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Running Applications

* On clients (download and install)

— Advantages
* Less servers’ computing requirements
» Faster user interaction after installation complete

— Disadvantages
* Long download time
* Clients’ limited resources
» Unused features downloaded

« On servers (remote execution)

— Advantages
» Applications not downloaded
* Less clients’ computing requirements

— Disadvantages
* Overloading of servers
* Slower user interactions
* Connection loss
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« Software streaming

— A method for allowing the execution of stream-
enabled software even while transmission/streaming
of the software may still be in progress

 Application load time

— the amount of time from when the application is
selected for download to when the application can
be executed

« Application suspension time

— the amount of time from when the application is
suspended due to missing code to when the
application can be resumed
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Related Work (1)

Java
— Allows execution without obtaining all classes
— Sends class files when requested

— Suspends the application for every class not
In memory

— Requires JVM

— Assumes clients has enough memory to store
the entire application




Related Work (2)

- Software caching [CHOZ]

— Has high occurrence of application
suspension

* Liquid software [JH96]
— Requires a fast (“gigabit”) compiler




Related Work (3)

« Function/module streaming [CK98][URO1]

— Allows execution without obtaining all
functions

— Transfers functions speculatively to reduce
the occurrence of application suspension

— Assumes clients has enough memory to store
the entire application

— More difficult to manage memory
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Related Work (4)

* Block streaming
— Divides files into blocks
— Streams at block level
— No known prior work
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Related Work (4)

Block Streaming

Java Function/Module Streaming

Direct Download

Software Caching

Remote Execution
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Block Streaming

Does not require virtual machines, virtual file
system, compiler at client, special support
from OS

Uses a binary rewriting technique

Supports embedded applications and small
memory footprint devices

Implements at user level (not OS dependant)
Provides stream-enabled file I/O support
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 To reduce application load time

 To reduce application suspension time and
occurrence of application suspension due to
missing code/data

« To efficiently utilize resources such as
bandwidth and memory

* To support small memory footprint
embedded devices

- To optimize the above four objectives
simultaneously (as opposed to tradeoffs)

15



Objective tradeoffs
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Block Streaming: Stream Units

Stream Units
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Softstream Client/Server Model
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Softstream Protocol Layers

OSl Layers:
Application
Presentation

Session
Transport
Network
Link
Physical
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Transmission Profile

* |s created using a profiling method
* |s used to send stream units

20



Flow Control (1)

« Continuous stream

— Sends stream units according to the
transmission profile

— Restarts a new sequence when requesting a
missing stream unit

[ ] |

F_'—;i -

Server Client

21



Flow Control (2)

* On-demand stream

— Sends stream units according to the
transmission profile based on resource
constraints
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Performance Metrics

Overhead

— Bandwidth

— Memory

— Processing time

Application load time

Application suspensi

to missing code/data

on time
Occurrence of application suspensions due

23




 Introduction
e Related Work
 Block Streaming

e Conclusion

« Stream-Enabled Program Files
e Stream-Enabled File I/0O
 Performance Enhancement

« Experiments and Results

24




Stream-Enabled Program Files

« Code generation
« Code modification
« Code profiling
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System Overview
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Generating Blocks

Source Code

I
#include <stdio.h>
int main()

inti;

\_//

GCC

Binary Image

1000101111010
01111011000100
101001001001000
1111010011101001
11000100101000111
001001000110001011
0011101001011110110
00101000111010010010
000110001011110100111
1001011110110001001010
0011101001001001000110
0010111101001110100101
1110110001001010001110 |
1001001001000110001011
1101001110100101111011 |
0001001010001110100100 |
1001000110001011110100
1110100101111011000100
1010001110100100100100
0110001011110100111010
0101111011000100100010

0110100100100100010010

Stream-Enabled Application
0 [ Stream-Enabling"qfo |
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Exiting and Entering a Block

bl 1 branch
2 exception
conp: stwu _
lwz T after executing
cmpwi 10, the last instruction
bne . L3
| | ro, 0 —— return
stw r0,8(r31)
b . L4 <
. L3: SC <
|| ro, 1 Off-block branch: Branch
stw r0, 8(r31) instruction that may cause
______ the CPU to execution an
instruction in a different
LA block
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Code Generation

* Preventing the execution of non-existing code
— Static branches
— Dynamic branches (return, function pointer)
— EXxception instructions
— Last instruction of the block
* Coping with non-interruptible sections
— Stream execution code prior to the current block
« Generating stream-enabling information
— Location of the off-block branches
— Branch number assigned sequentially
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Code Modification

» Load time code modification

— Modifies off-block branches to jump to the
branch table

— Stores In off-block branch information in
Branch Info Table

* Run time code modification

— Modifies the off-block branches to jump to the
Intended code
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Code Modification Example (1)
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Code Modification Example (2)

J load2_2: ..

| oad2_1:

b | oad3_0

» | oad3_0:

—=
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Code Profiling

Program Entry Point 9

w‘

Program Exit Point
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Stream-Enabled File /O

« To reduce file I/O operation latency

» Motivation
— A game application renders a 1MB scene

Block Size

1MB

I Download
4KB -
D Process

’ P seconds

0 0.25 0.33 65.54 65.60 81.53

36



Stream Units for Data Block

« Generate stream units by dividing file into
fixed size blocks

« Create transmission profile by profiling data

* Provide SIO function calls
— Slo_open()
— sio_read|()
— slo_write()
— Slo_Iseek()
— Slo_close()
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Block Table

wI\JHO<—U

N-1

0x00010400
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Data Profiling Example (1)

1 MB data file, data sorted in ascending
order

Divide the file into 10 equal-size blocks

A database application searches for a record
using a binary search algorithm

Create a transmission profile according to
the binary search algorithm

Assume that the record is in block 5
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Data Profiling Example (2)
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Recap: Block Streaming for Data File

Divide Fi

o

Blocks

R 1 NI
Gener

Stream Units
Cr

Transmissio
Profile

T TUTITO

Accept
Request
1T A T T TR

Re
Transmission
Profile

WAL= LA [

Send Stre
Unit

Server

Not in Memofy

L sio_open

v

sio_lseekH

Not in|Memory

Requ
Stream Unit

sio_writel!i

> sio_close
-

-

Client

41




 Introduction
e Related Work
 Block Streaming

e Conclusion

o Stream-Enabled Program Files
e Stream-Enabled File I/0O

* Performance Enhancement

« Experiments and Results

42




Performance Enhancement

Objectives

— To reduce occurrence of application suspensions
— To support small memory footprint embedded devices
Code transformation

— Enforcing block boundaries

— Remapping functions

Steam unit removal

— Unlinking mechanism

— Stream unit replacement

Requirement

— Fixed sized stream blocks
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Enforcing Block Boundaries Example

fnil: fnl:
fn2: stw 1,-31(1)
\HHHHHS\F\Y\I\\H%\’8\(\1)\

fn2:
fn3:

fn3:

a4



Remapping Functions

* Observations

— Programmer places functions in the file
randomly

— Compiler places the functions the same order
as written

— Program jumps from block to block
— Higher occurrence of software suspensions
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Remapping Function Example

I nt fn2(.
{

\ 9
int fn3(.)
{

: -

int fn9(.)
{

! .
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Unlinking Mechanism

* Linking

— Run efficiently, no code checking
« Unlinking

— Remove blocks

— Need to know location of incoming branches
to the block to be removed
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Unlinking Mechanism Example

bne load2 1 .| | oad2_1:

I ro,
stw 10, 8(r
b | oad2_2

J load2_2: ..
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Stream Unit Replacement

* Objective
— Reduce number of retransmissions
« Example
— Game application (e.g., Doom)
* 6 MB
* 6 blocks, 1MB each
— PDA with 3 MB memory available

— 3 Blocks, 1 MB each
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Stream Unit Replacement Example

Execution profile:

612@1@15341432312612

Transmission profile:

oL |2 3 4 5 1 2 6

Client memory:

9 occurrences of application suspension for demand loading
potentially 6 occurrences with block streaming
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Experiments and Results

Hardware setup
Stream-enab
Stream-enab
Stream-enab

file 1/10

program file (SPF)
file /1O (SIO)

orogram with stream-enabled
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Simulation Environment

Main processor

XRAY

MPC750

A

<

I/O processor

Address/Data Bus

MPC750: 400 MHz

Bus:
Memory:

83 MHZ
16 MB

53




MB X860 Board Environment

Network Cloud

PC: MBX860:
Linux PowerPC 860, 40MHz
Traffic Shaper *10BaseT Ethernet
4 MB DRAM, 2 MB Flash
eLinux 2.4.21
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Implementation C lines
softstream server = 3400
softstream client = 1400

softstream loader/linker = 1300
stream-enabled file 1/0 = 1500
softstream generator = 2200

Server:
softstream server
softstream generator

Client:

softstream client
softstream loader/linker
stream-enabled file I/O
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SPF Overhead (1)

« Overhead per off-block branch
— Bandwidth 4 bytes (location of the branch)

— Memory 20 bytes (12 bytes for block table,
4 bytes for instruction, 4 bytes for location)

Type of overhead Overhead per off-block branch
Bandwidth 4 bytes
Memory 20 bytes
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SPF Overhead (2)

* Overhead per block
— Bandwidth: 12 bytes for headers + 4*n
— Memory: 20*n
—n =number of off-block branches

«—  32bits — >4 —  32bits — >4 —  32bits — P

Stream Unit ID Stream—I.EnabI.l ng Code Size
Information Size
Payload
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SPEF Simulation Scenario

- Adaptive autonomous robot exploration

* Impossible to write and load software for all
possible environments

 The mission control needs to update the
robot software over a 128Kbps link

* The new code is 10MB

 The robot does not need all 10MB initially

* The robot must run the software to react to
the new environment within 120 s
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SPF Simulation Results

Block size Total # of Added Load time (s)
(bytes) blocks code/block

10M 1 0.0003% 655.36
5M 2 0.0007% 327.68
2M 5 0.0017% 131.07
1M 10 0.0034% 65.54

0.5M 20 0.0069% 32.77

100K 103 0.0352% 6.40
10K 1024 0.3516% 0.64
1K 10240 3.5156% 0.06
512 20480 7.0313% 0.03

959



SPF MB X860 Board Results

700
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a1
o
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Application Load Time (s)
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512

1K
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Block Size (bytes)

2M
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10M
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Stream-Enabled Program File Results

Sending the whole software takes over 10
minutes: the deadline is missed

Using software streaming with the first
blocks of size of 1MB, the new software can
be executed within 66 seconds: the deadline

IS met

The application load time improves by a
factor of = 10X

Function streaming can potentially achieve
the same result

— But function streaming lacks file I/O support
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Stream-Enabled File I/O (SIO)

* Overhead per block
— Bandwidth 8 bytes (Stream Unit ID, Data Size)
— Memory 4 bytes (Entry in Block Table)

<4 32bits — P4 — 32bits —»

Stream Unit ID Data Size

Data
\—//—\
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SIO Board Experiment (1)

 File size 1 MB

 Benchmarks
— Se(: read data sequentially
— Rand 1K: read 1KB randomly

— Stat: calculate various statistical values of
distinct pieces the data

— BSearch: find a specific value in the file using
a binary search algorithm

* Implementations

— DD using Linux TCP 1.0 for NET4.0, NFS
version 3, SIO
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SIO Board Results (1)

120 +

100 -

80.40

80.31

Time (s)

6136

Up to 55X faster

Rand 1K

6247

554

Stat

B SIO mNFS ODD

BSearch
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SIO Board Experiment (2)

- Data acquisition
— Read a certain amount of data from a 1 MB file
— Link speed 128 Kbps
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SIO Board Results (2)

Time to acquire a certain amount of data
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SIO Board Experiment (3)

- Data utilization (Kbytes per second)
— How fast data being consumed

— Process a 1 MB file using various data
utilization rates

— Link speed 128 Kbps
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SIO Board Results (3)

The amount of time it takes to process a 1 MB file

200

\

\

UL

20 40 60 80 100
Data Utilization Rate (KB/s)

——SIO —s—NFS —a—DD

120
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Stream-Enabled Application Experiment

Game application
Program size 512 KB
Data size 1 MB

128 KB code and 256 KB data needed for the
first scene

Stream-enabled program file (SPF) embeds
data inside program

Implementation: SIO+SPF, SPF, NFS, DD
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Stream-Enabled Application Results

[EN
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User Perceived Application Load Time (s)
D
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22.85

SIO+SPF

(2.60

SPF

32.38

NFS

DD
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Conclusion

Reduce application load time by enabling
execution while transferring (10X)

_ower application suspension time by
orofiling

Reduce the occurrence of application
suspensions

Support small memory footprint embedded
devices

Provide stream-enabled file I1/O (55X)
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Security: Issues not Addressed

* Network security
— Stream applications from trusted site
— SSL
— Certificate

« Memory protection
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