
A Configurable Hardware Scheduler A Configurable Hardware Scheduler
(CHS) for Real(CHS) for Real--Time SystemsTime Systems

Pramote Kucharoen, Mohamed A. Shalan and Vincent J. Mooney III

Center for Research on Embedded Systems and Technology
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA

23 June 2003

2

OutlineOutline
• Introduction
• Related work
• CHS architecture
• CHS commands
• CHS interface
• Software support
• Automatic customization of CHS
• Experiments and results
• Conclusion

3

IntroductionIntroduction

Real-time system layers

ApplicationApplication

RTOSRTOS

HardwareHardware

Task1 Task2 Task3

Application 1

Task1 Task2 Task3

Application 2

Core Time Task SchedulerCHS Support

Memory I/OCPU

4

µµµµµµµµCC/OS II Background Processing/OS II Background Processing
ptcb = OSTCBList; /* Point at first TCB in TCB list */
while (ptcb->OSTCBId != OS_TASK_IDLE_ID) { /* Go through all TCBs in TCB list */

OS_ENTER_CRITICAL();
if (ptcb->OSTCBDly != 0) { /* Delayed or waiting for event with TO */

if (--ptcb->OSTCBDly == 0) { /* Decrement nbr of ticks to end of delay */
if (!(ptcb->OSTCBStat & OS_STAT_SUSPEND)) /* Is task suspended? */

OSSched(ptcb,RDY);
else /* Yes, Leave 1 tick to prevent loosing */

ptcb->OSTCBDly = 1; /* the task when the suspension is removed. */
}

}
ptcb = ptcb->OSTCBNext; /* Point at next TCB in TCB list */
OS_EXIT_CRITICAL();

} NOT FIXED-CYCLE OPERATIONS

Number of Tasks Dependent

5

Overhead in Overhead in µµµµµµµµCC/OS II Scheduler/OS II Scheduler

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 100 1000

Time tick resolution (usec)

O
ve

rh
ea

d
%

64 tasks

32 tasks

4 tasks
8 tasks

16 tasks

Time tick Resolution

Dependence

6

Related WorkRelated Work

Inflexible

Inflexible
Only One

Scheduling

Discipline
Only One

Scheduling

Discipline
Packet

Scheduler
Packet

Scheduler

FASTHARDFASTHARDFASTCHARTFASTCHART

Not for
Adaptive
Systems

Not for
Adaptive
Systems

7

Why do we need the CHS?Why do we need the CHS?
• To reduce the scheduling overhead from the real-

time operating system; hence, improve the system
response time

• To support a wide range of applications by
supporting multiple scheduling disciplines that can
be changed during system execution time.
– Priority
– Earliest Dead Line First (EDF)
– Rate Monotonic (RM)

8

CHS Architecture (1)CHS Architecture (1)

Tasks
Table

Tasks
Table

Interrupt
Controller

Interrupt
Controller

.....

Int 0
Int 1

Int 7

SQSQ PQPQ

Current TaskCurrent Task

Control UnitControl Unit

Control Signals

Bus Interface Signals

9

REG + Counter

LOGICComparator

REG + Counter

LOGICComparator

REG + Counter

LOGICComparator

CHS Architecture (2)CHS Architecture (2)
Priority Queue (Ready Queue)

ID Register Counter

REG + Counter

LOGICComparator

Comparison results from the right blockNew DataComparison Results

10

CHS Architecture (3)CHS Architecture (3)
Sleep Queue
• Used to store the Sleeping Tasks (YIELD/SLEEP).
• The Tasks are sorted according to their remaining sleep time.
• Once The Sleep Time expires it is moved to the PQ.

ID Counter

11

CHS Architecture (4)CHS Architecture (4)
Task Table
• Store Information about the existing tasks
• Indexed by the Task ID

PRI Period WCET TYPE PRE STATUS

12

CHS CommandsCHS Commands

1DELETE
1RESUME
1SUSPEND
1YIELD
1SSLEEP
2SLEEP
2MODIFY Task
1CREATE Task

Task Related

1CONFIGURE
1RUN
1STOP

Scheduler Related

of CyclesCommand

13

CHS InterfaceCHS Interface

The CHS Hardware is designed to be able to
interface easily to any microprocessor core:
– As a memory mapped I/O Port,
– As a co-processor, or
– As instruction-set accelerator

14

Software SupportSoftware Support
APIs
• Task

– createTask
– suspendTask, resumeTask
– changePriority, changeWCET, changePeriod
– Yield
– ssleep, sleep

• Scheduler
– configureScheduler
– enableScheduler, disableScheduler

15

Automatic Customization of CHSAutomatic Customization of CHS

SConSCon

VPPVPP
Customized

HW
Customized

HW

HW
DB

HW
DB

SW
DB

SW
DB

Customized
RTOS

Customized
RTOS

DC
Synthesis

Script

DC
Synthesis

Script

16

Experiments and Results (1)Experiments and Results (1)

Simulation Environment

VCSVCS Seamless CVESeamless CVE XRAYXRAY

MemoryMemory

MPC750MPC750 Hardware
Scheduler

Hardware
Scheduler

Address/Data Bus

Interrupt

17

Experiments and Results (2)Experiments and Results (2)

047+47*(number of tasks)Time-tick processing
069Scheduler*

Hardware SchedulerMicro C/OS II

12521SuspendTask
23037configureScheduler

WCET (# of cycles)# of PPC Assembly
Instructions

API

Assembly instruction execution comparison

Number of PowerPC instruction of the APIs

CHS Requires One PPC Instruction to be Configured and One Instruction
to Suspend a Task which means over 100x Speedup.

* Priority Scheduler

18

Experiments and Results (3)Experiments and Results (3)

Fixed-Cycle

Operations
Fixed-Cycle

Operations Improve

Response Time

Improve

Response Time

Time tick

background

processing

Time tick

background

processing Scheduling in

Softw
are

Scheduling in

Softw
are

CHSCHS

19

CHS Synthesis ResultsCHS Synthesis Results

The Synthesized CHS Supports
– 16 Tasks and
– up to 8 interrupt sources

0.241115
Area (mm2)Number of standard cells

564421
Number of RegistersNumber of Logic Elements

Using HP 0.35µµµµ process

Using Altera Quartus II for EP20K

20

ConclusionConclusion

• We implemented a configurable hardware scheduler
that supports 3 scheduling algorithms

• We developed software interface for the configurable
hardware scheduler and a tool to generate a
customized synthesizable CHS

• The configurable hardware scheduler eliminated the
time spent by the processor for background time
tick processing and scheduling

21

Questions?Questions?

