
Instruction-level Reverse
Execution for Debugging

Tankut Akgul and Vincent J. Mooney

School of Electrical and Computer Engineering
Georgia Institute of Technology

November 2002

2

Background

Run the
program

Detect an
error

Restart the
program

Determine
the bug

location(s)

Error-free
program

Remove the
bug(s) from
the program

Debugging is a repetitive process!

3

Motivation

• State constructed during forward
execution

• At least one (typically more than
one) re-execution required for
locating a bug in a program

• Re-executions localized around
erroneous program points by
reverse execution

• Time saved by preventing re-
executions starting from the
beginning of the program

• Assembly-level reverse execution
as a first step

��

��

4

Motivation

5

Previous Work

� Periodic state saving
� Save whole processor state periodically

� Incremental state saving
� Save modified processor state

� Program animation
� Construct a virtual machine with reversible instructions which

are usually stack operations
� Source transformation

� Transform the source code to a reversible source code version
� Apply state saving for destructive statements

All above methods use state saving heavily!

State saving = timetime and memorymemory overheads introduced during
forward execution

6

Methodology

We define the state of a processor as follows:
S = (PC , M , R)
PC : program counter
M : memory values
R : register values

In order to reverse execute a program do the following:

� Construct a reverse program T' for an input program T
� Recover M and R by executing T' in place of T
� Recover the program counter value with the help of

the debugger tool

7

Program Execution Model
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

Execution 1: I1 = (
�
, 2, 3, �, 5)

Execution 2: I2 = (
�
, 2, 6)

: a non-branch instruction

: a branch instruction

�

� �

��

� �

�

� �

8

Reverse Execution

S0
�S1 S2

� �Execution 1:

Take a specific execution of T

Generate a set of one or more reverse instructions, a reverse
instruction group (RIG), for every non-branch instruction such
that RIGx reverses the effect of x

(1, 3, �) � (RIG1, RIG3, RIG5)

Execute RIGs in the order opposite to the completion order
of the instructions during forward execution and have the
debugger tool recover the rest of the state

Reverse Execution:

S3 S4 S5

S0 S1 S2 S3 S4 S5

��

RIG1
debugger RIG3

debugger RIG5

9

Reverse Execution (Continued)

Problem:
Dynamic control flow of T may change!

Solution:
� Find out a condition set C (predicate expressions)

which determines control flow of T
� Combine the RIGs in such a way that the

execution order of the RIGs is bound to C

10

Reverse Execution (Continued)
��
��

����

�

�

�

�

�

 	

�

?

?

?

Reverse
Execution

� Instructions in a basic block (BB)
complete in lexical order

� Confluence points are the only
decision points on the path to
follow during reverse execution

11

Reverse Code Generation (RCG)
Algorithm

Step 1: Constructs a control flow graph (CFG) for every
procedure/function (intra-procedural analysis) and labels
the CFG edges for Step2

Step 2: Determines the predicate expressions (condition set C)
at the confluence points in the CFG of each
procedure/function

Step 3: Constructs the RIGs

Step 4: Combines the RIGs via conditional branch instructions
with the determined predicates at the confluence points
to generate the reverse of each procedure/function

Step 5: Combines the reverse procedures/functions

12

Step 1: CFG Construction and Labeling
start

exit

: jth incoming forward edge of BBi

out
ji,L : jth outgoing forward edge of BBi

[0,255]Lout
1,1 =

}
}

]y,[xLL

else}

]y1)/2,y[(xLL

1],1)/2y(x,[xLL

{2))s(BBOutFwdEdgeif(

L]y,[xL

kk
out
i,1

out
i,1

kkk
out
i,2

out
i,2

kkk
out
i,1

out
i,1

i

)(BBInFwdEdges

1j

in
ji,

n

1k
kk

temp
i

∪=

++∪=

−++∪=

==
=

==

∧−∈∀

==

{nto1kfor

{dostart},{exitCFGBBi

��

in
ji,L

[128,255][128,255]

[0,255][0,255]

[0,255][0,255]

[0,127][0,127]

[0,63][0,63] [64,127][64,127]

BB1

BB2

BB3

BB4

BB5

BB6

�

�

�

�

�

�

�

��

	

if |OutFwdEdges(BBi)|==1)

13

Step 2: Predicate Expression
Determination

[128,255][128,255]

[0,255][0,255]

[0,255][0,255]

[0,127][0,127]

[0,63][0,63] [64,127][64,127]

640 63 255127 128

p(x): predicate of x

cb: conditional branch[128,255]: p(cb1)

truefalse

truefalse

[64,127]: [p(cb1)]' · [p(cb2)] ≡ [p(cb1)]'

p(cb1)

p(cb2)

if p(cb1)

reverse of BB3

else

reverse of BB4

Reverse code for P P :

PP

CFI1 CFI2 CFI3
start

lwz r4, 0(r2)

cmpi r4, 122

subi r4, r4, 32

exit

BB2

BB3

BB4

BB5

BB6

addi r2, r1, 8

BB1

blt exit
cmpi r4, 97

bgt exit

stw r4, 0(r2)

addi r2, r2, 4
b loop

truefalse

cb1

cb2

14

start

Step 3: Construction of the RIGs

r1
1 = r2

0 + r3
0 r1

2 = r2
0

r1
4 = r2

0 - 4

r4
1 = r1

3 + r3
0

r1
3 = S(r1

1,r1
2)

exit

� Rename Values
� Generate a directed acyclic

graph (DAG)r2
0 < 0

PP

PP''

� Find the definition of r1 reaching PP

r1
1

r2
0 r3

0

r1
2

r4
0

r4
1

r1
3

r1
0

r1
4

r 2
0 < 0 r

2 0 � 0S

� Recover r1 using available nodes
at PP''

r1 = r4 – r3

if r2 < 0
r1 = r2

r1 = r2 + r3

else
RIG for : or

false true

+

+

15

Step 3: Construction of the RIGs
(Example)

start

2: lwz r4, 0(r2)

5: cmpi r4, 122

7: subi r4, r4, 32

exit

BB2

BB3

BB4

BB5

BB6

r1
0r2

0 r4
0

1: addi r2, r1, 8

r2
1

r2
2

r2
3

r2
4

m0
0

m1
0

r4
3

r4
4

m1
1

m1
2

r4
1

r4
2

m0
1

m0
2

BB1

4: blt exit
3: cmpi r4, 97

6: bgt exit

8: stw r4, 0(r2)

9: addi r2, r2, 4
10: b loop

m0
0 m1

0

S

S

S

16

Step 4: Combination of the RIGs
start

lwz r4, 0(r2)
cmpi r4, 97
blt exit

cmpi r4, 122
bgt exit

subi r4, r4, 32
stw r4, 0(r2)
addi r2, r2, 4
addi rLC, rLC, 1
b loop

exit

BB2

BB3

BB4

BB5

BB6

BB1
subi rLC, rLC, 1
subi r2, r2, 4
addi rt, r4, 32
stw rt, 0(r2)
addi r4, r4, 32

cmpi rLC, 0
bne L1

lwz r4, mem2
b L2

subi rt, r2, 4
lwz r4, 0(rt)
cmpi rLC, 0
bne loop

lwz r2, mem1

exit

start

stw r2, mem1
addi r2, r1, 8
li rLC, 0
stw r4, mem2

(BB3)'

(BB5)'

(BB2)'

(BB6)'

(BB1)'

L1:

17

Step 5: Combination of Reverse
Procedures/functions

m1 g1

h

g2m2

end

start

A0

A0

A2
A2

A2

A4

A3

A3

A1

mm11

mm22

gg11

gg22

hh

A0

A2

A1

A3

A4

void main(void) {
if (…)

g(); // call g
…
}

void g(void) {
void (*fp)(void); // define a func. ptr.
…
fp=… // set the func. ptr.
(*fp)(); // call by the func. ptr.

…
}

void h(void) {
…

}

� Push addresses on the dynamically
taken edges into stack

� Pop the addresses from stack
during reverse execution and
branch to popped addresses

18

Recovering the Program Counter

Input Input
ProgramProgram

0x0 0x4000

0x4 0x3FFC

0x8 0x3FE0

… …

Input Input
instruction instruction

addressaddress

RIG RIG
addressaddress

Designates the entry point into
the reverse program for every
instruction in the input program

Program being
debugged

Reverse of the
input program

RCG
algorithm

ReverseReverse
ProgramProgram

InversionInversion
TableTable

19

Experimentation Platform

Background Debug
Mode (BDM) Interface

PC

Windows 2000

MBX860
MPC860 processor

4MB DRAM, 2MB Flash
RTC, four 16-bit timers, watchdog

20

Experimental Results

0

2

4

6

8

10

ISS 1.6 1.9 1.9 8.8

ISSDI 1.2 1.5 1.1 5.6

Our algorithm 0.004 0.6 0.2 0.8

FNG SS MM RNG

ISS: Incremental State Saving, ISSDI: Incremental State Saving for Destructive Instructions

FNG: Fibonacci Number Generator, SS: Selection Sort, MM: Matrix Multiply, RNG: Random Number Generator

Memory
Overhead

(kB)

21

Experimental Results (Cont.)

0

50

100

150

200

ISS 109 107.3 132.4 146.4

ISSDI 85.4 90.7 84.3 100.8

Our algorithm 13.4 38.9 28.6 20.6

FNG SS MM RNG

Time
Overhead

(%)

ISS: Incremental State Saving, ISSDI: Incremental State Saving for Destructive Instructions

FNG: Fibonacci Number Generator, SS: Selection Sort, MM: Matrix Multiply, RNG: Random Number Generator

22

Reverse Debugger

Execute forward Step forward Execute backward Step backward

Memory
window

Breakpoint
window

Register
window

Source
window

23

Conclusion

� Reduced debugging time with localized
re-executions

� Very low time and memory overheads in
forward execution by using reverse code

� Reverse execution up to an assembly
instruction level granularity

T. Akgul and V. J. Mooney. Instruction-level reverse execution for
debugging. Technical Report GIT-CC-02-49, Georgia Institute of
Technology, September 2002.
http://www.cc.gatech.edu/tech_reports/index.02.html

