Embedded Software Streaming
via Block Stream

A Dissertation
by
Pramote Kucharoen

Dissertation Advisor

Professor Vincent J. Mooney Il

7 April 2004

* Introduction

+ Related Work

* Block Streaming

- Stream-Enabled Program Files
« Stream-Enabled File 1/O

* Performance Enhancement

« Experiments and Results

« Conclusion

Introduction

il

o 11 1) ddele) duddad el CEET

Soft
Streamin

D
&
Remote executio

Running Applications

* On clients (download and install)

— Advantages
* Less servers’ computing requirements
» Faster user interaction after installation complete

— Disadvantages
* Long download time
* Clients’ limited resources
» Unused features downloaded

« On servers (remote execution)

— Advantages
» Applications not downloaded
* Less clients’ computing requirements

— Disadvantages
* Overloading of servers
* Slower user interactions
* Connection loss

S

Software Streaming
[\

I -
]

Server Client

« Software streaming

— A method for allowing the execution of stream-
enabled software even while transmission/streaming
of the software may still be in progress

 Application load time

— the amount of time from when the application is
selected for download to when the application can
be executed

« Application suspension time

— the amount of time from when the application is
suspended due to missing code to when the
application can be resumed

e [ntroduction

+ Related Work

 Block Streaming

o Stream-Enabled Program Files
e Stream-Enabled File 1/O
 Performance Enhancement

« Experiments and Results

e Conclusion

Related Work (1)

Java
— Allows execution without obtaining all classes
— Sends class files when requested

— Suspends the application for every class not
In memory

— Requires JVM

— Assumes clients has enough memory to store
the entire application

Related Work (2)

- Software caching [CHOZ]

— Has high occurrence of application
suspension

* Liquid software [JH96]
— Requires a fast (“gigabit”) compiler

Related Work (3)

« Function/module streaming [CK98][URO1]

— Allows execution without obtaining all
functions

— Transfers functions speculatively to reduce
the occurrence of application suspension

— Assumes clients has enough memory to store
the entire application

— More difficult to manage memory

10

Related Work (4)

* Block streaming
— Divides files into blocks
— Streams at block level
— No known prior work

11

Related Work (4)

Block Streaming

Java Function/Module Streaming

Direct Download

Software Caching

Remote Execution

12

 Introduction
e Related Work
* Block streaming

e Conclusion

o Stream-Enabled Program Files
e Stream-Enabled File I/0O
 Performance Enhancement

« Experiments and Results

13

Block Streaming

Does not require virtual machines, virtual file
system, compiler at client, special support
from OS

Uses a binary rewriting technique

Supports embedded applications and small
memory footprint devices

Implements at user level (not OS dependant)
Provides stream-enabled file I/O support

14

 To reduce application load time

 To reduce application suspension time and
occurrence of application suspension due to
missing code/data

« To efficiently utilize resources such as
bandwidth and memory

* To support small memory footprint
embedded devices

- To optimize the above four objectives
simultaneously (as opposed to tradeoffs)

15

Objective tradeoffs

application
load time,
resources

occurrence of
High application

suspension

Low

n

Send when Send the entire Data transfer
requested application

16

Block Streaming: Stream Units

Stream Units

O-
1-
2-

17

Softstream Client/Server Model

DDDDDDD

DDDDDDD
DDDDDDD
DDDDDDD
DDDDDDD
DDDDDDD
DDDDDDD
DDDDDDD
Softstream Server 2 D

1
Softstream Server 1

Softstream Server N

Network Cloud

- 0=

I I
)

Softstream Client 1

O
E@ Softstream Client N

[\

Softstream Client 2

18

Softstream Protocol Layers

OSl Layers:
Application
Presentation

Session
Transport
Network
Link
Physical

19

Transmission Profile

* |s created using a profiling method
* |s used to send stream units

20

Flow Control (1)

« Continuous stream

— Sends stream units according to the
transmission profile

— Restarts a new sequence when requesting a
missing stream unit

[] |

F_'—;i -

Server Client

21

Flow Control (2)

* On-demand stream

— Sends stream units according to the
transmission profile based on resource
constraints

- e

— / \

Server Client

22

Performance Metrics

Overhead

— Bandwidth

— Memory

— Processing time

Application load time

Application suspensi

to missing code/data

on time
Occurrence of application suspensions due

23

 Introduction
e Related Work
 Block Streaming

e Conclusion

« Stream-Enabled Program Files
e Stream-Enabled File I/0O
 Performance Enhancement

« Experiments and Results

24

Stream-Enabled Program Files

« Code generation
« Code modification
« Code profiling

25

System Overview

Image intQ
Blocks’

Requ
Stream Unit

Receijve Block

Not injMemory

\ 4

Link S Off-block Load S
Block Block
yy

Encounjer Off-
Block Bfanch

In Memory

Request
I TN T TR

Program]Entry Point

Application

Re
Transmission
S Profile

I ‘ ‘ ‘ ‘ I‘IUI‘II\z‘

Send Stre
Unit

Server Client

26

Generating Blocks

Source Code

I
#include <stdio.h>
int main()

inti;

_//

GCC

Binary Image

1000101111010
01111011000100
101001001001000
1111010011101001
11000100101000111
001001000110001011
0011101001011110110
00101000111010010010
000110001011110100111
1001011110110001001010
0011101001001001000110
0010111101001110100101
1110110001001010001110 |
1001001001000110001011
1101001110100101111011 |
0001001010001110100100 |
1001000110001011110100
1110100101111011000100
1010001110100100100100
0110001011110100111010
0101111011000100100010

0110100100100100010010

Stream-Enabled Application
0 [Stream-Enabling"qfo |

27

Exiting and Entering a Block

bl 1 branch
2 exception
conp: stwu _
lwz T after executing
cmpwi 10, the last instruction
bne . L3
| | ro, 0 —— return
stw r0,8(r31)
b . L4 <
. L3: SC <
|| ro, 1 Off-block branch: Branch
stw r0, 8(r31) instruction that may cause
______ the CPU to execution an
instruction in a different
LA block

28

Code Generation

* Preventing the execution of non-existing code
— Static branches
— Dynamic branches (return, function pointer)
— EXxception instructions
— Last instruction of the block
* Coping with non-interruptible sections
— Stream execution code prior to the current block
« Generating stream-enabling information
— Location of the off-block branches
— Branch number assigned sequentially

29

Code Modification

» Load time code modification

— Modifies off-block branches to jump to the
branch table

— Stores In off-block branch information in
Branch Info Table

* Run time code modification

— Modifies the off-block branches to jump to the
Intended code

30

Code Modification Example (1)

31

Code Modification Example (2)

J load2_2: ..

| oad2_1:

b | oad3_0

» | oad3_0:

—=

32

Code Profiling

Program Entry Point 9

w‘

Program Exit Point

33

Divi
Image into

Recap: Block Streaming for Program File

IENELEY sl Requ '
[Stream Unit
Gener! |
Stream Units Not in|Memory Receijve Block

!

Cre A
Transmissio Link Str Off-block Load S
Profile Block Block

A

T TUTITO

Encounjer Off-
Block Bfanch

Accept In Memory

Request
I TN T TR

Program]Entry Point

Application

Re
Transmission
S Profile

I ‘ ‘ ‘ ‘ I‘IUI‘II\;‘

Server Client

34

 Introduction
e Related Work
 Block Streaming

e Conclusion

« Stream-Enabled Program Files
« Stream-enabled File I/O
 Performance Enhancement

« Experiments and Results

35

Stream-Enabled File /O

« To reduce file I/O operation latency

» Motivation
— A game application renders a 1MB scene

Block Size

1MB

I Download
4KB -
D Process

’ P seconds

0 0.25 0.33 65.54 65.60 81.53

36

Stream Units for Data Block

« Generate stream units by dividing file into
fixed size blocks

« Create transmission profile by profiling data

* Provide SIO function calls
— Slo_open()
— sio_read|()
— slo_write()
— Slo_Iseek()
— Slo_close()

37

Block Table

wI\JHO<—U

N-1

0x00010400

38

Data Profiling Example (1)

1 MB data file, data sorted in ascending
order

Divide the file into 10 equal-size blocks

A database application searches for a record
using a binary search algorithm

Create a transmission profile according to
the binary search algorithm

Assume that the record is in block 5

39

Data Profiling Example (2)

40

Recap: Block Streaming for Data File

Divide Fi

o

Blocks

R 1 NI
Gener

Stream Units
Cr

Transmissio
Profile

T TUTITO

Accept
Request
1T A T T TR

Re
Transmission
Profile

WAL= LA [

Send Stre
Unit

Server

Not in Memofy

L sio_open

v

sio_lseekH

Not in|Memory

Requ
Stream Unit

sio_writel!i

> sio_close
-

-

Client

41

 Introduction
e Related Work
 Block Streaming

e Conclusion

o Stream-Enabled Program Files
e Stream-Enabled File I/0O

* Performance Enhancement

« Experiments and Results

42

Performance Enhancement

Objectives

— To reduce occurrence of application suspensions
— To support small memory footprint embedded devices
Code transformation

— Enforcing block boundaries

— Remapping functions

Steam unit removal

— Unlinking mechanism

— Stream unit replacement

Requirement

— Fixed sized stream blocks

43

Enforcing Block Boundaries Example

fnil: fnl:
fn2: stw 1,-31(1)
\HHHHHS\F\Y\I\\H%\’8\(\1)\

fn2:
fn3:

fn3:

a4

Remapping Functions

* Observations

— Programmer places functions in the file
randomly

— Compiler places the functions the same order
as written

— Program jumps from block to block
— Higher occurrence of software suspensions

45

Remapping Function Example

I nt fn2(.
{

\ 9
int fn3(.)
{

: -

int fn9(.)
{

! .

46

Unlinking Mechanism

* Linking

— Run efficiently, no code checking
« Unlinking

— Remove blocks

— Need to know location of incoming branches
to the block to be removed

47

Unlinking Mechanism Example

bne load2 1 .| | oad2_1:

I ro,
stw 10, 8(r
b | oad2_2

J load2_2: ..

48

Stream Unit Replacement

* Objective
— Reduce number of retransmissions
« Example
— Game application (e.g., Doom)
* 6 MB
* 6 blocks, 1MB each
— PDA with 3 MB memory available

— 3 Blocks, 1 MB each

49

Stream Unit Replacement Example

Execution profile:

612@1@15341432312612

Transmission profile:

oL |2 3 4 5 1 2 6

Client memory:

9 occurrences of application suspension for demand loading
potentially 6 occurrences with block streaming

50

 Introduction
e Related Work
 Block Streaming

e Conclusion

o Stream-Enabled Program Files
e Stream-Enabled File I/0O
 Performance Enhancement

« Experiments and Results

51

Experiments and Results

Hardware setup
Stream-enab
Stream-enab
Stream-enab

file 1/10

program file (SPF)
file /1O (SIO)

orogram with stream-enabled

52

Simulation Environment

Main processor

XRAY

MPC750

A

<

I/O processor

Address/Data Bus

MPC750: 400 MHz

Bus:
Memory:

83 MHZ
16 MB

53

MB X860 Board Environment

Network Cloud

PC: MBX860:
Linux PowerPC 860, 40MHz
Traffic Shaper *10BaseT Ethernet
4 MB DRAM, 2 MB Flash
eLinux 2.4.21

o4

Implementation C lines
softstream server = 3400
softstream client = 1400

softstream loader/linker = 1300
stream-enabled file 1/0 = 1500
softstream generator = 2200

Server:
softstream server
softstream generator

Client:

softstream client
softstream loader/linker
stream-enabled file I/O

55

SPF Overhead (1)

« Overhead per off-block branch
— Bandwidth 4 bytes (location of the branch)

— Memory 20 bytes (12 bytes for block table,
4 bytes for instruction, 4 bytes for location)

Type of overhead Overhead per off-block branch
Bandwidth 4 bytes
Memory 20 bytes

56

SPF Overhead (2)

* Overhead per block
— Bandwidth: 12 bytes for headers + 4*n
— Memory: 20*n
—n =number of off-block branches

«— 32bits — >4 — 32bits — >4 — 32bits — P

Stream Unit ID Stream—I.EnabI.l ng Code Size
Information Size
Payload

57

SPEF Simulation Scenario

- Adaptive autonomous robot exploration

* Impossible to write and load software for all
possible environments

 The mission control needs to update the
robot software over a 128Kbps link

* The new code is 10MB

 The robot does not need all 10MB initially

* The robot must run the software to react to
the new environment within 120 s

58

SPF Simulation Results

Block size Total # of Added Load time (s)
(bytes) blocks code/block

10M 1 0.0003% 655.36
5M 2 0.0007% 327.68
2M 5 0.0017% 131.07
1M 10 0.0034% 65.54

0.5M 20 0.0069% 32.77

100K 103 0.0352% 6.40
10K 1024 0.3516% 0.64
1K 10240 3.5156% 0.06
512 20480 7.0313% 0.03

959

SPF MB X860 Board Results

700

600

a1
o
o

Application Load Time (s)

0.03

0.06

0.69

512

1K

10K

100K 0.5M M
Block Size (bytes)

2M

sM

10M

60

Stream-Enabled Program File Results

Sending the whole software takes over 10
minutes: the deadline is missed

Using software streaming with the first
blocks of size of 1MB, the new software can
be executed within 66 seconds: the deadline

IS met

The application load time improves by a
factor of = 10X

Function streaming can potentially achieve
the same result

— But function streaming lacks file I/O support

61

Stream-Enabled File I/O (SIO)

* Overhead per block
— Bandwidth 8 bytes (Stream Unit ID, Data Size)
— Memory 4 bytes (Entry in Block Table)

<4 32bits — P4 — 32bits —»

Stream Unit ID Data Size

Data
\—//—\

62

SIO Board Experiment (1)

 File size 1 MB

 Benchmarks
— Se(: read data sequentially
— Rand 1K: read 1KB randomly

— Stat: calculate various statistical values of
distinct pieces the data

— BSearch: find a specific value in the file using
a binary search algorithm

* Implementations

— DD using Linux TCP 1.0 for NET4.0, NFS
version 3, SIO

63

SIO Board Results (1)

120 +

100 -

80.40

80.31

Time (s)

6136

Up to 55X faster

Rand 1K

6247

554

Stat

B SIO mNFS ODD

BSearch

64

SIO Board Experiment (2)

- Data acquisition
— Read a certain amount of data from a 1 MB file
— Link speed 128 Kbps

65

SIO Board Results (2)

Time to acquire a certain amount of data

90
80 e
70 /

A & A —A— —h———A
60 4 —A— A B =l
q) /
£ 40
I_

s

10 ‘//’/

0 / ‘

0 200 400 600
Data (Kbytes)

—— SIO —=—NFS —a—DD

800

1000

66

SIO Board Experiment (3)

- Data utilization (Kbytes per second)
— How fast data being consumed

— Process a 1 MB file using various data
utilization rates

— Link speed 128 Kbps

67

SIO Board Results (3)

The amount of time it takes to process a 1 MB file

200

\

\

UL

20 40 60 80 100
Data Utilization Rate (KB/s)

——SIO —s—NFS —a—DD

120

68

Stream-Enabled Application Experiment

Game application
Program size 512 KB
Data size 1 MB

128 KB code and 256 KB data needed for the
first scene

Stream-enabled program file (SPF) embeds
data inside program

Implementation: SIO+SPF, SPF, NFS, DD

69

Stream-Enabled Application Results

[EN
o
o

(0]
o

(o))
o

User Perceived Application Load Time (s)
D
o

97.78

N
o
|

o
|

22.85

SIO+SPF

(2.60

SPF

32.38

NFS

DD

70

Conclusion

Reduce application load time by enabling
execution while transferring (10X)

_ower application suspension time by
orofiling

Reduce the occurrence of application
suspensions

Support small memory footprint embedded
devices

Provide stream-enabled file I1/O (55X)

71

Publications

Kuacharoen, P. and Mooney, V., “Memory management for embedded devices
using software streaming,” to be published in Proceedings of the Mobility
Conference & Exhibition, Aug. 2004.

Akgul, B., Mooney, V., Thane, H., and Kuacharoen, P., “Hardware Support for
Priority Inheritance,” in Proceedings of the I|IEEE Real-Time Systems
Symposium, pp.246-254, Dec. 2003.

Kuacharoen, P., Mooney, V., and Madisetti, V., “Software streaming via block
streaming,” in the book Embedded Software for SoC, edited by Jerraya, A.,
Yoo, S., Verkest, D. and Wehn, N., Boston, MA: Kluwer Academic Publishers,
pp. 435-448, Sep. 2003.

Kuacharoen, P., Mooney, V., and Madisetti, V., “Software streaming via block
streaming,” in Proceedings of the Design Automation and Test in Europe, pp.
912-917, Mar. 2003.

Kuacharoen, P., Shalan, M., and Mooney, V., “A congurable hardware scheduler
for real-time systems,” in Proceedings of the International Conference on
Engineering of Recongurable Systems and Algorithms, pp. 96-101, June 2003.

Kuacharoen, P., Akgul, T., Mooney, V., and Madisetti, V., “Adaptability,
extenS|b|I|ty, and exibility in real-time operating systems,” in Proceedings of
the EUROMICRO Symposium on Digital Systems Design, pp. 400-405, Sep.
2001.

Akgul, T., Kuacharoen, P., Mooney, V., and Madisetti, V., “A debugger RTOS for
embedded systems,” in Proceedings of the 27th EUROMICRO Conference, pp.
264-269, Sep. 2001.

72

 Kuacharoen, P., Mooney, V., and Madisetti, V., “Methods and
systems for transmitting application software,” U.S. Patent
Application 20040006637, Jan. 2004.

 Kuacharoen, P., Akgul, T., Mooney, V., and Madisetti, V.,
“Dynamic operating system,” U.S. Patent Application
20030074487, Apr. 2003.

 Akgul, T., Kuacharoen, P., Mooney, V., and Madisetti, V.,
“Debugger operating system for embedded systems,” U.S.
Patent Application 20030074650, Apr. 2003.

73

Security: Issues not Addressed

* Network security
— Stream applications from trusted site
— SSL
— Certificate

« Memory protection

74

Questions?

?

75

