}}\sqrt{1-\frac{1}{Q}}$$

• The oscillator's common mode level is shifter to provide a large tuning range.


ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)


Page 220-6

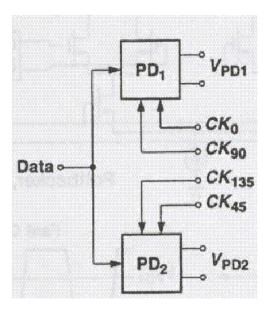
Half-Rate Phase Detection

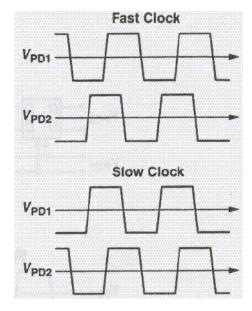
If V_1 makes a high-to-low transition, V_Q must be inverted to provide consistent phase error information.

Overall Phase Detector

Comments:

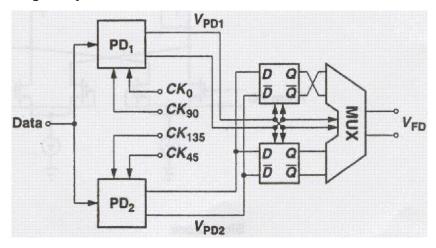
- CK_I and CK_O are 5GHz quadrature clock phases
- Data is a 10 Gb/s input data signal
- V_{out} is a 10 Gb/s output data signal


ECE 6440 - Frequency Synthesizers


© P.E. Allen - 2003

Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)

Page 220-8

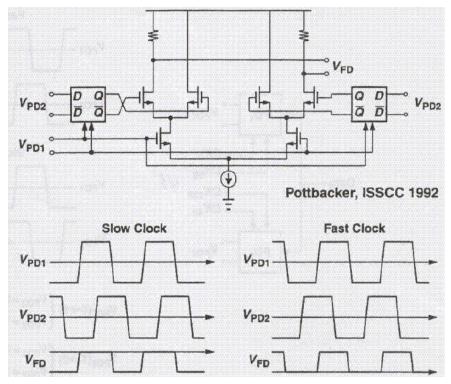

Half-Rate Frequency Detection

$$V_{PD1}(0\rightarrow 1)$$
 $\begin{cases} V_{PD2} = 0 \implies \text{Slow Clock} \\ V_{PD2} = 1 \implies \text{Fast Clock} \end{cases}$ $V_{PD1}(1\rightarrow 0)$ $\begin{cases} V_{PD2} = 0 \implies \text{Fast Clock} \\ V_{PD2} = 1 \implies \text{Slow Clock} \end{cases}$

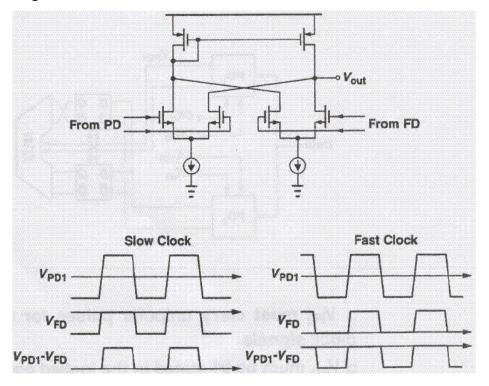
Half-Rate Frequency Detector

Comments:

- V_{FD} must carry unipolar pulses for fast and slow clock signals.
- V_{FD} must be a tri-state signal in the locked condition.


ECE 6440 - Frequency Synthesizers

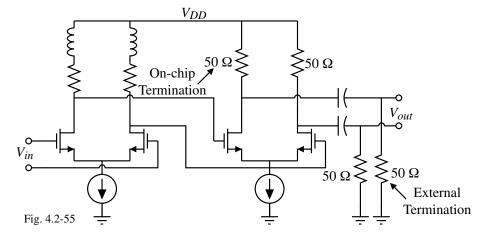
© P.E. Allen - 2003


Lecture 220 – Clock and Data Recovery Circuits - III (6/26/03)

Page 220-10

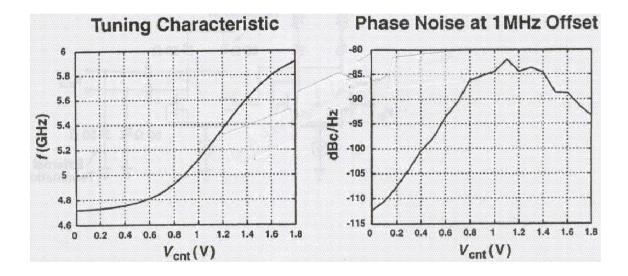
Modified Multiplexer

Charge Pump


ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

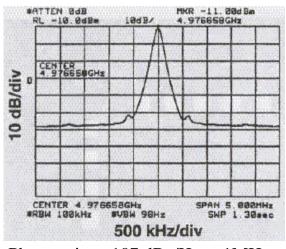
Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)

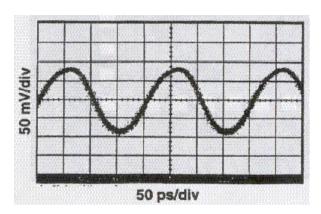

Page 220-12

Output Buffer

The inductors have a line width of $4\mu m$ to achieve a high self-resonance frequency.

Measured Open-Loop VCO Characteristics

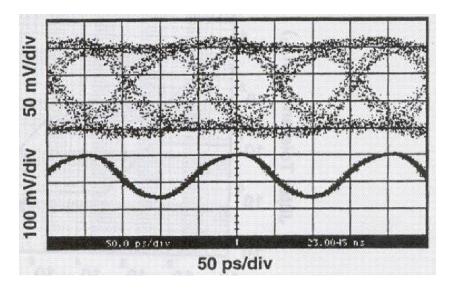

ECE 6440 - Frequency Synthesizers


© P.E. Allen - 2003

Lecture 220 – Clock and Data Recovery Circuits - III (6/26/03)

Page 220-14

Measured Recovered Clock

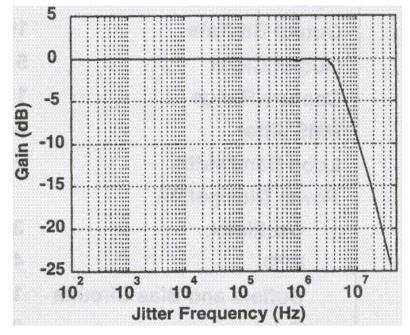


Phase noise: -107 dBc/Hz at 1MHz offset.

Input Sequence	Jitter (pp)	Jitter (rms)
(PRBS)	(ps)	(ps)
2^{23} -1	9.9	0.8
27-1	2.4	0.4

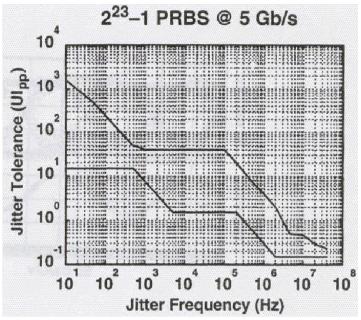
ECE 6440 - Frequency Synthesizers

Measured Data


ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)


Page 220-16

Measured Jitter Transfer Characteristic

Loop Bandwidth = 5.2 MHz Jitter Peaking = 0.04 dB

Measured Jitter Tolerance Characteristic

BER@10Gb/s = 10^{-9}

BER@5Gb/s = 10^{-12}

Output buffer probably increases the BER at lower bit rates.

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220 – Clock and Data Recovery Circuits - III (6/26/03)

Page 220-18

Performance Summary

Characteristic	Performance	
Input Bit Rate	10 Gb/s	
Output Bit Rate	10 Gb/s	
Output Clock	5 GHz	
Capture Range	1.43 GHz	
RMS Jitter	0.8 ps	
Loop Bandwidth	5.2 MHz	
Power Dissipation		
Oscillator:	30.6 mW	
PFD:	42.2 mW	
Buffers and Bias Circuits	18.2 mW	
Total	91 mW	
Area	1.75 mm x 1.55 mm	
Supply Voltage	1.8V	
Technology	0.18 μm CMOS	

Summary of 10Gb/s Example

- A half-rate architecture relaxes the speed constraints of the system.
- A four-stage LC oscillator provide multiple phases with low jitter.
- A half-rate phase and frequency detector with inherent retiming is introduced.
- Inductive peaking enhances speed of the output buffers.

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)

Page 220-20

SUMMARY

Outline of Material Covered

Introduction to Phase Locked Loops (PLLs)

Systems Perspective of PLLs

- Linear PLLs
- Digital PLLs (DPLLs)
- All-Digital PLL (ADPLLs)
- PLL Measurements

Circuits Perspective of PLLs

- Phase/Frequency Detectors
- Filters and Charge Pumps
- Voltage Controlled Oscillators (VCOs)
- Phase Noise in VCOs

PLL Applications and Examples

- Applications of PLLs
- Clock and Data Recovery Circuits
- Frequency Synthesizers for Wireless Applications

Objective

Understand and demonstrate the principles and applications of phase locked loops using integrated circuit technology with emphasis on CMOS technology.

CMOS Technology

How well does CMOS do the PLL?

- Very good for digital circuits and lower speed analog circuits
- Practical speed limits are found around 5-10 GHz. The primary challenge here is the VCO
- At this point, circuit cleverness should allow most PLL applications to be possible and practical. With time, CMOS technology should allow the speed barrier to be pushed out.

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220 - Clock and Data Recovery Circuits - III (6/26/03)

Page 220-22

Some Key Points

- CMOS is capable of implementing all types of PLLs LPLL, DPLL, and ADPLL
- Noise in the PLL consists of component noise and timing jitter, both resulting in phase noise.
- Blocks of the PLL include the PFD/PD, filter, and VCO.
- To reduce phase noise in PLLs due to the VCO:
 - Make the tank Q or resonator Q large
 - Maximize the signal power
 - Minimize the impulse sensitivity function (ISF)
 - Force the energy restoring circuit to function when the ISF is at a minimum and to deliver its energy in the shorted possible time.
 - The best oscillators will possess symmetry which leads to minimum upconversion of 1/f noise.

Applications of PLLs

Clock and data recovery
 Gb/s

10 Gb/s

2.) Frequency synthesizer

GSM

Bluetooth

ECE 6440 - Frequency Synthesizers

© P.E. Allen - 2003

Lecture 220-Clock and Data Recovery Circuits - III $\,(6/26/03)\,$

Page 220-24

Pertinent References

- 1. F.M Gardner, *Phaselock Techniques*, 2nd edition, John-Wiley & Sons, Inc., New York, 1979.
- 2. B. Razavi (ed.), *Monolithic Phase-Locked Loops and Clock Recovery Circuits*, IEEE Press, 1997.
- 3. R.E. Best, *Phase-Locked Loops: Design, Simulation, and Applications*, 4th edition, McGraw-Hill, 1999.
- 4. T. H. Lee and A. Hajimiri, "Oscillator Phase Noise: A Tutorial," *IEEE J. of Solid-State Circuits*, Vol. 35, No. 3, March 2000, pp. 326-335.
- 5. A. Hajimiri, S. Limotyrakis, and T. H. Lee, "Jitter and Phase Noise in Ring Oscillators," *IEEE J. of Solid-State Circuits*," Vol. 34, No. 6, June 1999, pp. 790-336.
- 6. B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003
- 7. Recent publications of the *IEEE Journal of Solid-State Circuits* and the proceedings of the *International Solid-State Circuits Conference*.