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IntroductionIntroduction
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µµµµµµµµCC/OS II Background Processing/OS II Background Processing
ptcb = OSTCBList;                               /* Point at first TCB in TCB list */
while (ptcb->OSTCBId != OS_TASK_IDLE_ID) {  /* Go through all TCBs in TCB list */

OS_ENTER_CRITICAL();
if (ptcb->OSTCBDly != 0) {             /* Delayed or waiting for event with TO     */

if (--ptcb->OSTCBDly == 0) {     /* Decrement nbr of ticks to end of delay   */
if (!(ptcb->OSTCBStat & OS_STAT_SUSPEND))  /* Is task suspended? */

OSSched(ptcb,RDY);
else                                        /* Yes, Leave 1 tick to prevent loosing */

ptcb->OSTCBDly = 1;       /* the task when the suspension is removed. */
}

}
ptcb = ptcb->OSTCBNext;        /* Point at next TCB in TCB list            */
OS_EXIT_CRITICAL();

} NOT FIXED-CYCLE OPERATIONS

Number of Tasks Dependent
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Overhead in Overhead in µµµµµµµµCC/OS II Scheduler/OS II Scheduler
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Related WorkRelated Work
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Why do we need the CHS?Why do we need the CHS?
• To reduce the scheduling overhead from the real-

time operating system; hence, improve the system 
response time

• To support a wide range of applications by 
supporting multiple scheduling disciplines that can 
be changed during system execution time.
– Priority 
– Earliest Dead Line First (EDF)
– Rate Monotonic (RM)
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CHS Architecture (1)CHS Architecture (1)
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REG + Counter

LOGICComparator

REG + Counter
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CHS Architecture (2)CHS Architecture (2)
Priority Queue (Ready Queue)
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CHS Architecture (3)CHS Architecture (3)
Sleep Queue
• Used to store the Sleeping Tasks (YIELD/SLEEP).
• The Tasks are sorted according to their remaining sleep time.
• Once The Sleep Time expires it is moved to the PQ.

ID Counter
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CHS Architecture (4)CHS Architecture (4)
Task Table
• Store Information about the existing tasks
• Indexed by the Task ID

PRI Period WCET TYPE PRE STATUS



12

CHS CommandsCHS Commands
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2SLEEP
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1CREATE Task

Task Related

1CONFIGURE
1RUN
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Scheduler Related
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CHS InterfaceCHS Interface

The CHS Hardware is designed to be able to 
interface easily to any microprocessor core:
– As a memory mapped I/O Port, 
– As a co-processor, or
– As instruction-set accelerator
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Software SupportSoftware Support
APIs
• Task

– createTask
– suspendTask, resumeTask
– changePriority, changeWCET, changePeriod
– Yield
– ssleep, sleep

• Scheduler
– configureScheduler
– enableScheduler, disableScheduler
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Automatic Customization of CHSAutomatic Customization of CHS
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Experiments and Results (1)Experiments and Results (1)
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Experiments and Results (2)Experiments and Results (2)
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CHS Requires One PPC Instruction to be Configured and One Instruction 
to Suspend a Task which means over 100x Speedup.

* Priority Scheduler
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Experiments and Results (3)Experiments and Results (3)

Fixed-Cycle 

Operations
Fixed-Cycle 

Operations Improve 

Response Time

Improve 

Response Time

Time tick 

background 

processing

Time tick 

background 

processing Scheduling in 

Softw
are

Scheduling in 

Softw
are

CHSCHS



19

CHS Synthesis ResultsCHS Synthesis Results

The Synthesized CHS Supports 
– 16 Tasks and 
– up to 8 interrupt sources

0.241115
Area (mm2)Number of standard cells

564421
Number of RegistersNumber of Logic Elements 

Using HP 0.35µµµµ process

Using Altera Quartus II for EP20K 
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ConclusionConclusion

• We implemented a configurable hardware scheduler 
that supports 3 scheduling algorithms

• We developed software interface for the configurable 
hardware scheduler and a tool to generate a 
customized synthesizable CHS

• The configurable hardware scheduler eliminated the 
time spent by the processor for background time 
tick processing and scheduling
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Questions?Questions?


